Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Mol Biol ; 436(20): 168748, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39181182

RESUMO

Multiple myeloma (MM) is a complex hematological malignancy characterized by abnormal antibody production from plasma cells. Despite advances in the treatment, many patients experience disease relapse or become refractory to treatment. G-protein-coupled receptor class C group 5 member D (GPRC5D), an orphan GPCR predominantly expressed in MM cells, is emerging as a promising target for MM immunotherapy. Talquetamab, a Food and Drug Administration-approved T-cell-directing bispecific antibody developed for treatment of MM, targets GPRC5D. Here, we elucidate the structure of GPRC5D complexed with the Fab fragment of talquetamab, using cryo-electron microscopy, providing the basis for recognition of GPRC5D by the bispecific antibody. GPRC5D forms a symmetric homodimer with the interface between transmembrane helix (TM) 4 of one protomer and TM4/5 of the other protomer. A single talquetamab Fab interacts with the GPRC5D dimer with its orientation toward the dimer interface. All six complementarity-determining regions of talquetamab engage with extracellular loops and TM3/5/7. In particular, the side-chain of an arginine residue from the antibody penetrates into a shallow pocket on the extracellular surface of GPRC5D. The structure offers insights for optimizing antibody design against GPRC5D for relapsed or refractory MM therapy.


Assuntos
Anticorpos Biespecíficos , Mieloma Múltiplo , Receptores Acoplados a Proteínas G , Humanos , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/metabolismo , Microscopia Crioeletrônica , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/metabolismo , Modelos Moleculares , Mieloma Múltiplo/imunologia , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Receptores Acoplados a Proteínas G/imunologia , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo
2.
ACS Chem Neurosci ; 15(5): 889-897, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38380648

RESUMO

One of the major challenges in molecular neuroscience today is to accurately monitor neurotransmitters, neuromodulators, peptides, and various other biomolecules in the brain with high temporal and spatial resolution. Only a comprehensive understanding of neuromodulator dynamics, their release probability, and spatial distribution will unravel their ultimate role in cognition and behavior. This Perspective offers an overview of potential design strategies for class C GPCR-based biosensors. It briefly highlights current applications of GPCR-based biosensors, with a primary focus on class C GPCRs and their unique structural characteristics compared with other GPCR subfamilies. The discussion offers insights into plausible future design approaches for biosensor development targeting members of this specific GPCR subfamily. It is important to note that, at this stage, we are contemplating possibilities rather than presenting a concrete guide, as the pipeline is still under development.


Assuntos
Técnicas Biossensoriais , Encéfalo , Encéfalo/metabolismo , Cognição , Receptores Acoplados a Proteínas G/metabolismo
3.
Prog Mol Biol Transl Sci ; 195: 77-87, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36707156

RESUMO

Class C G-protein-coupled receptors (GPCRs) comprise a unique GPCR subfamily with large ligand-binding extracellular domains and function as obligate dimers. The recently resolved cryo-EM structures of full-length GABAB, CaSR, and mGlus have revealed that these receptors are activated in an asymmetric manner, leading to G-protein-coupling on one protomer within the receptor dimer. In this review we discuss the mechanisms of asymmetric activation in class C GPCRs and the unique mode of interaction with the inhibitory Gi protein. Upon activation, the two seven-transmembrane domains (7TMs) of class C GPCRs rearrange to form a conserved asymmetric TM6-TM6 interface. In contrast to class A and B GPCRs, G-protein coupling does not involve the cytoplasmic opening of TM6, but is facilitated through the coordination of intracellular loops. Furthermore, positive and negative allosteric modulators (PAMs and NAMs) adopt distinct conformations to regulate the activity of class C GPCRs. Taken together, these recent findings on the mechanism of asymmetric activation of class C GPCRs highlight a novel mechanism of G protein activation and provide new insights into the design of therapeutics targeting these receptors.


Assuntos
Proteínas de Ligação ao GTP , Receptores Acoplados a Proteínas G , Humanos , Ligantes , Receptores Acoplados a Proteínas G/química , Proteínas de Ligação ao GTP/metabolismo , Domínios Proteicos
4.
Int J Mol Sci ; 23(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36012481

RESUMO

The human sweet taste receptor is a heterodimeric receptor composed of two distinct G-protein-coupled receptors (GPCRs), TAS1R2 and TAS1R3. The TAS1R2 and TAS1R3 subunits are members of a small family of class C GPCRs whose members share the same architecture, comprising a Venus Flytrap (VFT) module linked to the seven transmembrane domains (TMDs) by a short cysteine-rich region (CRR). The VFT module of TAS1R2 contains the primary binding site for most of the sweet-tasting compounds, including natural sugars and artificial and natural sweeteners. However, cellular assays, molecular docking and site-directed mutagenesis studies have revealed that the VFT, CRR and TMD of TAS1R3 interact with some sweeteners, including the sweet-tasting protein brazzein. The aim of this study was to better understand the contribution of TAS1R2-VFT in the binding of sweet stimuli. To achieve this, we heterologously expressed human TAS1R2-VFT (hTAS1R2-VFT) in Escherichia coli. Circular dichroism spectroscopic studies revealed that hTAS1R2-VFT was properly folded with evidence of secondary structures. Using size-exclusion chromatography coupled with light scattering, we found that hTAS1R2-VFT behaves as a monomer. Ligand binding quantified by intrinsic tryptophan fluorescence showed that hTAS1R2-VFT is capable of binding sweet stimuli with Kd values, in agreement with physiological detection. Furthermore, we investigated whether the impact of point mutations, already shown to have deleterious effects on cellular assays, could impact the ability of hTAS1R2-VFT to bind sweet ligands. As expected, the ligand affinities of hTAS1R2-VFT were drastically reduced through the introduction of single amino acid substitutions (D278A and E382A) known to abolish the response of the full-length TAS1R2/TAS1R3 receptor. This study demonstrates the feasibility of producing milligram quantities of hTAS1R2-VFT to further characterize the mechanism of binding interaction and perform structural studies.


Assuntos
Receptores Acoplados a Proteínas G , Paladar , Humanos , Ligantes , Simulação de Acoplamento Molecular , Receptores Acoplados a Proteínas G/metabolismo , Edulcorantes/farmacologia
5.
J Bone Miner Res ; 37(9): 1787-1807, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35848051

RESUMO

The calcium-sensing receptor is a homodimeric class C G protein-coupled receptor (GPCR) that senses extracellular Ca2+ (Ca2+ o ) via a dimeric extracellular Venus flytrap (VFT) unit that activates G protein-dependent signaling via twin Cysteine-rich domains linked to transmembrane heptahelical (HH) bundles. It plays a key role in the regulation of human calcium and thus mineral metabolism. However, the nature of interactions between VFT units and HH bundles, and the impacts of heterozygous or homozygous inactivating mutations, which have implications for disorders of calcium metabolism are not yet clearly defined. Herein we generated CaSR-GABAB1 and CaSR-GABAB2 chimeras subject to GABAB -dependent endoplasmic reticulum sorting to traffic mutant heterodimers to the cell surface. Transfected HEK-293 cells were assessed for Ca2+ o -stimulated Ca2+ i mobilization using mutations in either the VFT domains and/or HH bundle intraloop-2 or intraloop-3. When the same mutation was present in both VFT domains of receptor dimers, analogous to homozygous neonatal severe hyperparathyroidism (NSHPT), receptor function was markedly impaired. Mutant heterodimers containing one wild-type (WT) and one mutant VFT domain, however, corresponding to heterozygous familial hypocalciuric hypercalcemia type-1 (FHH-1), supported maximal signaling with reduced Ca2+ o potency. Thus two WT VFT domains were required for normal Ca2+ o potency and there was a pronounced gene-dosage effect. In contrast, a single WT HH bundle was insufficient for maximal signaling and there was no functional difference between heterodimers in which the mutation was present in one or both intraloops; ie, no gene-dosage effect. Finally, we observed that the Ca2+ o -stimulated CaSR operated exclusively via signaling in-trans and not via combined in-trans and in-cis signaling. We consider how receptor asymmetry may support the underlying mechanisms. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Hipercalcemia , Hiperparatireoidismo Primário , Cálcio/metabolismo , Dosagem de Genes , Células HEK293 , Humanos , Hipercalcemia/genética , Recém-Nascido , Mutação/genética , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo , Ácido gama-Aminobutírico/genética
6.
Neuropharmacology ; 199: 108801, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34547332

RESUMO

Metabotropic glutamate receptors (mGluRs) are an essential component of the mammalian central nervous system. These receptors modulate neuronal excitability in response to extracellular glutamate through the activation of intracellular heterotrimeric G proteins. Like most other class C G protein-coupled receptors, mGluRs function as obligate dimer proteins, meaning they need to form dimer complexes before becoming functional receptors. All mGluRs possess the ability to homodimerize, but studies over the past ten years have demonstrated these receptors are also capable of forming heterodimers in specific patterns. These mGluR heterodimers appear to have their own unique biophysical behavior and pharmacology with both native and synthetic compounds with few rules having been identified that allow for prediction of the consequences of any particular mGluR pair forming heterodimers. Here, we review the relevant literature demonstrating the existence and consequences of mGluR heterodimerization. By collecting biophysical and pharmacological data of several mGluR heterodimers we demonstrate the lack of generalizable behavior of these complexes indicating that each individual dimeric pair needs to be investigated independently. Additionally, by combining sequence alignment and structural analysis, we propose that interactions between the ß4-A Helix Loop and the D Helix in the extracellular domain of these receptors are the structural components that dictate heterodimerization compatibility. Finally, we discuss the potential implications of mGluR heterodimerization from the viewpoints of further developing our understanding of neuronal physiology and leveraging mGluRs as a therapeutic target for the treatment of pathophysiology.


Assuntos
Multimerização Proteica , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Humanos
7.
ChemMedChem ; 16(22): 3451-3462, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34216111

RESUMO

The calcium-sensing receptor (CaSR) is a clinical target in the treatment of hyperparathyroidism and related diseases. However, clinical use of approved CaSR-targeting drugs such as cinacalcet is limited due to adverse side effects including hypocalcaemia, nausea and vomiting, and in some instances, a lack of efficacy. The CaSR agonist and positive allosteric modulator (ago-PAM), AC265347, is chemically distinct from clinically-approved CaSR PAMs. AC265347 potently suppressed parathyroid hormone (PTH) release in rats with a lower propensity to cause hypocalcaemia compared to cinacalcet and may therefore offer benefits over current CaSR PAMs. Here we report a structure activity relationship (SAR) study seeking to optimise AC265347 as a drug candidate and disclose the discovery of AC265347-like compounds with diverse pharmacology and improved physicochemical and drug-like properties.


Assuntos
Receptores de Detecção de Cálcio , Animais , Humanos , Ratos , Regulação Alostérica/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular , Receptores de Detecção de Cálcio/agonistas , Relação Estrutura-Atividade
8.
Front Physiol ; 12: 585895, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790802

RESUMO

Supplemental O2 (hyperoxia), necessary for maintenance of oxygenation in premature infants, contributes to neonatal and pediatric airway diseases including asthma. Airway smooth muscle (ASM) is a key resident cell type, responding to hyperoxia with increased contractility and remodeling [proliferation, extracellular matrix (ECM) production], making the mechanisms underlying hyperoxia effects on ASM significant. Recognizing that fetal lungs experience a higher extracellular Ca2+ ([Ca2+]o) environment, we previously reported that the calcium sensing receptor (CaSR) is expressed and functional in human fetal ASM (fASM). In this study, using fASM cells from 18 to 22 week human fetal lungs, we tested the hypothesis that CaSR contributes to hyperoxia effects on developing ASM. Moderate hyperoxia (50% O2) increased fASM CaSR expression. Fluorescence [Ca2+]i imaging showed hyperoxia increased [Ca2+]i responses to histamine that was more sensitive to altered [Ca2+]o, and promoted IP3 induced intracellular Ca2+ release and store-operated Ca2+ entry: effects blunted by the calcilytic NPS2143. Hyperoxia did not significantly increase mitochondrial calcium which was regulated by CaSR irrespective of oxygen levels. Separately, fASM cell proliferation and ECM deposition (collagens but not fibronectin) showed sensitivity to [Ca2+]o that was enhanced by hyperoxia, but blunted by NPS2143. Effects of hyperoxia involved p42/44 ERK via CaSR and HIF1α. These results demonstrate functional CaSR in developing ASM that contributes to hyperoxia-induced contractility and remodeling that may be relevant to perinatal airway disease.

9.
Front Chem ; 9: 825669, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35096780

RESUMO

Cell-surface receptors play a pivotal role as transducers of extracellular input. Although different cell types express the same receptor, the physiological roles of the receptor are highly dependent on cell type. To understand each role, tactics for cell-specific activation of the target receptor are in high demand. Herein, we developed an orthogonal activation method targeting metabotropic glutamate receptor 1 (mGlu1), a G-protein coupled receptor. In this method, direct activation via coordination-based chemogenetics (dA-CBC) was adopted, where activation of mGlu1 was artificially induced by a protein conformational change in response to the coordination of a metal ion or metal-ion complex. Our structure-based protein design and screening approach identified mGlu1 mutants that were directly activated by the coordination of Cu2+ or Zn2+, in addition to our previous Pd-complex-sensitive mGlu1 mutant. Notably, the activation of the mutants was mutually orthogonal, resulting in cell-type selective activation in a model system using HEK293 cells.

10.
J Mol Biol ; 432(22): 5966-5984, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33058878

RESUMO

The neurotransmitter γ-aminobutyric acid (GABA) activates the metabotropic GABAB receptor to generate slow, prolonged inhibitory signals that regulate the neural circuitry. The GABAB receptor is an obligate heterodimeric G protein-coupled receptor (GPCR) comprised of GBR1 and GBR2 subunits, each with extracellular, seven-helix transmembrane (7TM), and coiled-coil domains. To understand how GABA-driven conformational changes in the extracellular domain are transmitted to the 7TM domain during signal transduction, we determined cryo-electron microscopy (EM) structures of GABAB in two different states: an antagonist-bound inactive state, and an active state in which both the GABA agonist and a positive allosteric modulator (PAM) are bound. In the inactive state, the TM3 and TM5 helices in the two 7TM domains engage in cholesterol-mediated as well as direct interactions, resulting in an open conformation. GABA binding forces the extracellular domains of GBR1 and GBR2 into a compact form, relocating the linkers that connect the extracellular and 7TM domains closer to each other. The movement of the linker along with the associated extracellular loop 2 of the 7TM domain reorients the two 7TM domains and creates a new interface with the TM5, TM6 and TM7 helices in a closed conformation. PAM binding to the interface between the TM6 and TM6 helices stabilizes the active 7TM domain conformation. The relayed structural rearrangement results in significant conformational changes in the TM helices, as well as intracellular loop 3 in GBR2, which may promote the binding and activation of the Gi/o proteins.


Assuntos
Dimerização , Receptores de GABA-B/química , Receptores de GABA-B/metabolismo , Sítios de Ligação , Membrana Celular/metabolismo , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Receptores de GABA-B/genética , Transdução de Sinais , Relação Estrutura-Atividade , Ácido gama-Aminobutírico/metabolismo
11.
Front Mol Biosci ; 7: 38, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32211419

RESUMO

As a class C GPCR and regulator of synaptic activity, mGlu5 is an attractive drug target, potentially offering treatment for several neurologic and psychiatric disorders. As little is known about the activation mechanism of mGlu5 at a structural level, potential of mean force calculations linked to molecular dynamics simulations were performed on the mGlu5 transmembrane domain crystal structure to explore various internal mechanisms responsible for its activation. Our results suggest that the hydrophilic interactions between intracellular loop 1 and the intracellular side of TM6 have to be disrupted to reach a theoretically active-like conformation. In addition, interactions between residues that are key for mGlu5 activation (Tyr6593.44 and Ile7515.51) and mGlu5 inactivation (Tyr6593.44 and Ser8097.39) have been identified. Inasmuch as mGlu5 receptor signaling is poorly understood, potentially showing a complex network of micro-switches and subtle structure-activity relationships, the present study represents a step forward in the understanding of mGlu5 transmembrane domain activation.

12.
Biochem Biophys Res Commun ; 521(1): 227-231, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31635806

RESUMO

In addition to the maintenance of Ca2+ homeostasis, the calcium-sensing receptor (CaSR) is involved in many diverse physiological functions in the mammalian body. The receptor works as a kokumi taste receptor in taste buds and as a nutrient sensor in the gut, where it regulates the secretion of glycemic response and appetite-related hormones. To identify novel human CaSR (hCaSR) activators from food ingredients, we conducted a screening using a cell-based hCaSR assay. Hen egg-white lysozyme, which is a sweet protein, was found to be a novel orthosteric agonist of hCaSR with an EC50 value of 592 µM. Lysozyme hydrolysate was not able to activate hCaSR, thus suggesting that the protein structure of lysozyme is necessary for hCaSR activation. Thaumatin, which is another sweet protein, also activated hCaSR with an EC50 value of 71 µM. This is the first report that shows hCaSR activation by proteins with molecular weights exceeding 10,000 Da. These results provide a new avenue for the development of hCaSR activators, which could be applicable in food or drugs that modulate taste perception, appetite, or glucose tolerance, in addition to Ca2+ homeostasis.


Assuntos
Muramidase/metabolismo , Proteínas de Plantas/metabolismo , Receptores de Detecção de Cálcio/agonistas , Cálcio/análise , Cálcio/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Hidrólise , Receptores de Detecção de Cálcio/metabolismo , Eletricidade Estática
13.
Curr Top Med Chem ; 19(26): 2421-2446, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31660833

RESUMO

The amino terminal domain (ATD) of the metabotropic glutamate (mGlu) receptors contains the orthosteric glutamate recognition site, which is highly conserved across the eight mGlu receptor subtypes. In total, 29 X-ray crystal structures of the mGlu ATD proteins have been reported to date. These structures span across 3 subgroups and 6 subtypes, and include apo, agonist- and antagonist-bound structures. We will discuss the insights gained from the analysis of these structures with the focus on the interactions contributing to the observed group and subtype selectivity for select agonists. Furthermore, we will define the full expanded orthosteric ligand binding pocket (LBP) of the mGlu receptors, and discuss the macroscopic features of the mGlu ATD proteins.


Assuntos
Receptores de Glutamato Metabotrópico/metabolismo , Animais , Sítios de Ligação , Cristalografia por Raios X , Humanos , Conformação Proteica , Receptores de Glutamato Metabotrópico/química , Relação Estrutura-Atividade
14.
Chem Senses ; 44(5): 303-310, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-30893427

RESUMO

Mammalian sensory systems detect sweet taste through the activation of a single heteromeric T1R2/T1R3 receptor belonging to class C G-protein-coupled receptors. Allosteric ligands are known to interact within the transmembrane domain, yet a complete view of receptor activation remains elusive. By combining site-directed mutagenesis with computational modeling, we investigate the structure and dynamics of the allosteric binding pocket of the T1R3 sweet-taste receptor in its apo form, and in the presence of an allosteric ligand, cyclamate. A novel positively charged residue at the extracellular loop 2 is shown to interact with the ligand. Molecular dynamics simulations capture significant differences in the behavior of a network of conserved residues with and without cyclamate, although they do not directly interact with the allosteric ligand. Structural models show that they adopt alternate conformations, associated with a conformational change in the transmembrane region. Site-directed mutagenesis confirms that these residues are unequivocally involved in the receptor function and the allosteric signaling mechanism of the sweet-taste receptor. Similar to a large portion of the transmembrane domain, they are highly conserved among mammals, suggesting an activation mechanism that is evolutionarily conserved. This work provides a structural basis for describing the dynamics of the receptor, and for the rational design of new sweet-taste modulators.


Assuntos
Regulação Alostérica/genética , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/genética , Células Cultivadas , Ciclamatos/química , Ciclamatos/farmacologia , Células HEK293 , Humanos , Ligantes , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo
15.
J Cell Physiol ; 234(8): 14187-14197, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30624783

RESUMO

Airway smooth muscle (ASM) regulation of airway structure and contractility is critical in fetal/neonatal physiology in health and disease. Fetal lungs experience higher Ca2+ environment that may impact extracellular Ca2+ ([Ca2+ ]o ) sensing receptor (CaSR). Well-known in the parathyroid gland, CaSR is also expressed in late embryonic lung mesenchyme. Using cells from 18-22 week human fetal lungs, we tested the hypothesis that CaSR regulates intracellular Ca2+ ([Ca2+ ]i ) in fetal ASM (fASM). Compared with adult ASM, CaSR expression was higher in fASM, while fluorescence Ca2+ imaging showed that [Ca2+ ]i was more sensitive to altered [Ca2+ ]o . The fASM [Ca2+ ]i responses to histamine were also more sensitive to [Ca2+ ]o (0-2 mM) compared with an adult, enhanced by calcimimetic R568 but blunted by calcilytic NPS2143. [Ca2+ ]i was enhanced by endogenous CaSR agonist spermine (again higher sensitivity compared with adult). Inhibition of phospholipase C (U73122; siRNA) or inositol 1,4,5-triphosphate receptor (Xestospongin C) blunted [Ca2+ ]o sensitivity and R568 effects. NPS2143 potentiated U73122 effects. Store-operated Ca2+ entry was potentiated by R568. Traction force microscopy showed responsiveness of fASM cellular contractility to [Ca2+ ]o and NPS2143. Separately, fASM proliferation showed sensitivity to [Ca2+ ]o and NPS2143. These results demonstrate functional CaSR in developing ASM that modulates airway contractility and proliferation.


Assuntos
Sinalização do Cálcio/genética , Pulmão/crescimento & desenvolvimento , Mioblastos/metabolismo , Receptores de Detecção de Cálcio/genética , Cálcio/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Feto , Humanos , Pulmão/embriologia , Pulmão/metabolismo , Compostos Macrocíclicos/farmacologia , Músculo Liso/metabolismo , Naftalenos/farmacologia , Oxazóis/farmacologia , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/genética
16.
Proc Natl Acad Sci U S A ; 114(10): 2568-2573, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28228527

RESUMO

The sweet taste in humans is mediated by the TAS1R2/TAS1R3 G protein-coupled receptor (GPCR), which belongs to the class C family that also includes the metabotropic glutamate and γ-aminobutyric acid receptors. We report here the predicted 3D structure of the full-length TAS1R2/TAS1R3 heterodimer, including the Venus Flytrap Domains (VFDs) [in the closed-open (co) active conformation], the cysteine-rich domains (CRDs), and the transmembrane domains (TMDs) at the TM56/TM56 interface. We observe that binding of agonists to VFD2 of TAS1R2 leads to major conformational changes to form a TM6/TM6 interface between TMDs of TAS1R2 and TAS1R3, which is consistent with the activation process observed biophysically on the metabotropic glutamate receptor 2 homodimer. We find that the initial effect of the agonist is to pull the bottom part of VFD3/TAS1R3 toward the bottom part of VFD2/TAS1R2 by ∼6 Šand that these changes get transmitted from VFD2 of TAS1R2 (where agonists bind) through the VFD3 and the CRD3 to the TMD3 of TAS1R3 (which couples to the G protein). These structural transformations provide a detailed atomistic mechanism for the activation process in GPCR, providing insights and structural details that can now be validated through mutation experiments.


Assuntos
Conformação Proteica , Receptores Acoplados a Proteínas G/química , Percepção Gustatória/genética , Regulação Alostérica/efeitos dos fármacos , Animais , Cristalografia por Raios X , Humanos , Mutação , Ligação Proteica , Domínios Proteicos , Multimerização Proteica/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Glutamato Metabotrópico/química , Edulcorantes/química , Edulcorantes/farmacologia , Paladar/genética
17.
Best Pract Res Clin Endocrinol Metab ; 27(3): 315-31, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23856262

RESUMO

In this article we consider the mechanisms by which the calcium-sensing receptor (CaSR) induces its cellular responses via the control (activation or inhibition) of signaling pathways. We consider key features of CaSR-mediated signaling including its control of the heterotrimeric G-proteins Gq/11, Gi/o and G12/13 and the downstream consequences recognizing that very few CaSR-mediated cell phenomena have been fully described. We also consider the manner in which the CaSR contributes to the formation of specific signaling scaffolds via peptide recognition sequences in its intracellular C-terminal along with the origins of its high level of cooperativity, particularly for Ca(2+)o, and its remarkable resistance to desensitization. We also consider the nature of the mechanisms by which the CaSR controls oscillatory and sustained Ca(2+)i mobilizing responses and inhibits or elevates cyclic adenosine monophosphate (cAMP) levels dependent on the cellular and signaling context. Finally, we consider the diversity of the receptor's ligands, ligand binding sites and broader compartment-dependent physiological roles leading to the identification of pronounced ligand-biased signaling for agonists including Sr(2+) and modulators including l-amino acids and the clinically effective calcimimetic cinacalcet. We note the implications of these findings for the development of new designer drugs that might target the CaSR in pathophysiological contexts beyond those established for the treatment of disorders of calcium metabolism.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Homeostase/fisiologia , Receptores de Detecção de Cálcio/metabolismo , Animais , Humanos , Fosforilação
18.
ACS Chem Neurosci ; 2(8): 433-49, 2011 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22860170

RESUMO

This Review describes recent activity in the advancement of ligands for the metabotropic glutamate 4 receptor subtype and their potential utility as central nervous system (CNS) therapeutics. Until recently, there was a paucity of compounds with suitable selectivity and druglike properties to elucidate the value of this target. The search for selective entities has led several groups to the investigation of allosteric modulators as a path to optimization of potential ligands. Recent efforts, discussed here, have afforded a variety of derivatives with improvements in potency, solubility, and pharmacokinetic properties that garner support for continued investigation and optimization.


Assuntos
Fármacos do Sistema Nervoso Central/metabolismo , Fármacos do Sistema Nervoso Central/uso terapêutico , Descoberta de Drogas/tendências , Receptores de Glutamato Metabotrópico/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Fármacos do Sistema Nervoso Central/química , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Ácido Glutâmico/uso terapêutico , Humanos , Ligantes , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA