Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Foodborne Pathog Dis ; 20(10): 442-452, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37669036

RESUMO

In this study, we investigated the inhibitory effects of coenzyme Q0 (CoQ0) on biofilm formation and the expression of virulence genes by Cronobacter sakazakii. We found that the minimum inhibitory concentration of CoQ0 against C. sakazakii strains ATCC29544 and ATCC29004 was 100 µg/mL, while growth curve assays showed that subinhibitory concentrations (SICs) of CoQ0 for both strains were 6.4, 3.2, 1.6 and 0.8 µg/mL. Assays exploring the inhibition of specific biofilm formation showed that SICs of CoQ0 inhibited biofilm formation by C. sakazakii in a dose-dependent manner, which was confirmed by scanning electron microscopy and confocal laser scanning microscopy analyses. CoQ0 inhibited the swimming and swarming motility of C. sakazakii and reduced its ability to adhere to and invade HT-29 cells. In addition, CoQ0 impeded the ability of C. sakazakii to survive and replicate within RAW 264.7 cells. Finally, real-time polymerase chain reaction analysis confirmed that nine C. sakazakii genes associated with biofilm formation and virulence were downregulated in response to CoQ0 treatment. Overall, our findings suggest that CoQ0 is a promising antibiofilm agent and provide new insights for the prevention and control of infections caused by C. sakazakii.


Assuntos
Cronobacter sakazakii , Ubiquinona/farmacologia , Fatores de Virulência/genética , Testes de Sensibilidade Microbiana , Biofilmes
2.
Redox Rep ; 28(1): 2220531, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37581329

RESUMO

Objectives: The present study describes a pharmacological strategy for the treatment of glioblastoma by redoxcycling 'mitocans' such as quinone/ascorbate combination drugs, based on their tumor-selective redox-modulating effects and tolerance to normal cells and tissues.Methods: Experiments were performed on glioblastoma mice (orthotopic model) treated with coenzyme Q0/ascorbate (Q0/A). The drug was injected intracranially in a single dose. The following parameters were analyzed in vivo using MRI orex vivo using conventional assays: tumor growth, survival, cerebral and tumor perfusion, tumor cell density, tissue redox-state, and expression of tumor-associated NADH oxidase (tNOX).Results: Q0/A markedly suppressed tumor growth and significantly increased survival of glioblastoma mice. This was accompanied by increased oxidative stress in the tumor but not in non-cancerous tissues, increased tumor blood flow, and downregulation of tNOX. The redox-modulating and anticancer effects of Q0/A were more pronounced than those of menadione/ascorbate (M/A) obtained in our previous study. No adverse drug-related side-effects were observed in glioblastoma mice treated with Q0/A.Discussion: Q0/A differentiated cancer cells and tissues, particularly glioblastoma, from normal ones by redox targeting, causing a severe oxidative stress in the tumor but not in non-cancerous tissues. Q0/A had a pronounced anticancer activity and could be considered safe for the organism within certain concentration limits. The results suggest that the rate of tumor resorption and metabolism of toxic residues must be controlled and maintained within tolerable limits to achieve longer survival, especially at intracranial drug administration.


Assuntos
Glioblastoma , Camundongos , Animais , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Linhagem Celular Tumoral , Ácido Ascórbico/farmacologia , Oxirredução , Estresse Oxidativo
3.
Toxicol Appl Pharmacol ; 465: 116453, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36914119

RESUMO

HNSCC (Head and Heck Squamous Cell Carcinoma) is a reasonably prevalent cancer with a high mortality rate. In this study, we tried to examine the anti-metastasis and apoptosis/autophagy actions of Coenzyme Q0 (CoQ0, 2,3-dimethoxy-5-methyl-1,4-benzoquinone), a derivative of Antrodia camphorata in HNCC TWIST1 overexpressing (FaDu-TWIST1) cells as well as in vivo tumor xenograft mice model. Using fluorescence based cellular assays, western blot and nude mice tumor xenografts, we determined that CoQ0 effectively reduced cell viability and displayed rapid morphological changes in FaDu-TWIST1 cells compared to FaDu cells. Non/sub-cytotoxic concentrations of CoQ0 treatment reduces the cell migration by downregulating TWIST1 and upregulating E-cadherin. Apoptosis produced by CoQ0 was mostly related with caspase-3 activation, PARP cleavage, and VDAC-1 expression. The FaDu-TWIST1 cells treated with CoQ0 exhibits autophagy-mediated LC3-II accumulation and acidic vesicular organelles (AVOs) formation. Pre-treatment with 3-MA and CoQ effectively prevented CoQ0-induced cell death and CoQ0-triggered autophagy in FaDu-TWIST cells as a death mechanism. CoQ0 induces ROS production in FaDu-TWIST1 cells and NAC pre-treatment significantly reduces anti-metastasis, apoptosis, and autophagy. Likewise, ROS-mediated AKT inhibition regulates CoQ0-induced apoptosis/autophagy in FaDu-TWIST1 cells. In vivo studies exhibit, CoQ0 effectively delays and reduces the tumor incidence and burden in FaDu-TWIST1-xenografted nude mice. Current findings display, CoQ0 exhibits a novel anti-cancer mechanism hence, it might be appropriate for anticancer therapy, and a new potent drug for HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , Ubiquinona , Humanos , Animais , Camundongos , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Camundongos Nus , Carcinoma de Células Escamosas de Cabeça e Pescoço , Morte Celular , Apoptose , Linhagem Celular Tumoral , Autofagia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Nucleares , Proteína 1 Relacionada a Twist
4.
Food Chem Toxicol ; 155: 112384, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34229024

RESUMO

Coenzyme Q0 (CoQ0, 2,3-dimethoxy-5-methyl-1,4-benzoquinone) derived from Antrodia camphorata exerts anticancer activities against breast, melanoma, and ovarian carcinoma. Glioblastoma multiforme is a common tumor affecting the central nervous system. This study explored anticancer properties of CoQ0 on human glioblastoma both in vitro and in vivo, and explained the molecular mechanism behind it. CoQ0 treatment retarded the growth and suppressed colony formation in glioblastoma (U87MG and GBM8401) cells. CoQ0 induced apoptosis by activation of caspase-3, cleavage of PARP, and dysregulation of Bax and Bcl-2 in both cell lines. Annexin V/PI staining indicated CoQ0 mediated necrosis and apoptosis. Interestingly, AVOs were increased trough induction of autophagy by CoQ0, LC3-II accumulation, and p62/SQSTM1 expression, leading to death mechanism. Z-VAD-FMK has no effect on CoQ0-induced autophagy but autophagy inhibition by 3-methyladenine (3-MA)/chloroquine (CQ) led to CoQ0-induced apoptosis. N-acetylcysteine (NAC) inhibited CoQ0-mediated ROS production and diminished CoQ0-induced apoptotic and autophagic cell death. Further, CoQ0 inhibited PI3K/AKT/mTOR signaling pathways. CoQ0 reduced the tumor burden in U87MG and GBM8401 xenografted athymic nude mice and significantly modulated tumor xenograft by inducing apoptosis and autophagy. CoQ0 generated ROS-mediated apoptotic and autophagic cell death for effective glioblastoma treatment.


Assuntos
Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Benzoquinonas/uso terapêutico , Glioblastoma/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Benzoquinonas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Glioblastoma/metabolismo , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Necrose/induzido quimicamente , Polyporales/química , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Foods ; 10(6)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071975

RESUMO

Coenzyme Q0 (CoQ0) has anti-inflammatory and anti-tumor effects; however, the antimicrobial and antibiofilm activities of CoQ0 against Salmonella enterica serovar Typhimurium are unknown. Thus, we investigated the bacteriostatic and antibiofilm activities, along with the underlying mechanism, of CoQ0 against S. Typhimurium. The minimum inhibitory concentration (MIC) of CoQ0 against S. enterica serovars Typhimurium was 0.1-0.2 mg/mL (549-1098 µM), and CoQ0 at MIC and 2MIC decreased viable S. Typhimurium counts below detectable limits within 6 and 4 h, respectively. CoQ0 at 20MIC (4 mg/mL) reduced S. Typhimurium on raw chicken by 1.5 log CFU/cm3 within 6 h. CoQ0 effectively disrupted cell membrane integrity and induced morphological changes in the cell, resulting in hyperpolarization, decreased intracellular ATP concentrations, and cellular constituents leakage. Biofilm-associated S. Typhimurium cells were killed by CoQ0 treatment. These findings suggest that CoQ0 could be applied as a natural antibacterial substance for use against S. Typhimurium by the food industry.

6.
Foodborne Pathog Dis ; 18(6): 398-404, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33709804

RESUMO

Coenzyme Q0 (CoQ0) is a natural compound found in Antrodia cinnamomea, which has a variety of biological activities. Here, the antibacterial activity and possible antibacterial mechanism of CoQ0 against Escherichia coli were investigated. The antibacterial effect was evaluated by determining minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values, and by assessing bacterial survival and the effect on the growth of E. coli after CoQ0 treatment in Luria-Bertani (LB) broth. To reveal the antibacterial mechanism of CoQ0, changes in intracellular adenosine triphosphate (ATP) concentration, membrane potential, and bacterial protein content, as well as effects on cell morphology and membrane integrity, were investigated. Both the MICs and MBCs of CoQ0 against E. coli were 0.1 mg/mL. After treatment of E. coli (6.5 log colony-forming units/mL) with 0.1 mg/mL of CoQ0 in LB broth for 3 h, the number of viable cells dropped below the detection limit. In addition, CoQ0 treatment resulted in the reduction in intracellular ATP concentration, cell membrane hyperpolarization, decreased bacterial protein concentrations, and damage to cell membrane integrity and cellular morphology. These results indicated that CoQ0 has effective antibacterial activity against E. coli, suggesting potential applications in food industry safety.


Assuntos
Antibacterianos/farmacologia , Benzoquinonas/farmacologia , Escherichia coli/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Membrana Celular/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Polyporales/química
7.
Iran J Pharm Res ; 19(4): 394-409, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33841552

RESUMO

Many attempts in medical community focused on the preparation of anticancer agents. Various Coenzyme Q such as CoQ0 analogs have been reported as anti-inflammatory, anticancer, and antioxidant substances. In this study a novel derivatives of Coenzyme Q as an anticancer agent have been introduced. The prepared magnetic nanoparticle, containing CoQ0 were prepared using common chemical methods and also characterized by means of nuclear magnetic resonance (NMR), fourier transform infrared (FT-IR), thermal gravimetric analysis (TGA), and differential scanning calorimetric (DSC). To evaluate the antiproliferative effects of the nanoparticle, the prepared compound was treated with cell lines such as Hela, MCF-7 and Saos. Moreover, the outcomes were compared with normal fibroblast cell line. These assessments were performed by means of MTT assay. Investigation on the capability of this prepared nanoparticle showed some reliable results including cytotoxicities against MCF7, Saos and Hela cancer cell lines which were illustrated by displaying the morphology of the treated cells using AO/EB dual staining fluorescent technique. Employing simple method for preparation as well as the promising cytotoxic results makes it as a promising candidate for further bioexperiments.

8.
Food Microbiol ; 86: 103337, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31703870

RESUMO

Coenzyme Q0 (CoQ0) has demonstrated antitumor, anti-inflammatory, and anti-angiogenic activities. Cronobacter sakazakii is an opportunistic foodborne pathogen associated with high mortality in neonates. In this study, the antimicrobial activity and possible antimicrobial mechanism of CoQ0 against C. sakazakii were investigated. Moreover, the inactivation effect of CoQ0 on C. sakazakii in biofilms was also evaluated. The minimum inhibitory concentration (MIC) of CoQ0 against C. sakazakii strains ranged from 0.1 to 0.2 mg/mL. Treatment caused cell membrane dysfunction, as evidenced by cell membrane hyperpolarization, decreased intracellular ATP concentration and cell membrane integrity, and changes in cellular morphology. CoQ0 combined with mild heat treatment (45, 50, or 55 °C) decreased the number of viable non-desiccated and desiccated C. sakazakii cells in a time- and dose-dependent manner in reconstituted infant milk. Furthermore, CoQ0 showed effective inactivation activity against C. sakazakii in biofilms on stainless steel, reducing the number of viable cells and damaging the structure of the biofilm. These findings suggest that CoQ0 has a strong inactivate effect on C. sakazakii and could be used in food production environments to effectively control C. sakazakii and reduce the number of illnesses associated with it.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Cronobacter sakazakii/efeitos dos fármacos , Ubiquinona/análogos & derivados , Membrana Celular/efeitos dos fármacos , Cronobacter sakazakii/crescimento & desenvolvimento , Cronobacter sakazakii/fisiologia , Fórmulas Infantis/análise , Fórmulas Infantis/microbiologia , Testes de Sensibilidade Microbiana , Plâncton/efeitos dos fármacos , Plâncton/crescimento & desenvolvimento , Plâncton/fisiologia , Ubiquinona/farmacologia
9.
Front Pharmacol ; 10: 1445, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849685

RESUMO

Atopic dermatitis (AD) is an inflammatory skin disease that is usually accompanied by Staphylococcus aureus infection due to cutaneous barrier-function damage. Benzenoid compounds from Antrodia cinnamomea are known to exhibit antibacterial and anti-inflammatory activities. This study sought to investigate the potential of benzenoids for treating bacteria-infected AD. The compounds were screened against methicillin-resistant S. aureus (MRSA). Coenzyme Q0 (CoQ0), a key ingredient in A. cinnamomea, showed the strongest MRSA growth inhibition. We further tested the inhibitory effect of CoQ0 on planktonic and biofilm MRSA. The work was also performed to explore the potential effectiveness of CoQ0 on AD using activated keratinocytes and in vivo experimental AD mice as the models. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of CoQ0 against MRSA were 7.81 µg/ml. CoQ0 was found to eradicate biofilm MRSA efficiently and reduce the biofilm thickness. CoQ0 killed MRSA by inhibiting DNA polymerase and topoisomerases. A proteomic assay showed that CoQ0 also reduced the ribosomal proteins. In the anti-inflammation study, CoQ0 was found to downregulate the expression of interleukin (IL)-6, chemokine (C-C motif) ligand (CCL)5, and CCL17 in HaCaT cells. CoQ0 at 0.5 µg/ml could recover the filaggrin decreased by HaCaT activation to the normal control. We established a bacteria-infected AD-like model in mice using ovalbumin (OVA) and topically applied MRSA. Topical CoQ0 delivery lessened the MRSA presence in the AD-like lesions by >90%. The erythema, barrier function, and epidermal thickness of the AD-like wounds were improved by CoQ0 through the reduction of IL-1ß, IL-4, IL-6, IL-10, interferon (IFN)-γ, and by neutrophil infiltration in the lesional skin. CoQ0 is therefore regarded as effective in mitigating AD symptoms associated with bacterial load.

10.
Appl Microbiol Biotechnol ; 103(20): 8545-8557, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31468089

RESUMO

Salmonella Typhimurium, a common Gram-negative foodborne pathogen, threatens public health and hinders the development of the food industry. In this study, we evaluated the antibiofilm activity of coenzyme Q0 (CoQ0) against S. Typhimurium. Besides, the inhibition of the S. Typhimurium's adhesion to and invasion of Caco-2 cells and its survival and replication in RAW 264.7 cells by CoQ0 were also explored. The minimum inhibitory concentrations and minimal bactericidal concentrations of CoQ0 against Salmonella were both 100-400 µg/mL. Salmonella Typhimurium biofilm formation was effectively inhibited by subinhibitory concentrations (SICs) of CoQ0. The CoQ0-affected biofilm morphology was observed with light microscopy and field-emission scanning electron microscopy. CoQ0 at SICs reduced the swimming motility and quorum sensing of S. Typhimurium and repressed the transcription of critical virulence-related genes. CoQ0 at SICs also clearly reduced the adhesion of S. Typhimurium to and its invasion of Caco-2 cells and reduced its survival and replication within RAW 264.7 macrophage cells. These findings suggest that CoQ0 has strong antibiofilm activity and can be used as an anti-infectious agent against Salmonella.


Assuntos
Antibacterianos/metabolismo , Aderência Bacteriana/efeitos dos fármacos , Benzoquinonas/metabolismo , Biofilmes/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Salmonella typhimurium/efeitos dos fármacos , Animais , Células CACO-2 , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Células RAW 264.7
11.
Foodborne Pathog Dis ; 16(5): 317-324, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30964334

RESUMO

Coenzyme Q0 (CoQ0), one of benzoquinone compounds, has been demonstrated to possess antineoplastic, anti-inflammatory and antioxidant activities. However, its antimicrobial effect has not been extensively reported. In this study, antimicrobial activity of CoQ0 against Staphylococcus aureus was evaluated by measurement of inhibition zone, minimum inhibitory concentration (MIC), and growth curves. Time-kill assay was performed to assess the bactericidal activity of CoQ0 against S. aureus in tryptone soya broth and pasteurized milk. The possible mechanism of action was explored through measuring changes in intracellular ATP concentrations, membrane potential, and cell morphology. Furthermore, propidium iodide (PI) staining assay was performed to evaluate the effect of CoQ0 on cell membrane integrity. The MIC of CoQ0 against tested strains ranged from 7.8 to 62.5 µg/mL. CoQ0 at 2 × MIC showed bactericidal effect on S. aureus in tryptic soy broth (TSB) and pasteurized milk. Decrease in intracellular ATP concentration and membrane potential were detected when cells were treated with CoQ0. PI staining demonstrated destruction of bacterial cell membrane. CoQ0 also induced abnormal cell morphological changes, as confirmed by field emission scanning electron microscopy. These findings suggested that CoQ0 exhibited antimicrobial effect on S. aureus, which was partly because of its ability to damage cell membrane.


Assuntos
Antibacterianos/farmacologia , Membrana Celular/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Ubiquinona/farmacologia , Animais , Microbiologia de Alimentos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica , Leite/microbiologia
12.
Biol Pharm Bull ; 41(12): 1809-1817, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30504682

RESUMO

2,3-Dimethoxy-5-methyl-p-benzoquinone is a common chemical structure of coenzyme Q (CoQ) that conjugates different lengths of an isoprenoid side chain at the 6-position of the p-benzoquinone ring. In a series of studies to explore the cytotoxic mechanism of CoQ homologues with a short isoprenoid side chain, we found that a CoQ analogue without an isoprenoid side chain, CoQ0, showed marked toxicity against HeLa cells in comparison with cytotoxic homologues. Therefore, we examined the cytotoxic mechanism of CoQ0. Different from the cytotoxic CoQ homologues that induced apoptosis, 100 µM CoQ0 induced necrosis of HeLa cells. The CoQ0-induced cell death was accompanied by a decrease in endogenous non-protein and protein-associated sulfhydryl (SH)-groups, but this improved with the concomitant addition of compounds with SH-groups but not antioxidants without SH-groups. In addition, UV-spectrum analysis suggested that CoQ0 could rapidly form S-conjugated adducts with compounds with SH-groups by Michael addition. On the other hand, enzyme activities of both glyceraldehyde-3-phosphate dehydrogenase, which has a Cys residue in the active site, and α-ketoglutarate dehydrogenase complex, which requires cofactors with SH-groups, CoA and protein-bound α-lipoic acid, and CoA and ATP contents in the cells were significantly decreased by the addition of CoQ0 but not CoQ1. Furthermore, the decrease of an endogenous antioxidant, glutathione (GSH), by CoQ0 treatment was much greater than the predicted increase of endogenous GSH disulfide. These results suggest that CoQ0 rapidly forms S-conjugate adducts with these endogenous non-protein and protein-associated SH-groups of HeLa cells, which disrupts carbohydrate metabolism followed by intracellular ATP depletion and necrotic cell death.


Assuntos
Trifosfato de Adenosina/metabolismo , Benzoquinonas/farmacologia , Metabolismo dos Carboidratos/efeitos dos fármacos , Compostos de Sulfidrila/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Benzoquinonas/química , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células HeLa , Humanos , Necrose , Estresse Oxidativo/efeitos dos fármacos , Relação Estrutura-Atividade , Terpenos/química
13.
Bioelectrochemistry ; 111: 100-8, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27268099

RESUMO

Coenzyme Q-0 (CoQ-0) is the only Coenzyme Q lacking an isoprenoid group on the quinoid ring, a feature important for its physico-chemical properties. Here, the redox behavior of CoQ-0 in buffered and non-buffered aqueous media was examined. In buffered aqueous media CoQ-0 redox chemistry can be described by a 2-electron-2-proton redox scheme, characteristic for all benzoquinones. In non-buffered media the number of electrons involved in the electrode reaction of CoQ-0 is still 2; however, the number of protons involved varies between 0 and 2. This results in two additional voltammetric signals, attributed to 2-electrons-1H(+) and 2-electrons-0H(+) redox processes, in which mono- and di-anionic compounds of CoQ-0 are formed. In addition, CoQ-0 exhibits a complex chemistry in strong alkaline environment. The reaction of CoQ-0 and OH(-) anions generates several hydroxyl derivatives as products. Their structures were identified with HPLC/MS. The prevailing radical reaction mechanism was analyzed by electron paramagnetic resonance spectroscopy. The hydroxyl derivatives of CoQ-0 have a strong antioxidative potential and form stable complexes with Ca(2+) ions. In summary, our results allow mechanistic insights into the redox properties of CoQ-0 and its hydroxylated derivatives and provide hints on possible applications.


Assuntos
Ubiquinona/química , Antioxidantes/química , Soluções Tampão , Eletroquímica , Hidróxidos/química , Oxirredução , Análise Espectral , Água/química
14.
Biochim Biophys Acta ; 1859(2): 246-61, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26548719

RESUMO

Coenzyme Q (CoQ) analogs with variable number of isoprenoid units have been demonstrated as anti-inflammatory and antioxidant/pro-oxidant molecules. In this study we used CoQ0 (2,3-dimethoxy-5-methyl-1,4-benzoquinone, zero isoprenoid side-chains), a novel quinone derivative, and investigated its molecular actions against LPS-induced inflammation and redox imbalance in murine RAW264.7 macrophages and mice. In LPS-stimulated macrophages, non-cytotoxic concentrations of CoQ0 (2.5-10 µM) inhibited iNOS/COX-2 protein expressions with subsequent reductions of NO, PGE2, TNF-α and IL-1ß secretions. This inhibition was reasoned by suppression of NFκB (p65) activation, and inhibition of AP-1 (c-Jun., c-Fos, ATF2) translocation. Our findings indicated that IKKα-mediated I-κB degradation and MAPK-signaling are involved in regulation of NFκB/AP-1 activation. Furthermore, CoQ0 triggered HO-1 and NQO-1 genes through increased Nrf2 nuclear translocation and Nrf2/ARE-signaling. This phenomenon was confirmed by diminished CoQ0 protective effects in Nrf2 knockdown cells, where LPS-induced NO, PGE2, TNF-α and IL-1ß productions remained high. Molecular evidence revealed that CoQ0 enhanced Nrf2 steady-state level at both transcriptional and translational levels. CoQ0-induced Nrf2 activation appears to be regulated by ROS-JNK-signaling cascades, as evidenced by suppressed Nrf2 activation upon treatment with pharmacological inhibitors of ROS (N-acetylcysteine) and JNK (SP600125). Besides, oral administration of CoQ0 (5 mg/kg) suppressed LPS-induced (1 mg/kg) induction of iNOS/COX-2 and TNF-α/IL-1ß through tight regulation of NFκB/Nrf2 signaling in mice liver and spleen. Our findings conclude that pharmacological actions of CoQ0 are mediated via inhibition of NFκB/AP-1 activation and induction of Nrf2/ARE-signaling. Owing to its potent anti-inflammatory and antioxidant properties, CoQ0 could be a promising candidate to treat inflammatory disorders.


Assuntos
Benzoquinonas/administração & dosagem , Inflamação/genética , Fator 2 Relacionado a NF-E2/genética , Fator de Transcrição AP-1/biossíntese , Fator de Transcrição RelA/genética , Ubiquinona/administração & dosagem , Animais , Ciclo-Oxigenase 2/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/genética , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Fator 2 Relacionado a NF-E2/biossíntese , NF-kappa B/genética , Óxido Nítrico Sintase Tipo II/genética , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição AP-1/genética , Fator de Transcrição RelA/biossíntese , Ubiquinona/análogos & derivados
15.
Biochem Pharmacol ; 98(1): 144-56, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26348871

RESUMO

Various coenzyme Q (CoQ) analogs have been reported as anti-inflammatory and antioxidant substances. However, coenzyme Q0 (CoQ0, 2,3-dimethoxy-5-methyl-1,4-benzoquinone), a novel quinone derivative, has not been well studied for its pharmacological efficacies, and its response to cytokine stimulation remains unclear. Therefore, we investigated the potential anti-angiogenic properties of CoQ0 in human endothelial (EA.hy 926) cells against tumor necrosis factor-α (TNF-α) stimulation. We found that the non-cytotoxic concentrations of CoQ0 (2.5-10µM) significantly suppressed the TNF-α-induced migration/invasion and tube formation abilities of endothelial cells. CoQ0 suppressed TNF-α-induced activity and protein expressions of matrix metalloproteinase-9 (MMP-9) and intercellular adhesion molecule-1 (ICAM-1) followed by an abridged adhesion of U937 leukocytes to endothelial cells. CoQ0 treatment remarkably downregulated TNF-α-induced nuclear translocation and transcriptional activation of nuclear factor-κB (NF-κB) possibly through suppressed I-κBα degradation. Furthermore, CoQ0 triggered the expressions of heme oxygenase-1 (HO-1) and γ-glutamylcysteine synthetase (γ-GCLC), followed by an increased nuclear accumulation of NF-E2 related factor-2 (Nrf2)/antioxidant response element (ARE) activity. In agreement with these, intracellular glutathione levels were significantly increased in CoQ0 treated cells. More interestingly, knockdown of HO-1 gene by specific shRNA showed diminished anti-angiogenic effects of CoQ0 against TNF-α-induced invasion, tube formation and adhesion of leukocyte to endothelial cells. Our findings reveal that CoQ0 protective effects against cytokine-stimulation are mediated through the suppression of MMP-9/NF-κB and/or activation of HO-1 signaling cascades. This novel finding emphasizes the pharmacological efficacies of CoQ0 to treat inflammation and angiogenesis.


Assuntos
Benzoquinonas/farmacologia , Heme Oxigenase-1/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Benzoquinonas/química , Adesão Celular , Linhagem Celular , Regulação para Baixo , Regulação da Expressão Gênica , Heme Oxigenase-1/genética , Humanos , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Metaloproteinase 9 da Matriz/genética , Estrutura Molecular , NF-kappa B/genética , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/fisiologia , Fator de Necrose Tumoral alfa/genética
16.
Anal Chim Acta ; 807: 67-74, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24356222

RESUMO

In this work, a novel molecularly imprinted polymer (MIP) for use as a solid phase extraction sorbent was developed for the determination of coenzyme Q10 (CoQ10) in liver extract. CoQ10 is an essential cofactor in mitochondrial oxidative phosphorylation and a powerful antioxidant agent found in low concentrations in biological samples. This fact and its high hydrophobicity make the analysis of CoQ10 technically challenging. Accordingly, a MIP was synthesised using coenzyme Q0 as the template, methacrylic acid as the functional monomer, acetonitrile as the porogen, ethylene glycol dimethacrylate as the crosslinker and benzoyl peroxide as the initiator. Various parameters affecting the polymer preparation and extraction efficiency were evaluated. Morphological characterisation of the MIP and its proper comparison with C18 as a sorbent in solid phase extraction were performed. The optimal conditions for the molecularly imprinted solid phase extraction (MISPE) consisted of 400 µL of sample mixed with 30 mg of MIP and 600 µL of water to reach the optimum solution loading. The loading was followed by a washing step consisting of 1 mL of a 1-propanol solution (1-propanol:water, 30:70,v/v) and elution with 1 mL of 1-propanol. After clean-up, the CoQ10 in the samples was analysed by high performance liquid chromatography. The extraction recoveries were higher than 73.7% with good precision (3.6-8.3%). The limits of detection and quantification were 2.4 and 7.5 µg g(-1), respectively, and a linear range between 7.5 and 150 µg g(-1) of tissue was achieved. The new MISPE procedure provided a successful clean-up for the determination of CoQ10 in a complex matrix.


Assuntos
Benzoquinonas/química , Impressão Molecular , Polímeros/química , Espectrofotometria Ultravioleta , Ubiquinona/análogos & derivados , Benzoquinonas/metabolismo , Cromatografia Líquida de Alta Pressão , Extração em Fase Sólida , Solventes/química , Ubiquinona/análise , Ubiquinona/isolamento & purificação , Ubiquinona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA