Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2805: 31-50, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008173

RESUMO

Cell patterning for 3D culture has increased our understanding of how cells interact among themselves and with their environment during tissue morphogenesis. Building cell communities from the bottom up with size and compositional control is invaluable for studies of morphological transitions. Here, we detail Photolithographic DNA-programmed Assembly of Cells (pDPAC). pDPAC uses a photoactive polyacrylamide gel substrate to capture single-stranded DNA on a 2D surface in large-scale, highly resolved patterns using the photomask technology. Cells are then functionalized with a complementary DNA strand, enabling cells to be temporarily adhered to distinct locations only where their complementary strand is patterned. These temporary 2D patterns can be transferred to extracellular matrix hydrogels for 3D culture of cells in biomimetic microenvironments. Use of a polyacrylamide substrate has advantages, including a simpler photolithography workflow, lower non-specific cell adhesion, and lower stiction to ECM hydrogels during release of patterned hydrogels. The protocol is equally applicable to large (cm)-scale patterns and repetitive arrays of smaller-scale cell interaction or migration experiments.


Assuntos
Hidrogéis , Engenharia Tecidual , Hidrogéis/química , Humanos , Engenharia Tecidual/métodos , Resinas Acrílicas/química , Adesão Celular , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Técnicas de Cultura de Células/métodos , Animais , Técnicas de Cultura de Células em Três Dimensões/métodos
2.
bioRxiv ; 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37609145

RESUMO

In skeletal muscle tissue, injury-related changes in stiffness activate muscle stem cells through mechanosensitive signaling pathways. Functional muscle tissue regeneration also requires the effective coordination of myoblast proliferation, migration, polarization, differentiation, and fusion across multiple length scales. Here, we demonstrate that substrate stiffness anisotropy coordinates contractility-driven collective cellular dynamics resulting in C2C12 myotube alignment over millimeter-scale distances. When cultured on mechanically anisotropic liquid crystalline polymer networks (LCNs) lacking topographic features that could confer contact guidance, C2C12 myoblasts collectively polarize in the stiffest direction of the substrate. Cellular coordination is amplified through reciprocal cell-ECM dynamics that emerge during fusion, driving global myotube-ECM ordering. Conversely, myotube alignment was restricted to small local domains with no directional preference on mechanically isotropic LCNs of same chemical formulation. These findings reveal a role for stiffness anisotropy in coordinating emergent collective cellular dynamics, with implications for understanding skeletal muscle tissue development and regeneration.

3.
Acta Biomater ; 163: 117-130, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36306982

RESUMO

Mechanical stress patterns emerging from collective cell behavior have been shown to play critical roles in morphogenesis, tissue repair, and cancer metastasis. In our previous work, we constrained valvular interstitial cell (VIC) monolayers on circular protein islands to study emergent behavior in a controlled manner and demonstrated that the general patterns of cell alignment, size, and apoptosis correlate with predicted mechanical stress fields if radially increasing stiffness or contractility are used in the computational models. However, these radially symmetric models did not predict the existence of local regions of dense aligned cells observed in seemingly random locations of individual aggregates. The goal of this study is to determine how the heterogeneities in cell behavior emerge over time and diverge from the predicted collective cell behavior. Cell-cell interactions in circular multicellular aggregates of VICs were studied with time-lapse imaging ranging from hours to days, and migration, proliferation, and traction stresses were measured. Our results indicate that elongated cells create strong local alignment within preconfluent cell populations on the microcontact printed protein islands. These cells influence the alignment of additional cells to create dense, locally aligned bands of cells which disrupt the predicted global behavior. Cells are highly elongated at the endpoints of the bands yet have decreased spread area in the middle and reduced mobility. Although traction stresses at the endpoints of bands are enhanced, even to the point of detaching aggregates from the culture surface, the cells in dense bands exhibit reduced proliferation, less nuclear YAP, and increased apoptotic rates indicating a low stress environment. These findings suggest that strong local cell-cell interactions between primary fibroblastic cells can disrupt the global collective cellular behavior leading to substantial heterogeneity of cell behaviors in constrained monolayers. This local emergent behavior within aggregated fibroblasts may play an important role in development and disease of connective tissues. STATEMENT OF SIGNIFICANCE: Mechanical stress patterns emerging from collective cell behavior play critical roles in morphogenesis, tissue repair, and cancer metastasis. Much has been learned of these collective behaviors by utilizing microcontact printing to constrain cell monolayers (aggregates) into specific shapes. Here we utilize these tools along with long-term video microscopy tracking of individual aggregates to determine how heterogeneous collective behaviors unique to primary fibroblastic cells emerge over time and diverge from computed stress fields. We find that dense multicellular bands form from local collective behavior and disrupt the global collective behavior resulting in heterogeneous patterns of migration, traction stresses, proliferation, and apoptosis. This local emergent behavior within aggregated fibroblasts may play an important role in development and disease of connective tissues.


Assuntos
Comportamento de Massa , Neoplasias , Humanos , Comunicação Celular , Estresse Mecânico , Morfogênese , Movimento Celular
4.
Acta Biomater ; 154: 290-301, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36243372

RESUMO

Cells in functional tissues execute various collective activities to achieve diverse ordered processes including wound healing, organogenesis, and tumor formation. How a group of individually operating cells initiate such complex collective processes is still not clear. Here, we report that cells in 3D extracellular matrix (ECM) initiate collective behavior by forming cell-ECM network when the cells are within a critical distance from each other. We employed compaction of free-floating (FF) 3D collagen gels with embedded fibroblasts as a model system to study collective behavior and found a sharp transition in the amount of compaction as a function of cell-cell distance, reminiscent of phase transition in materials. Within the critical distance, cells remodel the ECM irreversibly, and form dense collagen bridges between each other resulting in the formation of a network. Beyond the critical distance, cells exhibit Brownian dynamics and only deform the matrix reversibly in a transient manner with no memory of history, thus maintaining the disorder. Network formation seems to be a necessary and sufficient condition to trigger collective behavior and a disorder-to order transition. STATEMENT OF SIGNIFICANCE: Macroscopic compaction of in vitro collagen gels is mediated by collective mechanical interaction of cells. Previous studies on cell-induced ECM compaction suggest the existence of a critical cell density and phase transition associated with this phenomenon. Cell-mediated mechanical remodeling and global compaction of ECM has mostly been studied at steady state. Our study reveals a link between a transition in cell dynamics and material microstructure as cells collectively compact collagen gels. It underscores the significance of temporal evolution of these cell-ECM systems in understanding the mechanism of such collective action and provides insights on the process from a mechanistic viewpoint. These insights can be valuable in understanding dynamic pathological processes such as, cancer progression and wound healing, as well as engineering biomaterials and regenerative tissue mimics.


Assuntos
Colágeno , Matriz Extracelular , Matriz Extracelular/fisiologia , Colágeno/química , Fibroblastos , Géis , Modelos Biológicos
5.
Comput Struct Biotechnol J ; 20: 3653-3666, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35891777

RESUMO

Caenorhabditis elegans, often referred to as the 'roundworm', provides a powerful model for studying cell autonomous and cell-cell interactions through the direct observation of embryonic development in vivo. By leveraging the precisely mapped cell lineage at single cell resolution, we are able to study at a systems level how early embryonic cells communicate across morphogenetic domains for the coordinated processes of gene expressions and collective cellular behaviors that regulate tissue morphogenesis. In this study, we developed a computational framework for the exploration of the morphogenetic domain cell signaling networks that may regulate C. elegans gastrulation and embryonic organogenesis. We demonstrated its utility by producing the following results, i) established a virtual reference model of developing C. elegans embryos through the spatiotemporal alignment of individual embryo cell nuclear imaging samples; ii) integrated the single cell spatiotemporal gene expression profile with the established virtual embryo model by data pooling; iii) trained a Machine Learning model (Random Forest Regression), which predicts accurately the spatial positions of the cells given their gene expression profiles for a given developmental time (e.g. total cell number of the embryo); iv) enabled virtual 4-dimensional tomographic graphical modeling of single cell data; v) inferred the biology signaling pathways that act in each of morphogenetic domains by meta-data analysis. It is intriguing that the morphogenetic domain cell signaling network seems to involve some crosstalk of multiple biology signaling pathways during the formation of tissue boundary pattern. Lastly, we developed the Software tool 'Embryo aligner version 1.0' and provided it as an Open Source program to the research community for virtual embryo modeling, and phenotype perturbation analyses (https://github.com/csniuben/embryo_aligner/wiki and https://bioinfo89.github.io/C.elegansEmbryonicOrganogenesisweb/).

6.
Adv Sci (Weinh) ; 9(16): e2102148, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344288

RESUMO

Endothelial monolayers physiologically adapt to flow and flow-induced wall shear stress, attaining ordered configurations in which elongation, orientation, and polarization are coherently organized over many cells. Here, with the flow direction unchanged, a peculiar bi-stable (along the flow direction or perpendicular to it) cell alignment is observed, emerging as a function of the flow intensity alone, while cell polarization is purely instructed by flow directionality. Driven by the experimental findings, the parallelism between endothelia is delineated under a flow field and the transition of dual-frequency nematic liquid crystals under an external oscillatory electric field. The resulting physical model reproduces the two stable configurations and the energy landscape of the corresponding system transitions. In addition, it reveals the existence of a disordered, metastable state emerging upon system perturbation. This intermediate state, experimentally demonstrated in endothelial monolayers, is shown to expose the cellular system to a weakening of cell-to-cell junctions to the detriment of the monolayer integrity. The flow-adaptation of monolayers composed of healthy and senescent endothelia is successfully predicted by the model with adjustable nematic parameters. These results may help to understand the maladaptive response of in vivo endothelial tissues to disturbed hemodynamics and the progressive functional decay of senescent endothelia.


Assuntos
Junções Intercelulares , Cristais Líquidos , Anisotropia , Endotélio , Cristais Líquidos/química , Estresse Mecânico
7.
Mol Cell Oncol ; 6(6): e1648739, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31692941

RESUMO

We have discovered an organoid culture approach that recapitulates morphology and coordinated development of a benign breast tumor. This system may be useful to groups investigating normal mammary gland biology and coordination of collective cell behavior in the mammary gland.

8.
Biophys Rev ; 11(5): 721-728, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31502190

RESUMO

Organoids are in vitro 3D self-organizing tissues that mimic embryogenesis. Organoid research is advancing at a tremendous pace, since it offers great opportunities for disease modeling, drug development and screening, personalized medicine, as well as understanding organogenesis. Mechanobiology of organoids is an unexplored area, which can shed light to several unexplained aspects of self-organization behavior in organogenesis. It is becoming evident that collective cell behavior is distinctly different from individual cells' conduct against certain stimulants. Inherently consisting of higher number of degrees of freedom for cell motility and more complex cell-to-cell and cell-to-extracellular matrix behavior, understanding mechanotransduction in organoids is even more challenging compared with cell communities in 2D culture conditions. Yet, deciphering mechanobiology of organoids can help us understand effects of mechanical cues in health and disease, and translate findings of basic research toward clinical diagnosis and therapy.

9.
Elife ; 82019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30767892

RESUMO

Coordination of neurite morphogenesis with surrounding tissues is crucial to the establishment of neural circuits, but the underlying cellular and molecular mechanisms remain poorly understood. We show that neurons in a C. elegans sensory organ, called the amphid, undergo a collective dendrite extension to form the sensory nerve. The amphid neurons first assemble into a multicellular rosette. The vertex of the rosette, which becomes the dendrite tips, is attached to the anteriorly migrating epidermis and carried to the sensory depression, extruding the dendrites away from the neuronal cell bodies. Multiple adhesion molecules including DYF-7, SAX-7, HMR-1 and DLG-1 function redundantly in rosette-to-epidermis attachment. PAR-6 is localized to the rosette vertex and dendrite tips, and promotes DYF-7 localization and dendrite extension. Our results suggest a collective mechanism of neurite extension that is distinct from the classical pioneer-follower model and highlight the role of mechanical cues from surrounding tissues in shaping neurites.


Assuntos
Caenorhabditis elegans/metabolismo , Dendritos/metabolismo , Animais , Caenorhabditis elegans/embriologia , Proteínas de Caenorhabditis elegans/metabolismo , Moléculas de Adesão Celular/metabolismo , Movimento Celular , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Epiderme/metabolismo
10.
Elife ; 72018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30427775

RESUMO

Shear forces between cells occur during global changes in multicellular organization during morphogenesis and tissue growth, yet how cells sense shear forces and propagate a response across a tissue is unknown. We found that applying exogenous shear at the midline of an epithelium induced a local, short-term deformation near the shear plane, and a long-term collective oscillatory movement across the epithelium that spread from the shear-plane and gradually dampened. Inhibiting actomyosin contraction or E-cadherin trans-cell adhesion blocked oscillations, whereas stabilizing actin filaments prolonged oscillations. Combining these data with a model of epithelium mechanics supports a mechanism involving the generation of a shear-induced mechanical event at the shear plane which is then relayed across the epithelium by actomyosin contraction linked through E-cadherin. This causes an imbalance of forces in the epithelium, which is gradually dissipated through oscillatory cell movements and actin filament turnover to restore the force balance across the epithelium.


Assuntos
Actomiosina/metabolismo , Caderinas/metabolismo , Epitélio/metabolismo , Estresse Mecânico , Actinas/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Contagem de Células , Movimento Celular/efeitos dos fármacos , Depsipeptídeos/farmacologia , Cães , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Células Madin Darby de Rim Canino , Reologia
11.
Oncotarget ; 9(52): 29845-29856, 2018 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-30042817

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal refractory cancers. Aggressive features in PDAC cells have been well studied, but those exhibited by a population of PDAC cells are largely unknown. We show here that coculture with epithelial-like feeder cells confers more malignant phenotypes upon PDAC cells forming anchorage-dependent multicellular aggregates (Ad-MCAs, a behavior of collective cells), in vitro. When CD44v3-10high/CD44slow PDAC cell lines, which exhibited an epithelial phenotype before the onset of epithelial-mesenchymal transition (EMT), were cocultured with a monolayer of HEK293T cells overnight, they formed Ad-MCAs on the feeder layer and acquired gemcitabine resistance. CD44v8-10 expression was dramatically increased and Ki-67 staining decreased, suggesting that PDAC cells forming Ad-MCAs acquired cancer stem cell (CSC)-like intractable properties. We found that highly downregulated genes in PDAC cells cocultured with HEK293T cells were significantly upregulated in malignant lesions from pancreatic cancer patients. Our work implies that PDAC cells forming Ad-MCAs partially return to a normal tissue gene profile before the onset of EMT. The collective cell behavior like Ad-MCA formation by PDAC cells may mimic critical events that occur in cancer cells at the very early phase of metastatic colonization.

12.
Methods Cell Biol ; 120: 235-52, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24484669

RESUMO

Coordinated cell movements in epithelial layers are essential for proper tissue morphogenesis and homeostasis. Microfabrication techniques have proven to be very useful for studies of collective cell migration in vitro. In this chapter, we briefly review the use of microfabricated substrates in providing new insights into collective cell behaviors. We first describe the development of micropatterned substrates to study the influence of geometrical constraints on cell migration and coordinated movements. Then, we present an alternative method based on microfabricated pillar substrates to create well-defined gaps within cell sheets and study gap closure. We also provide a discussion that presents possible pitfalls and sheds light onto the important parameters that allow the study of long-term cell culture on substrates of well-defined geometries.


Assuntos
Movimento Celular , Microambiente Celular , Microtecnologia/métodos , Animais , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Microambiente Celular/efeitos dos fármacos , Dimetilpolisiloxanos/farmacologia , Cães , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Fibronectinas/metabolismo , Células Madin Darby de Rim Canino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA