Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Mikrochim Acta ; 191(8): 467, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023534

RESUMO

PdRuO2/PVP nanomaterial was synthesized using a straightforward method and characterized using advanced analytical methods such as TEM, XRD, XPS, elemental mapping and SEM. The synthesized PdRuO2/PVP nanomaterial was used as an ionophore in potentiometric sensor electrodes and successfully adapted to Cr3+ ion detection in a large number of aqueous samples. Several experimental parameters of the PdRuO2/PVP sensor such as potentiometric behavior, selectivity, repeatability, response time, pH, titration, and recovery in real samples were investigated. Potentiometric behavioral characteristics were performed in the concentration range 1 × 10-6-1.0 × 10-1 M. The repeated experiments performed six times showed that there was no deviation in the measurements. The limit of detection of the PdRuO2/PVP potentiometric sensor was very low with a value of 8.6 × 10-8 M. The potentiometric measurements showed that the synthesized PdRuO2/PVP ionophore was highly effective in detecting Cr3+ in a wide pH range of 2.0-8.0 and was found to have a shelf life of over 1 year. As a result, the synthesized PdRuO2/PVP electrode material was found to be highly selective, stable, and applicable for Cr3+ detection.

2.
Int J Biol Macromol ; 275(Pt 1): 133425, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936582

RESUMO

Yeast ß-glucan (BYG) possesses extremely low solubility that has limited its applications. In this study, we hydrolyzed BYG using snail enzyme to obtain hydrolyzed yeast ß-glucan (HBYG) with desirable water solubility and hypoglycemic activity. On the basis of HBYG, HBYG­chromium(III) complex (HBYG-Cr) was synthesized. The molecular weight of the complex was 4.41 × 104 Da, and the content of trivalent chromium was 8.95 %. The hydroxyl groups of HBYG participated in the coordination and formed the chromium complex. The space conformations of HBYG exhibited remarkable changes after complex formation. HBYG-Cr existed mainly in an amorphous state and presented good dispersibility, and the surface was uneven. The hypoglycemic activity of HBYG-Cr was studied in db/db and C57 mice. The results showed that HBYG-Cr had good hypoglycemic activity. Histopathological studies demonstrated that the liver, kidney, pancreas, and skeletal muscle in the treatment group were significantly improved compared with those in the diabetic model group. The sub-acute toxicity of HBYG-Cr was studied in KM mice and the results indicated that the complex did not cause adverse reactions or toxic side effects. This study broadened the application of yeast ß-glucan and provided an important reference for the development of hypoglycemic functional foods and drugs.


Assuntos
Cromo , Hipoglicemiantes , beta-Glucanas , Animais , beta-Glucanas/química , beta-Glucanas/farmacologia , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Cromo/química , Cromo/toxicidade , Camundongos , Hidrólise , Diabetes Mellitus Experimental/tratamento farmacológico , Masculino , Saccharomyces cerevisiae/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Solubilidade
3.
Molecules ; 29(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731488

RESUMO

This study synthesized a novel oat ß-glucan (OBG)-Cr(III) complex (OBG-Cr(III)) and explored its structure, inhibitory effects on α-amylase and α-glucosidase, and hypoglycemic activities and mechanism in vitro using an insulin-resistant HepG2 (IR-HepG2) cell model. The Cr(III) content in the complex was found to be 10.87%. The molecular weight of OBG-Cr(III) was determined to be 7.736 × 104 Da with chromium ions binding to the hydroxyl groups of OBG. This binding resulted in the increased asymmetry and altered spatial conformation of the complex along with significant changes in morphology and crystallinity. Our findings demonstrated that OBG-Cr(III) exhibited inhibitory effects on α-amylase and α-glucosidase. Furthermore, OBG-Cr(III) enhanced the insulin sensitivity of IR-HepG2 cells, promoting glucose uptake and metabolism more efficiently than OBG alone. The underlying mechanism of its hypoglycemic effect involved the modulation of the c-Cbl/PI3K/AKT/GLUT4 signaling pathway, as revealed by Western blot analysis. This research not only broadened the applications of OBG but also positioned OBG-Cr(III) as a promising Cr(III) supplement with enhanced hypoglycemic benefits.


Assuntos
Cromo , Hipoglicemiantes , alfa-Glucosidases , beta-Glucanas , Humanos , Cromo/química , Cromo/farmacologia , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/síntese química , beta-Glucanas/química , beta-Glucanas/farmacologia , Células Hep G2 , alfa-Glucosidases/metabolismo , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , Resistência à Insulina , Glucose/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Avena/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química
4.
Am J Cancer Res ; 14(3): 979-995, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590406

RESUMO

Colorectal cancer (CRC) ranks as the third leading cause of cancer-related mortality worldwide. The current standard of care includes systemic chemotherapy with cytotoxic agents, offering palliative relief for severe CRC cases and serving as the primary therapy for metastatic recurrence. However, the development of chemoresistance poses a substantial obstacle in the realm of chemotherapy. This study delved into the potential of a novel chromium (III)-based compound, hexaacetotetraaquadihydroxochromium (III) diiron (III) nitrate, for CRC treatment. The therapeutic promise of this innovative chromium (III)-based compound was explored by utilizing LoVo colon cancer cells and an in-vivo mouse model of CRC. Various dosages of the compound were administered to LoVo parental cells and LoVo oxaliplatin-resistant cells. Findings unveiled that a concentration of 2000 µg/mL of the chromium (III) compound significantly inhibited mesenchymal transition and the migratory and invasive properties of LoVo oxaliplatin-resistant cells. This novel chromium (III)-based compound also demonstrated similar efficacy in other different CRC cell lines. The tumor growth was in the in-vivo mouse model was reduced by this compound. Moreover, the chromium (III)-based compound induced apoptosis by triggering the endoplasmic reticulum (ER) stress pathway in LoVo oxaliplatin-resistant cells. This study illuminates the capacity of the novel chromium (III)-based compound to impede the progression and growth of chemotherapy-resistant CRC. This discovery instills confidence in the potential of this compound as a therapeutic agent for CRC, even in the face of drug resistance. It holds the promise of serving as a valuable asset in the future treatment of chemotherapy-resistant CRC.

5.
Chemistry ; 30(31): e202400856, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38523568

RESUMO

There has been much progress on mononuclear chromium(III) complexes featuring luminescence and photoredox activity, but dinuclear chromium(III) complexes have remained underexplored in these contexts until now. We identified a tridentate chelate ligand able to accommodate both meridional and facial coordination of chromium(III), to either access a mono- or a dinuclear chromium(III) complex depending on reaction conditions. This chelate ligand causes tetragonally distorted primary coordination spheres around chromium(III) in both complexes, entailing comparatively short excited-state lifetimes in the range of 400 to 800 ns in solution at room temperature and making photoluminescence essentially oxygen insensitive. The two chromium(III) ions in the dimer experience ferromagnetic exchange interactions that result in a high spin (S=3) ground state with a coupling constant of +9.3 cm-1. Photoinduced energy transfer from the luminescent ferromagnetically coupled dimer to an anthracene derivative results in sensitized triplet-triplet annihilation upconversion. Based on these proof-of-principle studies, dinuclear chromium(III) complexes seem attractive for the development of fundamentally new types of photophysics and photochemistry enabled by magnetic exchange interactions.

6.
J Appl Toxicol ; 44(4): 526-541, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37908139

RESUMO

This study investigated the genotoxic effects of chromium (Cr) in Hsd:ICR mice, considering factors such as oxidative state, apoptosis, exposure pathway, duration, pregnancy, and transplacental exposure. Genotoxicity was assessed using the erythrocytes' micronucleus (MN) assay, while apoptosis was evaluated in nucleated blood cells. The results showed that Cr(III) (CrK(SO4 )2 and CrCl3 ) did not induce any marked genotoxic damage. However, Cr(VI) (CrO3 , K2 Cr2 O7 , Na2 Cr2 O7 , and K2 CrO4 ) produced varying degrees of genotoxicity, with CrO3 being the most potent. MN frequencies increased following 24-h exposure, with a greater effect in male mice. Administering 20 mg/kg of CrO3 via gavage did not lead to significant effects compared to intraperitoneal administration. Short-term oral treatment with a daily dose of 8.5 mg/kg for 49 days elevated MN levels only on day 14 after treatment. Pregnant female mice exposed to CrO3 on day 15 of pregnancy exhibited reduced genotoxic effects compared to nonpregnant animals. However, significant increases in MN levels were found in their fetuses starting 48 h after exposure. In summary, data indicate the potential genotoxic effects of Cr, with Cr(VI) forms inducing higher genotoxicity than Cr(III). These findings indicate that gender, exposure route, and pregnancy status might influence genotoxic responses to Cr.


Assuntos
Cromo , Eritrócitos , Camundongos , Masculino , Feminino , Gravidez , Animais , Camundongos Endogâmicos ICR , Cromo/toxicidade , Testes para Micronúcleos
7.
Molecules ; 28(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38138570

RESUMO

The adsorption mechanism of different polymers containing ionic polyamino acids monomers in the chain structure at the solid-liquid interface was investigated. Initially, the influence of molecular weight and solution pH on simple polyamino acids (poly(L-aspartic acid) and poly(L-lysine) binding was determined. Considering the obtained dependencies, the polymer adsorption layer conformation was proposed in the systems containing block copolymers (both diblock and symmetrical triblock) consisting of polypeptide as well as poly(ethylene glycol) fragments. The presented studies focused on the application of two experimental methods. The polymer adsorption was carried out using the batch method and the adsorbate concentration was determined spectrophotometrically. Then, the turbidimetric measurements were taken. The analysis of the obtained results showed that the adsorption process of block copolymers depends on two factors. Firstly, the solution pH determines both the nature of the interactions of the copolymer structural units with the solid surface and the conformation of the polypeptide chains. The second parameter influencing the adsorption layer structure is the ratio of the lengths of both blocks. Introducing a short PEG fragment into the polymer main chain may improve the polymer adsorption properties by increasing the number of interactions with the adsorbent surface.

8.
Heliyon ; 9(9): e20011, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809843

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused 403 million cases of coronavirus disease (COVID-19) and resulted in more than 5.7 million deaths worldwide. Extensive research has identified several potential drug treatments for COVID-19. However, the development of new compounds or therapies is necessary to prevent the emergence of drug resistance in SARS-CoV-2. In this study, a novel compound based on hexaacetotetraaquadihydroxochromium(III)diiron(III) nitrate, which contains small amounts of chromium (III), was synthesised and evaluated for its effectiveness against multiple variants of COVID-19 using both in vitro and in vivo models. This innovative compound demonstrated interference with the interaction between the spike protein of SARS-CoV-2 and angiotensin-converting enzyme 2 (ACE2). Furthermore, in vitro experiments showed that this compound downregulated the expression of ACE2 and transmembrane serine protease 2 (TMPRSS2). It also exhibited a reduction in the activity of 3-chymotrypsin-like protease (3CL) and RNA-dependent RNA polymerase (RdRp). Pretreatment with this small chromium (III)-based compound resulted in reduced ACE2-rich cell infection by various variants of SARS-CoV-2 spike protein-pseudotyped lentivirus. Finally, the compound effectively inhibited viral infection by multiple variants of SARS-CoV-2 spike protein-pseudotyped lentivirus in both the abdominal and thoracic regions of mice. In conclusion, this compound lowers the likelihood of SARS-CoV-2 entry into cells, inhibits viral maturation and replication in vitro, and reduces infection levels of multiple variants of SARS-CoV-2 spike protein-pseudotyped lentivirus in the abdomen and thorax following pretreatment. Small chromium (III)-based compounds have the potential to restrict the progression of SARS-CoV-2 infections.

9.
Sensors (Basel) ; 23(14)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37514554

RESUMO

Metal-organic frameworks are of great interest to scientists from various fields. This group also includes organic-inorganic hybrids with a perovskite structure. Recently their structural, phonon, and luminescent properties have been paid much attention. However, a new way of characterization of these materials has become luminescence thermometry. Herein, we report the structure, luminescence, and temperature detection ability of formate organic-inorganic perovskite [C(NH2)3]M(HCOO)3 (Mg2+, Mn2+, Zn2+) doped with Cr3+ ions. Crystal field strength (Dq/B) and Racah parameters were determined based on diffuse reflectance spectra. It was shown that Cr3+ ions are positioned in the intermediate crystal field or close to it with a Dq/B range of 2.29-2.41. The co-existence of the spin-forbidden and spin-allowed transitions of Cr3+ ions enable the proposal of an approach for remote readout of the temperature. The relative sensitivity (Sr) can be easily modified by sample composition and Cr3+ ions concentration. The luminescent thermometer based on the 2E/4T2g transitions has the relative sensitivity Sr of 2.08%K-1 at 90 K for [C(NH2)3]Mg(HCOO)3: 1% Cr3+ and decrease to 1.20%K-1 at 100 K and 1.08%K-1 at 90 K for Mn2+ and Zn2+ analogs, respectively.

10.
Int J Mol Sci ; 24(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37373200

RESUMO

Chromium and aluminum complexes bearing salalen ligands were explored as catalysts for the ring-opening copolymerization (ROCOP) of succinic (SA), maleic (MA), and phthalic (PA) anhydrides with several epoxides: cyclohexene oxide (CHO), propylene oxide (PO), and limonene oxide (LO). Their behavior was compared with that of traditional salen chromium complexes. A completely alternating enchainment of monomers to provide pure polyesters was achieved with all the catalysts when used in combination with 4-(dimethylamino)pyridine (DMAP) as the cocatalyst. Poly(propylene maleate-block-polyglycolide), a diblock polyester with a precise composition, was obtained by switch catalysis, in which the same catalyst was able to combine the ROCOP of propylene oxide and maleic anhydride with the ring-opening polymerization (ROP) of glycolide (GA) through a one-pot procedure, starting from an initial mixture of the three different monomers.


Assuntos
Anidridos , Poliésteres , Alumínio , Polimerização , Cromo , Compostos de Epóxi , Catálise
11.
Materials (Basel) ; 16(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37176190

RESUMO

In this paper, a synthesis of two innovative coordination compounds, based on chromium(III) and cobalt(II) ions with N,O-donor ligands (nitrilotriacetate, dipicolinate) and 4-acetylpyridine, is reported. The obtained metal-organic compounds were structurally characterized using the single-crystal X-ray diffraction (XRD) method. The well-defined chromium(III) and cobalt(II) complexes were used as precatalysts in the oligomerization reaction of 2-chloro-2-propen-1-ol and 2-propen-1-ol with methylaluminoxane (MMAO) as an activator. The products of the oligomerization reaction were subjected to full physicochemical characteristics, i.e., time-of-flight mass spectrometry (MALDI-TOF-MS), TGA, and differential scanning calorimetry (DSC) methods. The catalytic activity of the precatalysts in both reactions was calculated and compared with other catalysts known in the literature.

12.
Int J Biol Macromol ; 242(Pt 2): 124835, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201883

RESUMO

Though the capability of chromium treatment to improve the stability and mechanical properties of collagen fibrils is well-known, the influence of different chromium salts on collagen molecules (tropocollagen) is not well characterized. In this study, the effect of Cr3+ treatment on the conformation and hydrodynamic properties of collagen was studied using atomic force microscopy (AFM) and dynamic light scattering (DLS). Statistical analysis of contours of adsorbed tropocollagen molecules using the two-dimensional worm-like chain model revealed a reduction of the persistence length (i.e., the increase of flexibility) from ≈72 nm in water to ≈56-57 nm in chromium (III) salt solutions. DLS studies demonstrated an increase of the hydrodynamic radius from ≈140 nm in water to ≈190 nm in chromium (III) salt solutions, which is associated with protein aggregation. The kinetics of collagen aggregation was shown to be ionic strength dependent. Collagen molecules treated with three different chromium (III) salts demonstrated similar properties such as flexibility, aggregation kinetics, and susceptibility to enzymatic cleavage. The observed effects are explained by a model that considers the formation of chromium-associated intra- and intermolecular crosslinks. The obtained results provide novel insights into the effect of chromium salts on the conformation and properties of tropocollagen molecules.


Assuntos
Sais , Tropocolágeno , Sais/farmacologia , Colágeno , Microscopia de Força Atômica/métodos , Água
13.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37108806

RESUMO

Salen, Salan, and Salalen chromium (III) chloride complexes have been investigated as catalysts for the ring-opening copolymerization reactions of cyclohexene oxide (CHO) with CO2 and of phthalic anhydride (PA) with limonene oxide (LO) or cyclohexene oxide (CHO). In the production of polycarbonates, the more flexible skeleton of salalen and salan ancillary ligands favors high activity. Differently, in the copolymerization of phthalic anhydride with the epoxides, the salen complex showed the best performance. Diblock polycarbonate-polyester copolymers were selectively obtained by one-pot procedures from mixtures of CO2, cyclohexene oxide, and phthalic anhydride with all complexes. In addition, all chromium complexes were revealed to be very active in the chemical depolymerization of polycyclohexene carbonate producing cyclohexene oxide with high selectivity, thus offering the opportunity to close the loop on the life of these materials.


Assuntos
Compostos Organometálicos , Anidridos Ftálicos , Poliésteres , Dióxido de Carbono/química , Compostos Organometálicos/química , Ligantes , Polímeros/química , Cromo/química , Catálise , Carbonatos
14.
Environ Sci Pollut Res Int ; 30(19): 55079-55091, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36890403

RESUMO

Extensive application of nanomaterials enlarges its concentrations in the aquatic environments and poses a threat to algae. This study comprehensively analyzed the physiological and transcriptional responses of Chlorella sp. after being exposed to chromium (III) oxide nanoparticles (nCr2O3). The nCr2O3 at 0-100 mg/L presented adverse effects on cell growth (96 h EC50 = 16.3 mg/L), decreasing the photosynthetic pigment concentrations and photosynthetic activity. Moreover, more extracellular polymeric substances (EPS), especially polysaccharides in soluble EPS, were produced in algae cell, which mitigated the damage of nCr2O3 to cells. However, with the increase of nCr2O3 doses, the EPS protective responses were exhausted, accompanied by toxicity in the form of organelle damage and metabolic disturbance. The enhanced acute toxicity was closely related to the physical contact of nCr2O3 with cells, oxidative stress, and genotoxicity. Firstly, large amounts of nCr2O3 aggregated around and were attached to cells, causing physical damage. Then, the intracellular reactive oxygen species and malondialdehyde levels were significantly increased that led to lipid peroxidation, especially at 50-100 mg/L nCr2O3. Finally, the transcriptomic analysis further revealed that the transcription of ribosome, glutamine, and thiamine metabolism-related genes were impaired under 20 mg/L nCr2O3, suggesting nCr2O3 inhibited algal cell growth through metabolism, cell defense, and repair, etc.


Assuntos
Chlorella , Nanopartículas , Óxidos/metabolismo , Cromo/metabolismo , Nanopartículas/toxicidade
15.
Membranes (Basel) ; 13(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36837675

RESUMO

The modification of an MB-2 bipolar ion exchange membrane with chromium (III) hydroxide was carried out by a chemical method, namely, by the sequential treatment of the membrane with a solution of chromium (III) salt and alkali. Data on the morphology, phase, and chemical composition of the modified membrane were obtained using scanning electron microscopy and energy-dispersive analysis. In particular, it was shown that the modifier was distributed in a layer 30-50 microns thick at the boundary of the cation- and anion-exchange layers of the bipolar membrane. The electrochemical behavior of the modified membrane in the process of sodium sulfate conversion was studied by measurements of the following characteristics: the current efficiency of the acid and base, the energy consumption of the process, and the degree of contamination of the target products with salt ions. It was shown that the resulting membrane has an alkali and acid yield of 61% and 57%, respectively. This is higher than the same yields for the industrial unmodified MB-2 membrane (38% and 30%). The results of this study demonstrated that the modified samples allowed obtaining a higher yield of acid and base, reducing the content of salt ions in the target products and also reducing the electricity consumption for obtaining a unit of the target product. The concentration dependences of the electrical conductivity of the MK-40 heterogeneous ion-exchange membrane, which is a cation-exchange layer of MB-2, in sodium sulfate solutions before and after its modification with chromium (III) oxide were obtained. A decrease in the specific electrical conductivity of the membrane with the introduction of a modifier was established. A quantitative assessment of the influence of the modifier on the current flow, volume fraction, and spatial orientation of the conductive phases of MK-40 was carried out using an extended three-wire model for the description of the model parameters of ion-exchange materials. When a modifying additive was introduced into MK-40, the fraction of the current passing through the inner solution and the intergel phase decreased. This was due to the substitution of part of the free solution in the pore volume by the modifier. A variant of the practical application of electrodialysis with the chromium-modified bipolar ion-exchange membranes is recommended.

16.
Cancers (Basel) ; 15(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36672406

RESUMO

Endocrine-disrupting compounds (EDC) play an important role in the increased incidence of breast cancer (BC). There are some 160 xenoestrogens that may be involved in the development of BC. Much less is known about the influence of xenoestrogens on the effectiveness of the treatment of BC. The aim of this study was to analyze the interaction of metalloestrogens (aluminum and chromium (III)) and drugs used in the treatment of hormone-dependent BC-aromatase inhibitors (AI)-letrozole and exemestane. A cell viability assay, a flow cytometer analysis of apoptosis and cell cycle phases, and protein activity of BAX and Bcl-2 were performed on two human breast cancer cell lines-MCF-7 and MCF-7/DOX. In MCF-7 cells, the lower concentration of exemestane and higher of letrozole, in combination with metalloestrogens, results in a decrease in the effectiveness of drugs. Additionally, in the MCF-7/DOX cell line, we observed that the combination of metalloestrogens and AI leads to a decrease in the drug's effectiveness due to an increase in the viability of breast cancer cells (both concentrations of letrozole and higher concentration of exemestane). In both cell lines, the reduction in the effectiveness of AI, in combination with metalloestrogens, is not related to the influence on the cell cycle. Our results confirm that exposure to metalloestrogens may negatively affect the effectiveness of hormone therapy with AI. Further studies are needed to fully explain the mechanism of these interactions.

17.
ACS Appl Mater Interfaces ; 15(5): 7074-7082, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36710446

RESUMO

Metal-organic frameworks with perovskite structures have recently attracted increasing attention due to their structural, optical, and phonon properties. Herein, we report the structural and luminescence studies of a series of six heterometallic perovskite-type metal-organic frameworks with the general formula [EA]2NaCrxAl1-x(HCOO)6, where x = 1, 0.78, 0.57, 0.30, 0.21, and 0. The diffuse reflectance spectral analysis provided valuable information, particularly on crystal field strength (Dq/B) and energy band gap (Eg). We showed that the Dq/B varies in the 2.33-2.76 range depending on the composition of the sample. Performed Raman, XRD, and lifetime decay analyses provided information on the relationship between those parameters and the chemical composition. We also performed the temperature-dependent luminescence studies within the 80-400 K range, which was the first attempt to use an organic-inorganic framework luminescence thermometer based solely on the luminescence of Cr3+ ions. The results showed a strong correlation between the surrounding temperature, composition, and spectroscopic properties, allowing one to design a temperature sensing model. The temperature-dependent luminescence of the Cr3+ ions makes the investigated materials promising candidates for noncontact thermometers.

18.
J Fluoresc ; 33(1): 185-190, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36323831

RESUMO

A novel fluorescent probe possessing anthracene with an indole unit was designed and synthesized to detect chromium(III) ions (Cr3+) with high sensitivity and selectivity. The probe was synthesized in one step by mixing two commercially available chemicals, 2-aminoanthracene and Indole-5-carboxaldehyde. The probe molecule (ANT-In) demonstrates distinct properties, for instance, "turn-on" fluorescence response, high sensitivity and selectivity in less than one minute, and low detection limit (0.2 µM) via hydrolysis of the C = N bond. Additionally, the probe ANT-In was successfully used to identify the presence of chromium(III) ions in real water samples.

19.
Nutrients ; 14(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36501167

RESUMO

We aimed to evaluate how feeding a high-fat-low-fiber (F) diet to rats and dietary intervention with the implementation of a standard-fat-and-fiber (S) diet affects the response of the cardiovascular system to chromium (III) picolinate (Cr-Pic) and, alternatively, chromium nanoparticles (Cr-NPs). Young male Wistar Han rats (n/group = 12) from either the fatty group (18 weeks on F diet) or the intervention group (9 weeks on F diet + 9 weeks on S diet) received a pharmacologically relevant dose of 0.3 mg Cr/kg body weight in the form of Cr-Pic or Cr-NPs for 9 weeks. Our study on rats confirmed the pro-inflammatory effect of an F diet administered for 18 weeks. In the intervention group, both Cr-Pic and Cr-NPs decreased heart glutathione ratio (GSH+GSSG), enhanced participation of nitric oxide (NO) derived from inducible NO synthase (iNOS) in vascular relaxation to acetylcholine (ACh), increased the vasodilator net effect of cyclooxygenase-2 (COX-2)-derived prostanoids, and increased the production of superoxide anion (O2.-) in aortic rings. Meanwhile, in the fatty group, there was increased heart superoxide dismutase (SOD), decreased heart catalase (CAT), and reduced sensitivity in pre-incubated aortic rings to endogenous prostacyclin (PGI2). The factors that significantly differentiated Cr-NPs from Cr-Pic were (i) decreased blood antioxidant capacity of water-soluble compounds (0.75-fold, p = 0.0205), (ii) increased hydrogen peroxide (H2O2) production (1.59-fold, p = 0.0332), and (iii) modified vasodilator response due to PGI2 synthesis inhibition (in the intervention group) vs. modified ACh-induced vasodilator response due to (iv) COX inhibition and v) PGI2 synthesis inhibition with thromboxane receptor blockage after 18 weeks on F diet (in the fatty group). Our results show that supplementation with Cr-Pic rather than with Cr-NPs is more beneficial in rats who regularly consumed an F diet (e.g., for 18 weeks). On the contrary, in the intervention group (9 weeks on F diet + 9 weeks of dietary fat normalization (the S diet)), Cr-Pic and Cr-NPs could function as pro-oxidant agents, initiating free-radical reactions that led to oxidative stress.


Assuntos
Cromo , Peróxido de Hidrogênio , Ratos , Masculino , Animais , Ratos Wistar , Cromo/farmacologia , Vasodilatadores/farmacologia , Dieta Hiperlipídica/efeitos adversos , Acetilcolina/farmacologia
20.
Molecules ; 27(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36296610

RESUMO

The aim of this research is to study and diagnose for the first time the Polaroid emulsion transfer in the contemporary artist Paolo Gioli's artworks to provide preliminary knowledge about the materials of his artworks and the appropriate protocols which can be applied for future studies. The spectral analysis performed followed a multi-technical approach first on the mock-up samples created following Gioli's technique and on one original artwork of Gioli, composed by: FORS (Fiber Optics Reflectance), Raman, and FTIR (Fourier-Transform InfraRed) spectroscopies. These techniques were chosen according to their completely non-invasiveness and no requirement for sample collection. The obtained spectra from FTIR were not sufficient to assign the dyes found in the transferred Polaroid emulsion. However, they provided significant information about the cellulose-based materials. The most diagnostic results were obtained from FORS for the determination of the dye developers present in the mock-up sample which was obtained from Polacolor Type 88 and from Paolo Gioli's original artwork created with Polacolor type 89.


Assuntos
Corantes , Fotografação , Emulsões , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Corantes/análise , Celulose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA