Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Aging ; 36 Suppl 1: S185-93, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25444599

RESUMO

Regression models have been widely studied to investigate the prediction power of neuroimaging measures as biomarkers for inferring cognitive outcomes in the Alzheimer's disease study. Most of these models ignore the interrelated structures either within neuroimaging measures or between cognitive outcomes, and thus may have limited power to yield optimal solutions. To address this issue, we propose to use a new sparse multitask learning model called Group-Sparse Multi-task Regression and Feature Selection (G-SMuRFS) and demonstrate its effectiveness by examining the predictive power of detailed cortical thickness measures toward 3 types of cognitive scores in a large cohort. G-SMuRFS proposes a group-level l2,1-norm strategy to group relevant features together in an anatomically meaningful manner and use this prior knowledge to guide the learning process. This approach also takes into account the correlation among cognitive outcomes for building a more appropriate predictive model. Compared with traditional methods, G-SMuRFS not only demonstrates a superior performance but also identifies a small set of surface markers that are biologically meaningful.


Assuntos
Doença de Alzheimer/diagnóstico , Cognição , Técnicas de Diagnóstico Neurológico , Neuroimagem , Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Biomarcadores/metabolismo , Córtex Cerebral/patologia , Estudos de Coortes , Previsões , Humanos , Aprendizagem , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA