Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Pediatr Pulmonol ; 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39417637

RESUMO

This prospective study investigates the impact of local anesthesia on ciliary function in nasal epithelium. The primary objective was to assess whether lidocaine 2% and naphazoline 0.5% nasal spray alter ciliary beat frequency and pattern in subjects undergoing nasal brushing, aiming to enhance primary ciliary dyskinesia (PCD) diagnosis. HYPOTHESIS: It was hypothesized that local anesthesia administration would not significantly affect ciliary function in nasal epithelium. STUDY DESIGN: A prospective, simple-blind randomized study was conducted between 2020 and 2023. The study employed digital high-speed videomicroscopy to analyze ciliary beat frequency and pattern. PATIENT/SUBJECT SELECTION: A cohort of 38 participants was recruited, consisting of 25 healthy volunteers and 13 referred individuals (including seven diagnosed with PCD). Selection criteria ensured the absence of chronic respiratory diseases, recent respiratory tract infections, or regular use of nasal medications. METHODOLOGY: Participants underwent nasal brushing with administration of lidocaine and naphazoline nasal spray in one nostril and saline in the contralateral nostril. Ciliary beat frequency and pattern were measured using digital high-speed video microscopy. RESULTS: Nasal spray administration did not significantly alter ciliary beat frequency or pattern compared to saline (p = 0.841 and p = 0.125, respectively). Subgroup analysis revealed consistent results across healthy volunteers, referred patients, and PCD patients. CONCLUSION: Local anesthesia with lidocaine and naphazoline spray did not affect ciliary function outcomes. These findings support the safe use of these agents in clinical practice for PCD diagnostic procedures. Further research with larger cohorts is warranted for validation.

2.
Front Pharmacol ; 15: 1401983, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39309009

RESUMO

Background: The unique ability of the respiratory tract to protect the integrity of the airways by removing potentially harmful substances is defined as mucociliary clearance. This complex physiological mechanism protects the lower airways by ridding them of pollutants and pathogens. This study aimed to evaluate the potential influence of clinically relevant vasopressors on mucociliary clearance. Material and methods: The particle transport velocity (PTV) of isolated murine tracheae was measured as a surrogate for mucociliary clearance under the influence of dopamine, norepinephrine, and vasopressin. Inhibitory substances were applied to elucidate relevant signal transduction cascades and the value and origin of calcium ions. Reverse-transcription polymerase chain reactions (RT-PCR) were performed to identify the expression of vasopressin receptor subtypes. Results: Dopamine, norepinephrine, and vasopressin significantly increased the PTV in a dose-dependent manner with half maximal effective concentrations of 0.58 µM, 1.21 µM, and 0.10 µM, respectively. Each substance increased the PTV via separate receptor pathways. While dopamine acted on D1-like receptors to increase the PTV, norepinephrine acted on ß-adrenergic receptors, and vasopressin acted on V1a receptors. RT-PCR revealed the expression of V1a in the murine whole trachea and tracheal epithelium. PTV increased when protein kinase A was inhibited and norepinephrine or vasopressin were applied, but not when dopamine was applied. Phospholipase C inhibition decreased the PTV when vasopressin was applied. In general, maximum PTV was significantly reduced when extracellular calcium entry was inhibited. When intracellular calcium stores were depleted, no increase in PTV was observed after administering all three substances. Inositol trisphosphate receptor activation was found to be pivotal in the increase in murine PTV after applying dopamine and vasopressin. Discussion: Dopamine, norepinephrine, and vasopressin accelerate the murine PTV via substance-specific receptor pathways. Further investigations should assess the value and interaction of these substances on mucociliary clearance in clinical practice.

3.
Diagnostics (Basel) ; 14(16)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39202302

RESUMO

Primary Ciliary Dyskinesia (PCD) is a rare genetic disorder characterized by alterations in motile cilia function. The diagnosis of PCD is challenging due to the lack of standardized methods in clinical practice. High-speed video microscopy analysis (HSVA) directly evaluates ciliary beat frequency (CBF) in PCD. Recently, open-source ciliary analysis software applications have shown promise in measuring CBF accurately. However, there is limited knowledge about the performance of different software applications, creating a gap in understanding their comparative effectiveness in measuring CBF in PCD. We compared two open-source software applications, CiliarMove (v219) and Cilialyzer (v1.2.1-b3098cb), against the manual count method. We used high-speed videos of nasal ciliary brush samples from PCD RSPH4A-positive (PCD (RSPH4A)) patients and healthy controls. All three methods showed lower median CBF values for patients with PCD (RSPH4A) than in healthy controls. CiliarMove and Cilialyzer identified lower CBF in patients with PCD (RSPH4A), similarly to the manual count. Cilialyzer, CiliarMove, and manual count methods demonstrated statistical significance (p-value < 0.0001) in the difference of median CBF values between patients with PCD (RSPH4A) and healthy controls. Correlation coefficients between the manual count values against both software methods demonstrated positive linear relationships. These findings support the utility of open-source software-based analysis tools. Further studies are needed to validate these findings with other genetic variants and identify the optimal software for accurate CBF measurement in patients with PCD.

4.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39125708

RESUMO

Single cilia, 100 nm in diameter and 10 µm in length, were isolated from mouse tracheae with Triton X-100 (0.02%) treatment, and the effects of pH on ciliary beating were examined by measuring the ciliary beat frequency (CBF) and the ciliary bend distance (CBD-an index of amplitude) using a high-speed video microscope (250 fps). ATP (2.5 mM) plus 8Br-cAMP (10 µM) reactivated the CBF and CBD in the isolated cilia, similar to the cilia of in vivo tracheae. In the reactivated isolated cilia, an elevation in pH from 7.0 to 8.0 increased the CBF from 3 to 15 Hz and the CBD from 0.6 to 1.5 µm. The pH elevation also increased the velocity of the effective stroke; however, it did not increase the recovery stroke, and, moreover, it decreased the intervals between beats. This indicates that H+ (pHi) directly acts on the axonemal machinery to regulate CBF and CBD. In isolated cilia priorly treated with 1 µM PKI-amide (a PKA inhibitor), 8Br-cAMP did not increase the CBF or CBD in the ATP-stimulated isolated cilia. pH modulates the PKA signal, which enhances the axonemal beating generated by the ATP-activated inner and outer dyneins.


Assuntos
Trifosfato de Adenosina , Cílios , AMP Cíclico , Traqueia , Animais , Cílios/efeitos dos fármacos , Cílios/metabolismo , Trifosfato de Adenosina/metabolismo , Concentração de Íons de Hidrogênio , Traqueia/metabolismo , Traqueia/efeitos dos fármacos , Camundongos , AMP Cíclico/metabolismo , Masculino
5.
Respir Investig ; 62(3): 419-425, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38489921

RESUMO

BACKGROUND: Ciliary beat frequency (CBF) is crucial in mucociliary clearance. High-speed video analysis (HSVA) is commonly used to measure CBF but lacks standardization. We compared visual observation and computer-assisted calculation using fast Fourier transformation (FFT) in freshly collected bronchial ciliary epithelial cells and cultured cells. METHODS: Bronchial epithelial cells were obtained from 12 patients who required bronchoscopic examination. Eighty-five videos of ciliary movement of freshly collected and cultured cells were recorded and used to calculate CBF using manual observation, region of interest (ROI) selection, and whole-field analysis. RESULTS: CBF measured by the ROI selection method strongly correlated with that measured using manual observation, especially in freshly collected cells. However, 27.8% of the manual observation method values were doubled in the ROI selection method, probably because a round trip of cilia was calculated as two cycles and needed to be corrected to 1/2 value. Upon increasing the number of ROIs, the results of the ROI selection method came closer to that of WFA. CONCLUSIONS: Computer-assisted calculation using FFT can aid in measuring CBF; however, current methods require visual confirmation. Further automated evaluation techniques are needed to establish more standardized and generalized CBF measurement methods using HSVA.


Assuntos
Brônquios , Depuração Mucociliar , Humanos , Cílios , Células Epiteliais , Células Cultivadas
6.
Artigo em Inglês | MEDLINE | ID: mdl-38343495

RESUMO

Purpose: Acute Exacerbation of Chronic Obstructive Pulmonary Disease (AECOPD) is a sudden worsening of symptoms in patients with Chronic Obstructive Pulmonary Disease (COPD), such as cough, increased sputum volume, and sputum purulence. COPD and AECOPD are characterized by damage to cilia and increased mucus secretion. Mucociliary clearance (MCC) functions as part of the primary innate system of the lung to remove harmful particles and pathogens together with airway mucus and is therefore crucial for patients with COPD. Methods: AECOPD was induced by cigarette smoke exposure (80 cigarettes/day, 5 days/week for 12 weeks) and lipopolysaccharide (LPS) instillation (200 µg, on days 1, 14, and 84). Rats administered Lianhua Qingke (LHQK) (0.367, 0.732, and 1.465 g/kg/d) or Eucalyptol, Limonene, and Pinene Enteric Soft Capsules (ELP, 0.3 g/kg/d) intragastrically. Pulmonary pathology, Muc5ac+ goblet cell and ß-tubulin IV+ ciliated cells, and mRNA levels of forkhead box J1 (Foxj1) and multiciliate differentiation and DNA synthesis associated cell cycle protein (MCIDAS) were assessed by hematoxylin and eosin staining, immunofluorescence staining, and RT-qPCR, respectively. Ciliary morphology and ultrastructure were examined through scanning electron microscopy and transmission electron microscopy. Ciliary beat frequency (CBF) was recorded using a high-speed camera. Results: Compared to the model group, LHQK treatment groups showed a reduction in inflammatory cell infiltration, significantly reduced goblet cell and increased ciliated cell proportion. LHQK significantly upregulated mRNA levels of MCIDAS and Foxj1, indicating promoted ciliated cell differentiation. LHQK protected ciliary structure and maintained ciliary function via increasing the ciliary length and density, reducing ciliary ultrastructure damage, and ameliorating random ciliary oscillations, consequently enhancing CBF. Conclusion: LHQK enhances the MCC capability of ciliated cells in rat with AECOPD by preserving the structural integrity and beating function of cilia, indicating its therapeutic potential on promoting sputum expulsion in patients with AECOPD.


Assuntos
Cílios , Doença Pulmonar Obstrutiva Crônica , Humanos , Ratos , Animais , Cílios/patologia , Cílios/ultraestrutura , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/patologia , Depuração Mucociliar , Células Epiteliais , RNA Mensageiro
7.
Braz J Otorhinolaryngol ; 90(2): 101377, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38232516

RESUMO

OBJECTIVE: Mucociliary transport function in the airway mucosa is essential for maintaining a clean mucosal surface. This function is impaired in upper and lower airway diseases. Nasal polyps are a noticeable pathological feature that develop in some of the patients with chronic rhinosinusitis. Like ordinary nasal mucosae, nasal polyps have a ciliated pseudostratified epithelium with vigorous ciliary beating. We measured ex vivo Mucociliary Transport Velocity (MCTV) and Ciliary Beat Frequency (CBF) and explored the expressions of Planar Cell Polarity (PCP) proteins in nasal polyps in comparison with turbinate mucosae. METHODS: Inferior turbinates and nasal polyps were surgically collected from patients with chronic rhinosinusitis. Ex vivo MCTV and CBF were measured using a high-speed digital imaging system. Expressions of PCP proteins were explored by fluorescence immunohistochemistry and quantitative RT-PCR. RESULTS: The MCTV of nasal polyps was significantly lower than that of the turbinates (7.43 ±â€¯2.01 vs. 14.56 ±â€¯2.09 µm/s; p = 0.0361), whereas CBF did not differ between the two tissues. The MCTV vector was pointed to the posteroinferior direction in all turbinates with an average inclination angle of 41.0 degrees. Immunohistochemical expressions of Dishevelled-1, Dishevelled-3, Frizzled3, Frizzled6, Prickle2 and Vangl2 were lower in the nasal polyps than in the turbinates. Confocal laser scanning microscopy showed that Frizzled3 was localized along the cell junction on the apical surface. The expression levels of mRNAs for Dishevelled-1, Dishevelled-3 and Frizzled3 in the nasal polyps were also decreased in comparison with the turbinates. CONCLUSION: These results indicate that muco ciliary transport in nasal polyps is impaired although vigorous ciliary beating is maintained, and that the impairment may be caused by a decrease in Dishevelled/Frizzled proteins and resultant PCP disarrangement. LEVEL OF EVIDENCE: Level 3.


Assuntos
Pólipos Nasais , Sinusite , Humanos , Pólipos Nasais/metabolismo , Depuração Mucociliar , Cílios/metabolismo , Cílios/patologia , Mucosa Nasal/metabolismo , Sinusite/metabolismo
8.
Braz. j. otorhinolaryngol. (Impr.) ; Braz. j. otorhinolaryngol. (Impr.);90(2): 101377, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1557344

RESUMO

Abstract Objective Mucociliary transport function in the airway mucosa is essential for maintaining a clean mucosal surface. This function is impaired in upper and lower airway diseases. Nasal polyps are a noticeable pathological feature that develop in some of the patients with chronic rhinosinusitis. Like ordinary nasal mucosae, nasal polyps have a ciliated pseudostratified epithelium with vigorous ciliary beating. We measured ex vivo Mucociliary Transport Velocity (MCTV) and Ciliary Beat Frequency (CBF) and explored the expressions of Planar Cell Polarity (PCP) proteins in nasal polyps in comparison with turbinate mucosae. Methods Inferior turbinates and nasal polyps were surgically collected from patients with chronic rhinosinusitis. Ex vivo MCTV and CBF were measured using a high-speed digital imaging system. Expressions of PCP proteins were explored by fluorescence immunohistochemistry and quantitative RT-PCR. Results The MCTV of nasal polyps was significantly lower than that of the turbinates (7.43 ± 2.01 vs. 14.56 ± 2.09 μm/s; p= 0.0361), whereas CBF did not differ between the two tissues. The MCTV vector was pointed to the posteroinferior direction in all turbinates with an average inclination angle of 41.0 degrees. Immunohistochemical expressions of Dishevelled-1, Dishevelled-3, Frizzled3, Frizzled6, Prickle2 and Vangl2 were lower in the nasal polyps than in the turbinates. Confocal laser scanning microscopy showed that Frizzled3 was localized along the cell junction on the apical surface. The expression levels of mRNAs for Dishevelled-1, Dishevelled-3 and Frizzled3 in the nasal polyps were also decreased in comparison with the turbinates. Conclusion These results indicate that muco ciliary transport in nasal polyps is impaired although vigorous ciliary beating is maintained, and that the impairment may be caused by a decrease in Dishevelled/Frizzled proteins and resultant PCP disarrangement. Level of evidence: Level 3.

9.
Artigo em Inglês | MEDLINE | ID: mdl-37975554

RESUMO

INTRODUCTION: Cystic fibrosis (CF) airway disease is characterized by thick mucus and impaired mucociliary transport (MCT). Loss of functional cystic fibrosis transmembrane receptor (CFTR) leads to acidification and oxidation of airway surface mucus. Replacing bicarbonate (HCO3 - ) topically fails due to rapid reabsorption and neutralization, while the scavenging antioxidant, glutathione sulfhydryl (GSH), is also rapidly degraded. The objective of this study is to investigate GSH/NaHCO3 nanoparticles as novel strategy for CF airway disease. METHODS: GSH/NaHCO3 poly (lactic-co-glycolic acid) nanoparticles were tested on primary CF (F508del/F508del) epithelial cultures to evaluate dose-release curves, surface pH, toxicity, and MCT indices using micro-optical coherence tomography. In vivo tests were performed in three rabbits to assess safety and toxicity. After 1 week of daily injections, histopathology, computed tomography (CT), and blood chemistries were performed and compared to three controls. Fluorescent nanoparticles were injected into a rabbit with maxillary sinusitis and explants visualized with confocal microscopy. RESULTS: Sustained release of GSH and HCO3 - with no cellular toxicity was observed over 2 weeks. Apical surface pH gradually increased from 6.54 ± 0.13 (baseline) to 7.07 ± 0.10 (24 h) (p < 0.001) and 6.87 ± 0.05 at 14 days (p < 0.001). MCT, ciliary beat frequency, and periciliary liquid were significantly increased. When injected into the maxillary sinuses of rabbits, there were no changes to histology, CT, or blood chemistries. Nanoparticles penetrated rabbit sinusitis mucus on confocal microscopy. CONCLUSION: Findings suggest that GSH/NaHCO3 - nanoparticles are a promising treatment option for viscous mucus in CF and other respiratory diseases of mucus obstruction such as chronic rhinosinusitis.

10.
Eur J Pharm Biopharm ; 192: 136-146, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37804998

RESUMO

Acute viral rhinosinusitis (viral ARS), or commonly referred to as the "common cold", is caused by respiratory viruses that cause disruption of the airway epithelial barrier and mucociliary dysfunction. Treatment of ARS is mainly symptomatic, with xylometazoline, a direct-acting α-adrenoceptor agonist, commonly used as a nasal decongestant. Unfortunately, this treatment does not resolve the epithelial dysfunction observed in ARS, and its use might negatively impact the nasal mucosa causing issues such as dryness, stinging, burning, rebound congestion, as well as atrophy. In light of this, a novel nasal spray formulation containing both xylometazoline and hyaluronic acid (HA) was developed to provide a more effective and safer treatment for viral ARS. HA is a natural polysaccharide known to hydrate and moisturise the upper respiratory tract, maintain the integrity of the nasal mucosa, and promote mucociliary clearance and wound healing. To investigate the potential of this combination, this study was conducted using the nasal MucilAirTMin vitro model and high-speed phase-contrast microscopy to examine the effect of xylometazoline and HA on ciliary function by measuring ciliary beat frequency and their cytotoxicity by morphological, histological and ultrastructural analysis. This research is the first to assess the effects of a specific dose and molecular weight of HA as an active pharmaceutical ingredient in nasal spray formulations. The combination of a fast-acting decongestant and an additional active agent targeting nasal epithelial dysfunction has the potential to provide an improved, reliable and safe treatment for viral ARS, and may serve as the basis for future clinical studies.


Assuntos
Ácido Hialurônico , Sprays Nasais , Imidazóis/farmacologia , Descongestionantes Nasais/farmacologia , Descongestionantes Nasais/uso terapêutico , Mucosa Nasal
11.
Front Pharmacol ; 14: 1155930, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37654612

RESUMO

Background: Mucociliary clearance is a pivotal physiological mechanism that protects the lung by ridding the lower airways of pollution and colonization by pathogens, thereby preventing infections. The fixed 20:1 combination of cafedrine and theodrenaline has been used to treat perioperative hypotension or hypotensive states due to emergency situations since the 1960s. Because mucociliary clearance is impaired during mechanical ventilation and critical illness, the present study aimed to evaluate the influence of cafedrine/theodrenaline on mucociliary clearance. Material and Methods: The particle transport velocity (PTV) of murine trachea preparations was measured as a surrogate for mucociliary clearance under the influence of cafedrine/theodrenaline, cafedrine alone, and theodrenaline alone. Inhibitory substances were applied to elucidate relevant signal transduction cascades. Results: All three applications of the combination of cafedrine/theodrenaline, cafedrine alone, or theodrenaline alone induced a sharp increase in PTV in a concentration-dependent manner with median effective concentrations of 0.46 µM (consisting of 9.6 µM cafedrine and 0.46 µM theodrenaline), 408 and 4 µM, respectively. The signal transduction cascades were similar for the effects of both cafedrine and theodrenaline at the murine respiratory epithelium. While PTV remained at its baseline value after non-selective inhibition of ß-adrenergic receptors and selective inhibition of ß1 receptors, cafedrine/theodrenaline, cafedrine alone, or theodrenaline alone increased PTV despite the inhibition of the protein kinase A. However, IP3 receptor activation was found to be the pivotal mechanism leading to the increase in murine PTV, which was abolished when IP3 receptors were inhibited. Depleting intracellular calcium stores with caffeine confirmed calcium as another crucial messenger altering the PTV after the application of cafedrine/theodrenaline. Discussion: Cafedrine/theodrenaline, cafedrine alone, and theodrenaline alone exert their effects via IP3 receptor-associated calcium release that is ultimately triggered by ß1-adrenergic receptor stimulation. Synergistic effects at the ß1-adrenergic receptor are highly relevant to alter the PTV of the respiratory epithelium at clinically relevant concentrations. Further investigations are needed to assess the value of cafedrine/theodrenaline-mediated alterations in mucociliary function in clinical practice.

12.
Comput Methods Programs Biomed ; 241: 107744, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37598471

RESUMO

BACKGROUND AND OBJECTIVE: Primary ciliary dyskinesia (PCD) is a rare genetic disorder causing a defective ciliary structure, which predominantly leads to an impaired mucociliary clearance and associated airway disease. As there is currently no single diagnostic gold standard test, PCD is diagnosed by a combination of several methods comprising genetic testing and the examination of the ciliary structure and function. Among the approved diagnostic methods, only high-speed video microscopy (HSVM) allows to directly observe the ciliary motion and therefore, to directly assess ciliary function. In the present work, we present our recently developed freely available open-source software - termed "Cilialyzer", which has been specifically designed to support and facilitate the analysis of the mucociliary activity in respiratory epithelial cells captured by high-speed video microscopy. METHODS: In its current state, the Cilialyzer software enables clinical PCD analysts to load, preprocess and replay recorded image sequences as well as videos with a feature-rich replaying module facilitating the commonly performed qualitative visual assessment of ciliary function (including the assessment of the ciliary beat pattern). The image processing methods made accessible through an intuitive user interface allow clinical specialists to comfortably compute the ciliary beating frequency (CBF), the activity map and the "frequency correlation length" - an observable getting newly introduced. Furthermore, the Cilialyzer contains a simple-to-use particle tracking interface to determine the mucociliary transport speed. RESULTS: Cilialyzer is fully written in the Python programming language and freely available under the terms of the MIT license. The proper functioning of the computational analysis methods constituting the Cilialyzer software is demonstrated by using simulated and representative sample data from clinical practice. Additionally, the software was used to analyze high-speed videos showing samples obtained from healthy controls and genetically confirmed PCD cases (DNAI1 and DNAH11 mutations) to show its clinical applicability. CONCLUSIONS: Cilialyzer serves as a useful clinical tool for PCD analysts and provides new quantitative information awaiting to be clinically evaluated using cohorts of PCD. As Cilialyzer is freely available under the terms of a permissive open-source license, it serves as a ground frame for further development of computational methods aiming at the quantification and automation of the analysis of mucociliary activity captured by HSVM.


Assuntos
Taxa Respiratória , Software , Humanos , Linguagens de Programação , Automação , Testes Genéticos , Doenças Raras
13.
J Pers Med ; 13(5)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37241034

RESUMO

Primary nasal epithelial cells and culture models are used as important diagnostic, research and drug development tools for several airway diseases. Various instruments have been used for the collection of human nasal epithelial (HNE) cells but no global consensus yet exists regarding the optimal tool. This study compares the efficiency of two cytology brushes (Olympus (2 mm diameter) and Endoscan (8 mm diameter)) in collecting HNE cells. The study involved two phases, with phase one comparing the yield, morphology and cilia beat frequency (CBF) of cells collected from paediatric participants using each of the two brushes. Phase two compared nasal brushing under general anaesthetic and in the awake state, across a wide age range, via the retrospective audit of the use of the Endoscan brush in 145 participants. Results indicated no significant difference in CBF measurements between the two brushes, suggesting that the choice of brush does not compromise diagnostic accuracy. However, the Endoscan brush collected significantly more total and live cells than the Olympus brush, making it a more efficient option. Importantly, the Endoscan brush is more cost-effective, with a notable price difference between the two brushes.

14.
Eur Arch Otorhinolaryngol ; 280(8): 3731-3736, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36920556

RESUMO

BACKGROUND: Dexpanthenol-containing ointments/fluids are recommended to restore impaired nasal mucosa. To date, there are no data about the influence of dexpanthenol or formulations including dexpanthenol on ciliary beat frequency (CBF) of nasal epithelial cells. METHODS: We tested the ciliary beat frequency of human nasal epithelial cells in RPMI 1640 cell solution using in vitro high-frequency video microscopy every 60 s over a period of 15 min (min). Bepanthen® solution and dexpanthenol in two clinically relevant concentrations (1.67% and 3.33%) were added to the cells. Addition of sterile water served as control group. To get a better overview, the measurements after 1 min, 5 min and 15 min were combined. RESULTS: The CBF in the control group (n = 17) after 15 min was 7.3 ± 2.6 Hz. In comparison, the CBF after 15 min was 1.8 ± 1.0 Hz in the 3.33% Bepanthen® group (n = 17) and 3.2 ± 1.2 Hz in the 1.67% group, which was statistically significantly lower in both groups (p < 0.001). With regard to the dexpanthenol group (n = 17) a CBF of 6.0 ± 2.6 Hz with 3.33% and 6.1 ± 2.4 Hz with 1.67% dexpanthenol, was detected, which was again statistically significantly lower (p = 0.06) compared to the control group except CBF at 15 min with 1.57% (n = 17; p = 0.04). In general, the effect on CBF was less pronounced with dexpanthenol compared with Bepanthen® with a statistically significant difference between the two formulations. The results were verified by calculating an analysis of variance (ANOVA). CONCLUSIONS: Bepanthen® as an ointment, solution or inhalation is commonly used in ENT for mucosal care. Our results have shown that both substances reduce CBF in clinically relevant concentrations, although the effect was more pronounced with Bepanthen® compared to dexpanthenol solution, which could be related to additives or change of physical properties in the solution. Further research is needed to assess potential clinical relevance.


Assuntos
Mucosa Nasal , Ácido Pantotênico , Humanos , Ácido Pantotênico/farmacologia , Administração por Inalação , Cílios
15.
Front Cell Dev Biol ; 10: 974213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340026

RESUMO

The Hawaiian bobtail squid, Euprymna scolopes, harvests its luminous symbiont, Vibrio fischeri, from the surrounding seawater within hours of hatching. During embryogenesis, the host animal develops a nascent light organ with ciliated fields on each lateral surface. We hypothesized that these fields function to increase the efficiency of symbiont colonization of host tissues. Within minutes of hatching from the egg, the host's ciliated fields shed copious amounts of mucus in a non-specific response to bacterial surface molecules, specifically peptidoglycan (PGN), from the bacterioplankton in the surrounding seawater. Experimental manipulation of the system provided evidence that nitric oxide in the mucus drives an increase in ciliary beat frequency (CBF), and exposure to even small numbers of V. fischeri cells for short periods resulted in an additional increase in CBF. These results indicate that the light-organ ciliated fields respond specifically, sensitively, and rapidly, to the presence of nonspecific PGN as well as symbiont cells in the ambient seawater. Notably, the study provides the first evidence that this induction of an increase in CBF occurs as part of a thus far undiscovered initial phase in colonization of the squid host by its symbiont, i.e., host recognition of V. fischeri cues in the environment within minutes. Using a biophysics-based mathematical analysis, we showed that this rapid induction of increased CBF, while accelerating bacterial advection, is unlikely to be signaled by V. fischeri cells interacting directly with the organ surface. These overall changes in CBF were shown to significantly impact the efficiency of V. fischeri colonization of the host organ. Further, once V. fischeri has fully colonized the host tissues, i.e., about 12-24 h after initial host-symbiont interactions, the symbionts drove an attenuation of mucus shedding from the ciliated fields, concomitant with an attenuation of the CBF. Taken together, these findings offer a window into the very first interactions of ciliated surfaces with their coevolved microbial partners.

16.
Molecules ; 27(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36235159

RESUMO

Extracts from Drosera rotundifolia are traditionally used to treat cough symptoms during a common cold. The present study aimed to investigate the impact of extracts from D. rotundifolia and active compounds on the respiratory tract. Tracheal slices of C57BL/6N mice were used ex vivo to examine effects on airway smooth muscle (ASM) and ciliary beat frequency (CBF). Phosphodiesterase (PDE) inhibition assays were carried out to test whether PDE1 or PDE4 are targeted by the active compounds. An ethanol-water extract, as well as an aqueous fraction of this extract, exerted antispasmodic properties against acetylcholine-induced contractions. In addition, contractions induced by 60 mM K+ were abrogated by the aqueous fraction. Effects on ASM could be attributed to the flavonoids quercetin, 2″-O-galloylhyperoside and hyperoside. Moreover, the Drosera extract and the aqueous fraction increased the CBF of murine tracheal slices. Quercetin and 2″-O-galloylhyperoside were identified as active compounds involved in the elevation of CBF. Both compounds inhibited PDE1A and PDE4D. The elevation of CBF was mimicked by the subtype-selective PDE inhibitor rolipram (PDE4) and by 8-methoxymethyl-IBMX. In summary, our study shows, for the first time, that a Drosera extract and its flavonoid compounds increase the CBF of murine airways while antispasmodic effects were transferred to ASM.


Assuntos
Drosera , 1-Metil-3-Isobutilxantina/farmacologia , Acetilcolina/farmacologia , Animais , Etanol/farmacologia , Flavonoides/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso , Parassimpatolíticos/farmacologia , Diester Fosfórico Hidrolases/farmacologia , Quercetina/farmacologia , Rolipram/farmacologia , Traqueia , Água/farmacologia
17.
Front Pharmacol ; 13: 996046, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36278231

RESUMO

Take Home Message: Capsaicin modified inflammatory response and caused toxicity in bronchial epithelial cultures from patients with COPD. More importantly, capsaicin decreased ciliary beat frequency and induced epithelial permeability and these effects were partially prevented by formoterol and roflumilast. Tear gas is widely used to halt mass demonstrations. Studies have reported its adverse effects on multiple organ systems; however, its effect on individuals with chronic respiratory diseases and the underlying mechanisms of these effects are unclear. For the first time in the literature, we investigated the effects of capsaicin, the active ingredient of tear gas, on bronchial epithelial cell (BEC) cultures obtained from well-characterized groups of nonsmokers, smokers, and patients with chronic obstructive pulmonary disease (COPD). BEC cultures were incubated with 50-500 µM capsaicin in the absence and presence of formoterol (1µM) and roflumilast (0.1 µM) for 24 h. Ciliary beat frequency (CBF) and transepithelial electrical resistance (TEER) were assessed at T1/4, T1/2, T1, T2, T4, T6, and T24 h, whereas the release of granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-8, and lactate dehydrogenase (LDH) was measured at T24 h. Capsaicin (250 µM) significantly decreased CBF of all BEC cultures from T1/4 h to T24 h (p<0.05). Formoterol significantly prevented decreases in CBF induced by capsaicin. Higher concentrations of capsaicin (250-500 µM) significantly reduced TEER of BECs from nonsmokers (T2-T24 h), smokers (T24 h) and COPD patients (T2 and T24 h), which was partially prevented by roflumilast. Capsaicin (500 µM) decreased release of IL-8 (p<0.0001) and GM-CSF (p<0.05) while inducing release of LDH in BECs (p<0.05), and this was more prominent in BEC from patients with COPD. In conclusion, our findings demonstrate that capsaicin can suppress ciliary activity and cytokine release from BECs, induce BEC culture permeability and cellular toxicity and that these effects can be partially prevented by formoterol and roflumilast.

18.
Altern Lab Anim ; 50(4): 293-309, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35938181

RESUMO

The use of reconstituted human airway (RHuA) epithelial tissues to assess functional endpoints is highly relevant in respiratory toxicology, but standardised methods are lacking. In June 2015, the Institute for In Vitro Sciences (IIVS) held a technical workshop to evaluate the potential for standardisation of methods, including ciliary beat frequency (CBF). The applicability of a protocol suggested in the workshop was assessed in a multi-laboratory ring study. This report summarises the findings, and uses the similarities and differences identified between the laboratories to make recommendations for researchers in the absence of a validated method. Two software platforms for the assessment of CBF were used - Sisson-Ammons Video Analysis (SAVA; Ammons Engineering, Clio, MI, USA) and ciliaFA (National Institutes of Health, Bethesda, MD, USA). Both were utilised for multiple read temperatures, one objective strength (10×) and up to four video captures per tissue, to assess their utility. Two commercial RHuA tissue cultures were used: MucilAir™ (Epithelix, Geneva, Switzerland) and EpiAirway™ (MatTek, Ashland, MA, USA). IL-13 and procaterol were used to induce CBF-specific responses as positive controls. Further testing addressed the impact of tissue acclimation duration, the number of capture fields and objective strengths on baseline CBF readings. Both SAVA and ciliaFA reliably collected CBF data. However, ciliaFA failed to generate accurate CBF measurements above ∼10 Hz. The positive controls were effective, but were subject to inter-laboratory variability. CBF endpoints were generally uniform across replicate tissues, objective strengths and laboratories. Longer tissue acclimation increased the percentage active area, but had minimal impact on CBF. Taken together, these findings support the development and validation of a standardised CBF measurement protocol.


Assuntos
Cílios , Depuração Mucociliar , Epitélio , Humanos , Laboratórios , Software , Estados Unidos
19.
BMC Pulm Med ; 22(1): 186, 2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35527239

RESUMO

BACKGROUND: Mucociliary clearance (MCC) is an essential defense mechanism in airway epithelia for removing pathogens from the respiratory tract. Impaired ciliary functions and MCC have been demonstrated in asthma and chronic obstructive pulmonary disease (COPD). Long-acting muscarinic antagonists (LAMAs) are a major class of inhaled bronchodilators, which are used for treating asthma and COPD; however, the effects of LAMAs on ciliary function remain unclear. This study aimed to identify the effects of LAMAs on airway ciliary functions. METHODS: Wild-type BALB/c mice were treated with daily intranasal administrations of glycopyrronium for 7 days, and tracheal samples were collected. Cilia-driven flow and ciliary activity, including ciliary beat frequency (CBF), ciliary beating amplitude, effective stroke velocity, recovery stroke velocity and the ratio of effective stroke velocity to recovery stroke velocity, were analyzed by imaging techniques. Using in vitro murine models, tracheal tissues were transiently cultured in media with/without LAMAs, glycopyrronium or tiotropium, for 60 min. Cilia-driven flow and ciliary activity were then analyzed. Well-differentiated normal human bronchial epithelial (NHBE) cells were treated with glycopyrronium, tiotropium, or vehicle for 60 min, and CBF was evaluated. Several mechanistic analyses were performed. RESULTS: Intranasal glycopyrronium administration for 7 days significantly increased cilia-driven flow and ciliary activity in murine airway epithelium. In the murine tracheal organ culture models, treatment with glycopyrronium or tiotropium for 60 min significantly increased cilia-driven flow and ciliary activity in airway epithelium. Further, we confirmed that 60-min treatment with glycopyrronium or tiotropium directly increased CBF in well-differentiated NHBE cells. In the mechanistic analyses, neither treatment with glycopyrronium nor tiotropium affected intracellular calcium ion concentrations in well-differentiated NHBE cells. Glycopyrronium did not increase protein kinase A activity in well-differentiated NHBE cells. Moreover, glycopyrronium had no effect on extracellular adenosine triphosphate concentration. CONCLUSIONS: LAMAs exert a direct effect on airway epithelium to enhance ciliary function, which may improve impaired MCC in asthma and COPD. Further investigations are warranted to elucidate the underlying mechanisms of the effects of LAMAs on the promotion of airway ciliary function.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Acidente Vascular Cerebral , Animais , Epitélio , Glicopirrolato/farmacologia , Humanos , Camundongos , Antagonistas Muscarínicos/farmacologia , Brometo de Tiotrópio , Traqueia
20.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35455449

RESUMO

T2R bitter taste receptors in airway motile cilia increase ciliary beat frequency (CBF) and nitric oxide (NO) production. Polymorphisms in some T2Rs are linked to disease outcomes in chronic rhinosinusitis (CRS) and cystic fibrosis (CF). We examined the expression of cilia T2Rs during the differentiation of human nasal epithelial cells grown at air-liquid interface (ALI). The T2R expression increased with differentiation but did not vary between CF and non-CF cultures. Treatment with Pseudomonas aeruginosa flagellin decreased the expression of diphenhydramine-responsive T2R14 and 40, among others. Diphenhydramine increased both NO production, measured by fluorescent dye DAF-FM, and CBF, measured via high-speed imaging. Increases in CBF were disrupted after flagellin treatment. Diphenhydramine impaired the growth of lab and clinical strains of P. aeruginosa, a major pathogen in CF and CF-related CRS. Diphenhydramine impaired biofilm formation of P. aeruginosa, measured via crystal violet staining, as well as the surface attachment of P. aeruginosa to CF airway epithelial cells, measured using colony-forming unit counting. Because the T2R agonist diphenhydramine increases NO production and CBF while also decreasing bacterial growth and biofilm production, diphenhydramine-derived compounds may have potential clinical usefulness in CF-related CRS as a topical therapy. However, utilizing T2R agonists as therapeutics within the context of P. aeruginosa infection may require co-treatment with anti-inflammatories to enhance T2R expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA