Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 303
Filtrar
1.
J Xray Sci Technol ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39093110

RESUMO

INTRODUCTION: Intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) are the main radiotherapy techniques for treating and managing rectal cancer. Collimator rotation is one of the crucial parameters in radiotherapy planning, and its alteration can cause dosimetric variations. This study assessed the effect of collimator rotation on the dosimetric results of various IMRT and VMAT plans for rectal cancer. MATERIALS AND METHODS: Computed tomography (CT) images of 20 male patients with rectal cancer were utilized for IMRT and VMAT treatment planning with various collimator angles. Nine different IMRT techniques (5, 7, and 9 coplanar fields with collimator angles of 0°, 45°, and 90°) and six different VMAT techniques (1 and 2 full coplanar arcs with collimator angles of 0°, 45°, and 90°) were planned for each patient. The dosimetric results of various treatment techniques for target tissue (conformity index [CI] and homogeneity index [HI]) and organs at risk (OARs) sparing (parameters obtained from OARs dose-volume histograms [DVH]) as well as radiobiological findings were analyzed and compared. RESULTS: The 7-fields IMRT technique demonstrated lower bladder doses (V40Gy, V45Gy), unaffected by collimator rotation. The 9-fields IMRT and 2-arcs VMAT (excluding the 90-degree collimator) had the lowest V35Gy and V45Gy. A 90-degree collimator rotation in 2-arcs VMAT significantly increased small bowel and bladder V45Gy, femoral head doses, and HI values. Radiobiologically, the 90-degree rotation had adverse effects on small bowel NTCP (normal tissue complication probability). No superiority was found for a 45-degree collimator rotation over 0 or 30 degrees in VMAT techniques. CONCLUSION: Collimator rotation had minimal impact on dosimetric parameters in IMRT planning but is significant in VMAT techniques. A 90-degree rotation in VMAT, particularly in a 2-full arc technique, adversely affects PTV homogeneity index, bladder dose, and small bowel NTCP. Other evaluated collimator angles did not significantly affect VMAT dosimetrical or radiobiological outcomes.

2.
Cureus ; 16(7): e64482, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39139331

RESUMO

One of the recent trends in radiation therapy is to increase conformal and accurate dose delivery such as in stereotactic radiosurgery (SRS). Treating small lesions and brain disorders requires the accurate placement of small radiation fields deep inside the human cranium. To design a collimator meeting these requirements, a new numerical concept was developed, which is presented here. The algorithm proposed here can generate beam profiles of plural collimation apertures and arbitrary initial beam spot distributions in a time-efficient method. It is an ideal tool to optimize collimator design for penumbra, dose rate, and field size. The intensity of the source beam spot is divided into slices, and each slice is projected onto the treatment plane at the isocenter through the collimator apertures. The illuminated field range and intensity are determined by geometry and the intensity of that slice of beam source, respectively. By integrating the projected intensity across all the slices of the source profile, the profile on the treatment plane is obtained. The algorithm is used to generate beam profiles of a conical pencil beam collimator system and compare them to the Monte Carlo simulation as well as measurements. It can also be used to demonstrate the impact of collimator shape on the beam penumbra, dose rate, and field size. The projection integration method provides a quick and informative tool for collimator design. The results were validated with the Monte Carlo simulation and measurements. This method was demonstrated to be effective for optimizing beam characteristics.

3.
Diagnostics (Basel) ; 14(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39001321

RESUMO

Single photon emission tomography/computed tomography (SPECT/CT) is a mature imaging technology with a dynamic role in the diagnosis and monitoring of a wide array of diseases. This paper reviews the technological advances, clinical impact, and future directions of SPECT and SPECT/CT imaging. The focus of this review is on signal amplifier devices, detector materials, camera head and collimator designs, image reconstruction techniques, and quantitative methods. Bulky photomultiplier tubes (PMTs) are being replaced by position-sensitive PMTs (PSPMTs), avalanche photodiodes (APDs), and silicon PMs to achieve higher detection efficiency and improved energy resolution and spatial resolution. Most recently, new SPECT cameras have been designed for cardiac imaging. The new design involves using specialised collimators in conjunction with conventional sodium iodide detectors (NaI(Tl)) or an L-shaped camera head, which utilises semiconductor detector materials such as CdZnTe (CZT: cadmium-zinc-telluride). The clinical benefits of the new design include shorter scanning times, improved image quality, enhanced patient comfort, reduced claustrophobic effects, and decreased overall size, particularly in specialised clinical centres. These noticeable improvements are also attributed to the implementation of resolution-recovery iterative reconstructions. Immense efforts have been made to establish SPECT and SPECT/CT imaging as quantitative tools by incorporating camera-specific modelling. Moreover, this review includes clinical examples in oncology, neurology, cardiology, musculoskeletal, and infection, demonstrating the impact of these advancements on clinical practice in radiology and molecular imaging departments.

4.
Jpn J Radiol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954193

RESUMO

PURPOSE: Collimator-detector response function (CDRF) of a SPECT scanner refers to the image generated from a point source of activity. This research aims to characterize the CDRF of a breast-dedicated SPECT imager equipped with a lofthole collimator using GATE Monte Carlo simulation. MATERIALS AND METHODS: To do so, a cylindrical multi-lofthole collimation system with lofthole apertures dedicated to breast imaging was modeled using the GATE Monte Carlo simulator. The dependency of the CDRF on the source-to-collimator distance of a single-lofthole as well as 8-lofthole collimations was assessed and then compared. In addition, the 3D-sensitivity map of the 8-lofthole collimation was derived. Finally, fair comparisons were conducted between the response of the 8-lofthole collimator and that of an 8-pinhole and also existing analytical derivations. In all cases, a data acquisition period of 5.0 min with an in-air 99mTc point source was considered. RESULTS: For the single-lofthole collimator, 4.5 times increasing the magnification factor leads to a 16- and twofold improvement in the sensitivity and spatial resolution, respectively. In the single-lofthole collimator, the resolution and sensitivity are degraded as the source-to-aperture distance increases. For the cylindrical 8-lofthole collimator, the findings confirm that CDRF strongly depends on source-to-aperture distance and angle of photon incidence. For a 30 mm in-plane offset point, a 25% increase in sensitivity is observed compared to that of the center of the FOV. Increasing the angle from 0 ∘ to 34 ∘ results in a 50% reduction in sensitivity. Furthermore, the findings illustrate that spatial resolution follows a quadratic function as 10 - 3 d 2 + 2 × 10 - 4 d + R 0 where d is an offset along the x-, y-, and z-axis, and R0 is the spatial resolution at the center of the FOV. CONCLUSION: In conclusion, both spatial resolution and sensitivity of the lofthole collimation are considerably angle- and offset-dependent within the FOV of single- and multi-lofthole collimated SPECT imagers.

5.
J Appl Clin Med Phys ; : e14437, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-39031794

RESUMO

PURPOSE: The positional accuracy of MLC is an important element in establishing the exact dosimetry in VMAT. We comprehensively analyzed factors that may affect MLC positional accuracy in VMAT, and constructed a model to predict MLC positional deviation and estimate planning delivery quality according to the VMAT plans before delivery. METHODS: A total of 744 "dynalog" files for 23 VMAT plans were extracted randomly from treatment database. Multi-correlation was used to analyzed the potential influences on MLC positional accuracy, including the spatial characteristics and temporal variability of VMAT fluence, and the mechanical wear parameters of MLC. We developed a model to forecast the accuracy of MLC moving position utilizing the random forest (RF) ensemble learning method. Spearman correlation was used to further investigate the associations between MLC positional deviation and dosage deviations as well as gamma passing rates. RESULTS: The MLC positional deviation and effective impact factors show a strong multi-correlation (R = 0.701, p-value < 0.05). This leads to the development of a highly accurate prediction model with average variables explained of 95.03% and average MSE of 0.059 in the 5-fold cross-validation, and MSE of 0.074 for the test data was obtained. The absolute dose deviations caused by MLC positional deviation ranging from 12.948 to 210.235 cGy, while the relative volume deviation remained small at 0.470%-5.161%. The average MLC positional deviation correlated substantially with gamma passing rates (with correlation coefficient of -0.506 to -0.720 and p-value < 0.05) but marginally with dosage deviations (with correlation coefficient < 0.498 and p-value > 0.05). CONCLUSIONS: The RF predictive model provides a prior tool for VMAT quality assurance.

6.
World J Nucl Med ; 23(2): 95-102, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38933066

RESUMO

Objectives The purpose of a parallel-hole collimator in a scintillation camera system is to transmit only those photons that have an emission angle close to the direction of the hole. This makes it possible to receive spatial information about the origin of the emission, that is, radioactivity decay. The dimension, shape, and intrahole thickness determine the spatial resolution and, by a tradeoff, sensitivity. The composition of the collimator material also plays an important role in determining a proper collimator. In this study, we compared tungsten alloys as a potential collimator material replacement for the conventional lead antimony material used in most of the current camera systems. Materials and Methods Monte Carlo simulations of a commercial scintillation camera system with low energy high resolution (LEHR), medium-energy (ME), and high-energy (HE) collimators of lead, tungsten, and tungsten-based alloy were simulated for different I-131, Lu-177, I-123, and Tc-99m sources, and a Deluxe rod phantom using the SIMIND Monte Carlo code. Planar images were analyzed regarding spatial resolution, image contrast in a cold source case, and system sensitivity for each collimator configuration. The hole dimensions for the three collimators were those specified in the vendor's datasheet. Results Using Pb, W, and tungsten alloy (Wolfmet) as collimator materials, the full width at half maximum (FWHM) measures for total counts (T) for LEHR with Tc-99m source (6.9, 6.8, and 6.8 mm), for ME with Lu-177 source (11.7, 11.5, and 11.6 mm), and for HE with I-131 (6.2, 13.1, and 13.1 mm) were obtained, and the system sensitivities were calculated as 89.9, 86.1, and 89.8 cps T /MBq with Tc-99m source; 42.7, 17.4, and 20.9 cps T /MBq with Lu-177 source; and 40.1, 69.7, and 77.4 cps T /MBq with I-131 source. The collimators of tungsten and tungsten alloy (97.0% W, 1.5% Fe, 1.5% Ni) provided better spatial resolution and improved image contrast when compared with conventional lead-based collimators. This was due to lower septal penetration. Conclusion The results suggest that development of a new set of ME and HE tungsten and tungsten alloy collimators could improve imaging of I-131, Lu-177, and I-123.

7.
Phys Med Biol ; 69(14)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38876112

RESUMO

Objective. To fabricate and validate a novel focused collimator designed to spare normal tissue in a murine hemithoracic irradiation model using 250 MeV protons delivered at ultra-high dose rates (UHDRs) for preclinical FLASH radiation therapy (FLASH-RT) studies.Approach. A brass collimator was developed to shape 250 MeV UHDR protons from our Varian ProBeam. Six 13 mm apertures, of equivalent size to kV x-ray fields historically used to perform hemithorax irradiations, were precisely machined to match beam divergence, allowing concurrent hemithoracic irradiation of six mice while sparing the contralateral lung and abdominal organs. The collimated field profiles were characterized by film dosimetry, and a radiation survey of neutron activation was performed to ensure the safety of staff positioning animals.Main results. The brass collimator produced 1.2 mm penumbrae radiation fields comparable to kV x-rays used in preclinical studies. The penumbrae in the six apertures are similar, with full-width half-maxima of 13.3 mm and 13.5 mm for the central and peripheral apertures, respectively. The collimator delivered a similar dose at an average rate of 52 Gy s-1for all apertures. While neutron activation produces a high (0.2 mSv h-1) initial ambient equivalent dose rate, a parallel work-flow in which imaging and setup are performed without the collimator ensures safety to staff.Significance. Scanned protons have the greatest potential for future translation of FLASH-RT in clinical treatments due to their ability to treat deep-seated tumors with high conformality. However, the Gaussian distribution of dose in proton spots produces wider lateral penumbrae compared to other modalities. This presents a challenge in small animal pre-clinical studies, where millimeter-scale penumbrae are required to precisely target the intended volume. Offering high-throughput irradiation of mice with sharp penumbrae, our novel collimator-based platform serves as an important benchmark for enabling large-scale, cost-effective radiobiological studies of the FLASH effect in murine models.


Assuntos
Terapia com Prótons , Animais , Camundongos , Terapia com Prótons/instrumentação , Terapia com Prótons/métodos , Órgãos em Risco/efeitos da radiação , Dosagem Radioterapêutica
8.
J Appl Clin Med Phys ; 25(8): e14404, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38803034

RESUMO

BACKGROUND AND PURPOSE: This study aimed to compare the dosimetric attributes of two multi-leaf collimator based techniques, HyperArc and Incise CyberKnife, in the treatment of brain metastases. MATERIAL AND METHODS: 17 cases of brain metastases were selected including 6 patients of single lesion and 11 patients of multiple lesions. Treatment plans of HyperArc and CyberKnife were designed in Eclipse 15.5 and Precision 1.0, respectively, and transferred to Velocity 3.2 for comparison. RESULTS: HyperArc plans provided superior Conformity Index (0.91 ± 0.06 vs. 0.77 ± 0.07, p < 0.01) with reduced dose distribution in organs at risk (Dmax, p < 0.05) and lower normal tissue exposure (V4Gy-V20Gy, p < 0.05) in contrast to CyberKnife plans, although the Gradient Indexes were similar. CyberKnife plans showed higher Homogeneity Index (1.54 ± 0.17 vs. 1.39 ± 0.09, p < 0.05) and increased D2% and D50% in the target (p < 0.05). Additionally, HyperArc plans had significantly fewer Monitor Units (MUs) and beam-on time (p < 0.01). CONCLUSION: HyperArc plans demonstrated superior performance compared with MLC-based CyberKnife plans in terms of conformity and the sparing of critical organs and normal tissues, although no significant difference in GI outcomes was noted. Conversely, CyberKnife plans achieved a higher target dose and HI. The study suggests that HyperArc is more efficient and particularly suitable for treating larger lesions in brain metastases.


Assuntos
Neoplasias Encefálicas , Órgãos em Risco , Radiocirurgia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radiocirurgia/métodos , Órgãos em Risco/efeitos da radiação , Radioterapia de Intensidade Modulada/métodos , Prognóstico , Radiometria/métodos
9.
J Appl Clin Med Phys ; 25(8): e14410, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810092

RESUMO

PURPOSE: The purpose of this study is to characterize the dosimetric properties of a commercial brass GRID collimator for high energy photon beams including 15 and 10 MV. Then, the difference in dosimetric parameters of GRID beams among different energies and linacs was evaluated. METHOD: A water tank scanning system was used to acquire the dosimetric parameters, including the percentage depth dose (PDD), beam profiles, peak to valley dose ratios (PVDRs), and output factors (OFs). The profiles at various depths were measured at 100 cm source to surface distance (SSD), and field sizes of 10 × 10 cm2 and 20 × 20 cm2 on three linacs. The PVDRs and OFs were measured and compared with the treatment planning system (TPS) calculations. RESULTS: Compared with the open beam data, there were noticeable changes in PDDs of GRID fields across all the energies. The GRID fields demonstrated a maximal of 3 mm shift in dmax (Truebeam STX, 15MV, 10 × 10 cm2). The PVDR decreased as beam energy increases. The difference in PVDRs between Trilogy and Truebeam STx using 6MV and 15MV was 1.5% ± 4.0% and 2.1% ± 4.3%, respectively. However, two Truebeam linacs demonstrated less than 2% difference in PVDRs. The OF of the GRID field was dependent on the energy and field size. The measured PDDs, PVDRs, and OFs agreed with the TPS calculations within 3% difference. The TPS calculations agreed with the measurements when using 1 mm calculation resolution. CONCLUSION: The dosimetric characteristics of high-energy GRID fields, especially PVDR, significantly differ from those of low-energy GRID fields. Two Truebeam machines are interchangeable for GRID therapy, while a pronounced difference was observed between Truebeam and Trilogy. A series of empirical equations and reference look-up tables for GRID therapy can be generated to facilitate clinical applications.


Assuntos
Neoplasias , Aceleradores de Partículas , Fótons , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Aceleradores de Partículas/instrumentação , Radiometria/métodos , Radiometria/instrumentação , Neoplasias/radioterapia , Radioterapia de Intensidade Modulada/métodos , Imagens de Fantasmas , Fracionamento da Dose de Radiação , Método de Monte Carlo
10.
Cureus ; 16(4): e58816, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38784358

RESUMO

PURPOSE: To compare the plan quality of stereotactic radiosurgery (SRS) between 2.5-mm and 5-mm multileaf collimator (MLC) and investigate the factors' influence on the differences by MLC size. METHODS: Seventy-six treatment plans including 145 targets calculated with a single isocenter multiple noncoplanar dynamic conformal arc (DCA) technique using automatic multiple brain metastases (MBM) treatment planning system. Conformity index (CI), gradient index (GI), lesion underdosage volume factor (LUF), healthy tissue overdose volume factor (HTOF), geometric conformity index (g), and mean dose to normal organs were compared between 2.5-mm and 5-mm MLC. Then the factors that influenced the differences of these parameters were investigated. The impact of target size was also investigated for CI and GI values of individual targets (n=145), and differences between 2.5-mm and 5-mm MLC were analyzed. RESULTS: All parameters except for LUF were significantly better in plans with 2.5 mm MLC. Target size was a significant factor for difference in HTOF, and distance between targets was a significant factor for difference in brain dose and GI. Among 145 metastases, the average inverse CI was 1.35 and 1.47 with 2.5-mm and 5-mm MLC, respectively (p<0.001). The average GI was 3.21 and 3.53, respectively (p<0.001). For individual targets, target size was a significant factor in CI and GI both with 2.5-mm and 5-mm MLC (p-value: <0.001, each). CI and GI were significantly better with 2.5-mm than 5-mm MLC. CI was almost >0.67 except for ≤5mm targets with 5-mm MLC. Also, GI was almost smaller than 3.0 for >10 mm targets both with 2.5-mm and 5-mm MLC. CONCLUSIONS: MBM with 5-mm MLC was almost fine. However, it may be better to use a conservative margin for larger metastases. It may also be better to avoid SRS with 5-mm MLC for patients with ≤5 mm target size.

11.
Phys Med Biol ; 69(10)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38588671

RESUMO

Objective. A novel x-ray field produced by an ultrathin conical target is described in the literature. However, the optimal design for an associated collimator remains ambiguous. Current optimization methods using Monte Carlo calculations restrict the efficiency and robustness of the design process. A more generic optimization method that reduces parameter constraints while minimizing computational load is necessary. A numerical method for optimizing the longitudinal collimator hole geometry for a cylindrically-symmetrical x-ray tube is demonstrated and compared to Monte Carlo calculations.Approach. The x-ray phase space was modelled as a four-dimensional histogram differential in photon initial position, final position, and photon energy. The collimator was modeled as a stack of thin washers with varying inner radii. Simulated annealing was employed to optimize this set of inner radii according to various objective functions calculated on the photon flux at a specified plane.Main results. The analytical transport model used for optimization was validated against Monte Carlo calculations using Geant4 via its wrapper, TOPAS. Optimized collimators and the resulting photon flux profiles are presented for three focal spot sizes and five positions of the source. Optimizations were performed with multiple objective functions based on various weightings of precision, intensity, and field flatness metrics. Finally, a select set of these optimized collimators, plus a parallel-hole collimator for comparison, were modeled in TOPAS. The evolution of the radiation field profiles are presented for various positions of the source for each collimator.Significance. This novel optimization strategy proved consistent and robust across the range of x-ray tube settings regardless of the optimization starting point. Common collimator geometries were re-derived using this algorithm while simultaneously optimizing geometry-specific parameters. The advantages of this strategy over iterative Monte Carlo-based techniques, including computational efficiency, radiation source-specificity, and solution flexibility, make it a desirable optimization method for complex irradiation geometries.


Assuntos
Método de Monte Carlo , Raios X , Fótons , Modelos Teóricos
12.
J Appl Clin Med Phys ; 25(5): e14357, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38620027

RESUMO

PURPOSE: To investigate and characterize the performance of a novel orthogonal dual-layer alpha multileaf collimator (αMLC) mounted on the LinaTech VenusX linac. METHODS: We evaluated leaf positioning accuracy and reproducibility using an electronic portal imaging device through the picket fence test. The average, interleaf, intraleaf, and leaf tip transmissions of the single and dual layers were measured using an ionization chamber. Square and rhombus fields were used to evaluate the leaf penumbra of αMLC. To investigate the advantages of the orthogonal dual-layer multileaf collimator (MLC) in field shaping, right triangular and circular pattern fields were formed using both the dual layers and single layers of the αMLC. RESULTS: The average maximum positioning deviations of the upper and lower αMLC over 1 year were 0.76 ± 0.09 mm and 0.62 ± 0.07 mm, respectively. The average transmissions were 1.87%, 1.83%, and 0.03% for the upper-, lower- and dual-layer αMLC, respectively. The maximum interleaf transmissions of the lower- and dual-layer were 2.43% and 0.17%, respectively. The leaf tip transmissions were 9.34% and 0.25%, respectively. The penumbra of the square field was 6.2 mm in the X direction and 8.0 mm in the Y direction. The average penumbras of the rhombus fields with side lengths of 5 and 10 cm were 3.6 and 4.9 mm, respectively. For the right triangular and circular fields, the fields shaped by the dual-layer leaves were much closer to the set field than those shaped by single-layer leaves. The dose undulation amplitude of the 50% isodose lines and leaf stepping angle change of the dual-layer leaves were smaller than those of the single-layer leaves. CONCLUSIONS: The αMLC benefits from its orthogonal dual-layer design. Leaf transmission, dose undulations at the field edge, and MLC field dependence of the leaf stepping angle of the dual-layer αMLC were remarkably reduced.


Assuntos
Aceleradores de Partículas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Aceleradores de Partículas/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Neoplasias/radioterapia , Imagens de Fantasmas
13.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(2): 150-155, 2024 Mar 30.
Artigo em Chinês | MEDLINE | ID: mdl-38605613

RESUMO

Objective: A quality control (QC) system based on the electronic portal imaging device (EPID) system was used to realize the Multi-Leaf Collimator (MLC) position verification and dose verification functions on Primus and VenusX accelerators. Methods: The MLC positions were calculated by the maximum gradient method of gray values to evaluate the deviation. The dose of images acquired by EPID were reconstructed using the algorithm combining dose calibration and dose calculation. The dose data obtained by EPID and two-dimensional matrix (MapCheck/PTW) were compared with the dose calculated by Pinnacle/TiGRT TPS for γ passing rate analysis. Results: The position error of VenusX MLC was less than 1 mm. The position error of Primus MLC was significantly reduced after being recalibrated under the instructions of EPID. For the dose reconstructed by EPID, the average γ passing rates of Primus were 98.86% and 91.39% under the criteria of 3%/3 mm, 10% threshold and 2%/2 mm, 10% threshold, respectively. The average γ passing rates of VenusX were 98.49% and 91.11%, respectively. Conclusion: The EPID-based accelerator quality control system can improve the efficiency of accelerator quality control and reduce the workload of physicists.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Algoritmos , Calibragem , Eletrônica , Radioterapia de Intensidade Modulada/métodos , Radiometria/métodos
14.
Med Dosim ; 49(3): 254-262, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38402060

RESUMO

In this study, we proposed 2 new multileaf collimator leaf designs to eliminate leaf gaps for closed leaf pairs so that radiation leakage can be avoided. In the new designs, multi tongues and grooves were added to the conventional multileaf collimators leaf ends. Thus, when a pair of leaves closed, tongues of a leaf can enter grooves of its opposing leaf. Consequently, there would be no radiation leakage through closed leaves. One design was named finger-shaped MLC, and another design with doubled leaf end thickness was named hand-shaped MLC. Monte Carlo simulations were performed to simulate dosimetric characteristics of the new MLC designs and comparison to conventional MLCs was performed. The simulations show that for the closed field, the new designs reduce leakage dramatically. And for the open field, the finger-shaped MLC has a larger penumbra width than conventional MLC, while the penumbra for the hand-shaped MLC is comparable to that of conventional MLC. With the application of new MLC designs, it is expected to eliminate leaf gaps for MLC usage and protect normal tissues better.


Assuntos
Desenho de Equipamento , Método de Monte Carlo , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Simulação por Computador , Radioterapia de Intensidade Modulada
15.
BJR Open ; 6(1): tzae003, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38371494

RESUMO

Objectives: This study compared plans of high definition (HD), 2.5 mm width multi-leaf collimator (MLC), to standard, 5 mm width, isocentric linear accelerator (linacs), CyberKnife (CK), and Gamma Knife (GK) for stereotactic radiosurgery (SRS) techniques on multiple brain metastases. Methods: Eleven patients undergoing SRS for multiple brain metastases were chosen. Targets and organs at risk (OARs) were delineated and optimized SRS plans were generated and compared. Results: The linacs delivered similar conformity index (CI) values, but the gradient index (GI) for HD MLCs was significantly lower (P-value <.001). Half the OARs received significantly lower dose using HD MLCs. CK delivered a significantly lower CI than HD MLC linac (P-value <.001), but a significantly higher GI (P-value <.001). CI was significantly improved with the HD MLC linac compared to GK (P-value = 4.591 × 10-3), however, GK delivered a significantly lower GI (P-value <.001). OAR dose sparing was similar for the HD MLC TL, CK, and GK. Conclusions: Comparing linacs for SRS, the preferred choice is HD MLCs. Similar results were achieved with the HD MLC linac, CK, or GK, with each delivering significant improvements in different aspects of plan quality. Advances in knowledge: This article is the first to compare HD and standard width MLC linac plans using a combination of single isocentre volumetric modulated arc therapy and multi-isocentric dynamic conformal arc plans as required, which is a more clinically relevant assessment. Furthermore, it compares these plans with CK and GK, assessing the relative merits of each technique.

16.
World Neurosurg ; 183: e944-e952, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38244685

RESUMO

OBJECTIVE: This study aimed to evaluate prognostic factors including pre-radiosurgical blood count in elderly patients (EPs) with brain metastasis (BM) who were treated using linear accelerator (LINAC)-based stereotactic radiosurgery (SRS) and fractionated stereotactic radiotherapy (fSRT) with a micro-multileaf collimator. METHODS: Between January 2011 and November 2021, 101 consecutive EPs with BM were treated by LINAC-based SRS or fSRT using LINAC with a micro-multileaf collimator. EPs were defined as patients aged ≥75 years. RESULTS: The tumors originated from the lungs (n = 90; 89.1%), colon (n = 2; 2.0%), and others (n = 9; 8.8%) in these EPs. The median pretreatment Karnofsky Performance Status was 80 (range, 40-100). The median follow-up time was 10 months (range, 0-76), as was the median survival. The 6-month, 1-year, and 2-year survival in the EP group was 58.3%, 43.2%, and 28.5%, respectively. Freedom from local failure at 6 months and 1 and 2 years was 97%, 95%, and 91.5%, respectively. Freedom from distant failure at 6 months and 1 and 2 years in EPs was 70.6%, 59.4%, and 54.2%, respectively. A high neutrophil/lymphocyte ratio >5.33 was an unfavorable predictor of prognosis for EPs with BMs treated with SRS and fSRT (P < 0.001). In the EPs, the prognostic factors associated with prolonged survival in the Cox proportional hazards model were being female and a good pretreatment Karnofsky Performance Status. CONCLUSIONS: The findings of our study highlight the efficacy of LINAC-based SRS and fSRT with a micro-multileaf collimator in the treatment of EPs with BMs. Neutrophil/lymphocyte ratio can be an important factor in treatment decisions for EPs with BMs.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Idoso , Humanos , Feminino , Masculino , Radiocirurgia/métodos , Resultado do Tratamento , Estudos Retrospectivos , Neoplasias Encefálicas/cirurgia , Aceleradores de Partículas
17.
J Appl Clin Med Phys ; 25(6): e14267, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38259201

RESUMO

PURPOSE: To propose an efficient collimator angle optimization method by combining island blocking (IB) and parked gap (PG) problem to reduce the radiotherapy dose for normal tissue. The reduction will be done with single-isocenter multi-lesion volumetric modulated arc therapy (VMAT) for the stereotactic body radiation therapy (SBRT) of liver cancer. METHODS: A novel collimator angle optimization algorithm was developed based on the two-dimensional projection of targets on a beam's eye view (BEV) plane as a function of gantry and collimator angle. This optimization algorithm minimized the sum of the combined IB and PG (IB & PG) areas from all gantry angles for each arc. For comparison, two SBRT plans were respectively generated for each of the 20 retrospective liver cancer cases with multiple lesions. One plan was optimized using the IB & PG algorithm, and the other plan was optimized with a previously reported optimization algorithm that only considered the IB area. Plans were then evaluated and compared using typical dosimetric metrics. RESULTS: With the comparable target coverage, IB & PG plans had significantly lower D500cc, D700cc, mean dose (Dmean), and V15 of normal liver tissues when compared to IB plans. The median percent reductions were 3.32% to 5.36%. The D1cc, D5cc, and Dmean for duodenum and small intestine in IB & PG plans were significantly reduced in a range from 7.60% up to 16.03%. Similarly, the median integral dose was reduced by 3.73%. Furthermore, the percentage of normal liver Dmean sparing when IB & PG plans compared to IB plans, was found to be positively correlated (ρ = 0.669, P = 0.001) with the inter-target distance. CONCLUSION: The proposed IB & PG algorithm has been demonstrated to outperform the IB algorithm in almost all normal tissue sparing, and the magnitude of liver sparing was positively correlated with inter-target distance.


Assuntos
Algoritmos , Neoplasias Hepáticas , Órgãos em Risco , Radiocirurgia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/cirurgia , Radiocirurgia/métodos , Radioterapia de Intensidade Modulada/métodos , Órgãos em Risco/efeitos da radiação , Estudos Retrospectivos , Prognóstico , Tratamentos com Preservação do Órgão/métodos
18.
Med Dosim ; 49(1): 13-18, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37940436

RESUMO

This study evaluated the dose distributions of proton pencil beam scanning (PBS) with/without a multileaf collimator (MLC) compared to passive scattering (PS) for stage I/II lung cancers. Collimated/uncollimated (PBS+/PBS-) and PS plans were created for 20 patients. Internal-clinical-target-volumes (ICTVs) and planning-target-volumes (PTVs) with a 5 mm margin were defined on the gated CTs. Organs-at-risk (OARs) are defined as the normal lungs, spinal cord, esophagus, and heart. The prescribed dose was 66 Gy relative-biological-effectiveness (RBE) in 10 fractions at the isocenter and 50% volume of the ICTVs for the PS and PBS, respectively. We compared the target and OAR dose statistics from the dose volume histograms. The PBS+ group had a significantly better mean PTV conformity index than the PBS- and PS groups. The mean dose sparing for PBS+ was better than those for PBS- and PS. Only the normal lung doses of PBS- were worse than those of PS. The overall performance of the OAR sparing was in the order of PBS+, PBS-, and PS. The PBS+ plan showed significantly better target homogeneity and OAR sparing than the PBS- and PS plans. PBS requires collimating systems to treat lung cancers with the most OAR sparing while maintaining the target coverage.


Assuntos
Neoplasias Pulmonares , Terapia com Prótons , Radioterapia de Intensidade Modulada , Humanos , Neoplasias Pulmonares/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Órgãos em Risco
19.
J Appl Clin Med Phys ; 25(2): e14173, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37858985

RESUMO

The purpose is to reduce normal tissue radiation toxicity for electron therapy through the creation of a surface-conforming electron multileaf collimator (SCEM). The SCEM combines the benefits of skin collimation, electron conformal radiotherapy, and modulated electron radiotherapy. An early concept for the SCEM was constructed. It consists of leaves that protrude towards the patient, allowing the leaves to conform closely to irregular patient surfaces. The leaves are made of acrylic to decrease bremsstrahlung, thereby decreasing the out-of-field dose. Water tank scans were performed with the SCEM in place for various field sizes for all available electron energies (6, 9, 12, and 15 MeV) with a 0.5 cm air gap to the water surface at 100 cm source-to-surface distance (SSD). These measurements were compared with Cerrobend cutouts with the field size-matched at 100 and 110 cm SSD. Output factor measurements were taken in solid water for each energy at dmax for both the cerrobend cutouts and SCEM at 100 cm SSD. Percent depth dose (PDD) curves for the SCEM shifted shallower for all energies and field sizes. The SCEM also produced a higher surface dose relative to Cerrobend cutouts, with the maximum being a 9.8% increase for the 3 cm × 9 cm field at 9 MeV. When compared to the Cerrobend cutouts at 110 cm SSD, the SCEM showed a significant decrease in the penumbra, particularly for lower energies (i.e., 6 and 9 MeV). The SCEM also showed reduced out-of-field dose and lower bremsstrahlung production than the Cerrobend cutouts. The SCEM provides significant improvement in the penumbra and out-of-field dose by allowing collimation close to the skin surface compared to Cerrobend cutouts. However, the added scatter from the SCEM increases shallow PDD values. Future work will focus on reducing this scatter while maintaining the penumbra and out-of-field benefits the SCEM has over conventional collimation.


Assuntos
Elétrons , Aceleradores de Partículas , Humanos , Dosagem Radioterapêutica , Radiometria , Planejamento da Radioterapia Assistida por Computador , Água
20.
Med Phys ; 51(3): 2119-2127, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37727132

RESUMO

BACKGROUND: The concept of volumetric modulated arc therapy-computed tomography (VMAT-CT) was proposed more than a decade ago. However, its application has been very limited mainly due to the poor image quality. More specifically, the blurred areas in electronic portal imaging device (EPID) images collected during VMAT heavily degrade the image quality of VMAT-CT. PURPOSE: The goal of this study was to propose systematic methods to preprocess EPID images and improve the image quality of VMAT-CT. METHODS: Online region-based active contour method was introduced to binarize portal images. Multi-leaf collimator (MLC) motion modeling was developed to remove the MLC motion blur. Outlier filtering was then applied to replace the remaining artifacts with plausible data. To assess the impact of these preprocessing methods on the image quality of VMAT-CT, 44 clinical VMAT plans for several treatment sites (lung, esophagus, and head & neck) were delivered to a Rando phantom, and several real-patient cases were also acquired. VMAT-CT reconstruction was attempted for all the cases, and image quality was evaluated. RESULTS: All three preprocessing methods could effectively remove the blurred edges of EPID images. The combined preprocessing methods not only saved VMAT-CT from distortions and artifacts, but also increased the percentage of VMAT plans that can be reconstructed. CONCLUSIONS: The systematic preprocessing of portal images improves the image quality of VMAT-CT significantly, and facilitates the application of VMAT-CT as an effective image guidance tool.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Radioterapia de Intensidade Modulada/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X , Pulmão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA