Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Anaerobe ; : 102919, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39393609

RESUMO

OBJECTIVES: Fructo-oligosaccharide (FOS) and citrus pectin (CP) are soluble fibers with different chemical composition. However, their fermentation pattern in large intestine remains unclear. METHODS: An in vitro batch fermentation using colonic digesta from pigs as inoculum was employed to investigate the fermentation dynamics of FOS and CP. The monosaccharides and SCFAs contents were assayed by High-Performance Liquid Chromatography and Gas Chromatography, respectively. And the microbiota community was assessed by 16S rRNA gene high-throughput sequencing. RESULTS: The decline of monosaccharides in both substrates after 6 h, especially to a neglected level in FOS. FOS showed higher abundances of butyrate-producing bacteria such as Eubacterium rectale, Roseburia faecis and Coprococcus comes and butyrate compared to CP. CP stimulated the growth of pectinolytic microbe Lachnospira pectinoschiza, succinate-producing bacteria Succinivibrio dextrinosolvens, succinate-utilizing bacteria Phascolarctobacterium succinatutens and the production of acetate and propionate compared to FOS. Moreover, the relative abundances of key enzymes (e.g. butyrate kinase) involving in butyrate formation via the butyrate kinase route were upregulated in the FOS group. And the key enzymes (e.g. acetyl-CoA synthetase) associated with propionate production through the succinate pathway were upregulated in the CP group. CONCLUSIONS: FOS was preferred to ferment by butyrate-producing bacteria to yield a higher level of butyrate via the butyrate kinase pathway, while CP enhanced the cross-feeding of succinate-producing and succinate-utilizing bacteria to form propionate through the succinate pathway. These findings deepen our understanding on the fermentation characteristics of the soluble fibers, and also provide guidelines for fiber choice in precisely modulating the microbial composition and metabolism in large intestine.

2.
Biomed Pharmacother ; 179: 117391, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39241567

RESUMO

Necrotizing enterocolitis (NEC) is a microbiota- and feeding-related gut inflammatory disease in preterm infants. The standard of care (SOC) treatment for suspected NEC is antibiotic treatment and reduced enteral feeding, but how SOC treatment mitigates NEC remains unclear. We explored whether SOC treatment alone or combined with an anti-inflammatory protein (inter-alpha inhibitor protein, IAIP) supplementation improves outcomes in a preterm piglet model of formula-induced NEC. Seventy-one cesarean-delivered preterm piglets were initially fed formula, developing NEC symptoms by day 3, and then randomized into CON (continued feeding) or SOC groups (feeding cessation and antibiotics), each with or without human IAIP (2×2 factorial design). By day 5, IAIP treatment did not significantly influence outcomes, whereas SOC treatment effectively reduced NEC lesions, diarrhea, and bloody stools. Notably, SOC treatment improved gut morphology and function, dampened gut inflammatory responses, altered the colonic microbiota composition, and modulated systemic immune responses. Plasma proteomic analysis revealed the effects of SOC treatment on organ development and systemic inflammatory responses. Collectively, these findings suggest that SOC treatment significantly prevents NEC progression in preterm piglets via effects on gut structure, function, and microbiota, as well as systemic immune and inflammatory responses. Timely feeding cessation and antibiotics are critical factors in preventing NEC progression in preterm infants, while the benefits of additional human IAIP treatment remain to be established.


Assuntos
Animais Recém-Nascidos , Antibacterianos , Enterocolite Necrosante , Microbioma Gastrointestinal , Animais , Enterocolite Necrosante/tratamento farmacológico , Enterocolite Necrosante/prevenção & controle , Enterocolite Necrosante/patologia , Antibacterianos/farmacologia , Suínos , Microbioma Gastrointestinal/efeitos dos fármacos , Feminino , Inflamação/tratamento farmacológico , Inflamação/patologia , Modelos Animais de Doenças , Nutrição Enteral , Humanos
3.
BMC Vet Res ; 20(1): 422, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304851

RESUMO

BACKGROUND: To assess the effects of inactivated Lactobacillus rhamnosus (ILR) on growth performance, serum biochemical indices, colonic microbiota, and metabolomics in weaned piglets, 120 piglets were randomly divided into five groups. Samples in the control group were fed a basal diet, while the experimental ILR1, ILR2, ILR3, and ILR4 groups were fed basal diets supplemented with 0.1%, 0.2%, 0.3%, and 0.4% ILR, respectively. The prefeeding period lasted for 5 days and was followed by a formal period of 28 days. RESULTS: Compared to the control, the average daily gain increased by 4.38%, 7.98%, 19.32%, and 18.80% for ILR1, ILR2, ILR3, and ILR4, respectively, and the ratio of feed to gain decreased by 0.63%, 3.80%, 12.66%, and 10.76%, respectively. Serum IgA, IgG, IgM, total antioxidant capacity, and glutathione peroxidase levels increased significantly in weaned piglets in the treatment groups. Addition of 0.3% ILR significantly increased the Shannon and Simpson indices of the colonic microbiota in weaned piglets and altered the microbiota composition. Changes in metabolic profiles were observed and were primarily related to the urea cycle, amino acid metabolism, and lipid metabolism. CONCLUSION: ILR improved growth performance and serum immunological and biochemical indices and optimized the colonic microbiota structure and metabolism of weaned piglets.


Assuntos
Colo , Dieta , Microbioma Gastrointestinal , Lacticaseibacillus rhamnosus , Probióticos , Desmame , Animais , Suínos/sangue , Suínos/crescimento & desenvolvimento , Probióticos/administração & dosagem , Probióticos/farmacologia , Colo/microbiologia , Colo/metabolismo , Dieta/veterinária , Ração Animal/análise , Masculino
4.
Animal ; 18(9): 101220, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39213909

RESUMO

Early weaning-induced stress precipitates diarrhoea, significantly curtailing the growth performance of piglets. A pivotal contributor to this postweaning affliction is the emergence of gut bacterial dysbiosis. Enterococcus hirae, a promising probiotic, has indicated unclear effects and mechanisms on intestinal health. In this study, we investigated the effects and underlying mechanisms of oral supplementation with Ningxiang pig-derived Enterococcus hirae HNAU0516 orally supplementation on the gut bacterial community, immune response and gut barrier function in piglets. 21 d age Duroc × (Landrace × Yorkshire) piglets with a similar BW were randomly allocated to two groups. The Enterococcus hirae HNAU0516 administration group was inoculated orally with Ningxiang pig-derived Enterococcus hirae HNAU0516 throughout the trial period. Conversely, the control group received the same volume of physiological saline. Our findings revealed that Enterococcus hirae HNAU0516 supplementation effectively reduced diarrhoea rates of piglets (P = 0.010). Notably, this probiotic promoted intestinal development and enhanced intestinal barrier function. It also showed potential anti-inflammatory properties. Furthermore, Enterococcus hirae HNAU0516 supplementation significantly remodelled the colonic microbiota and increased the production of acetate (P = 0.007). In conclusion, our study highlights that Ningxiang pig-derived Enterococcus hirae HNAU0516 improves postweaning diarrhoea by promoting intestinal development, enhancing intestinal barrier function, decreasing intestinal permeability, modulating intestinal microbiota, and increasing short-chain fatty acids production.


Assuntos
Diarreia , Streptococcus faecium ATCC 9790 , Microbioma Gastrointestinal , Probióticos , Doenças dos Suínos , Desmame , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Diarreia/veterinária , Diarreia/prevenção & controle , Diarreia/microbiologia , Probióticos/administração & dosagem , Probióticos/farmacologia , Suínos , Streptococcus faecium ATCC 9790/efeitos dos fármacos , Doenças dos Suínos/microbiologia , Doenças dos Suínos/prevenção & controle , Suplementos Nutricionais , Intestinos/microbiologia , Intestinos/efeitos dos fármacos , Masculino
5.
Microbiol Res ; 285: 127778, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38823185

RESUMO

Probiotics are host-friendly microorganisms that can have important health benefits in the human gut microbiota as dietary supplements. Maintaining a healthy gut microbial balance relies on the intricate interplay among the intestinal microbiota, metabolic activities, and the host's immune response. This study aims to explore if a mixture of Heyndrickxia coagulans [ATB-BCS-042] and Lacticaseibacillus casei [THT-030-401] promotes in vitro this balance in representative gut microbiota from healthy individuals using the Triple-SHIME® (Simulation of the Human Intestinal Microbial Ecosystem). Metataxonomic analysis of the intestinal microbes revealed that the probiotic mix was not causing important disruptions in the biodiversity or microbial composition of the three simulated microbiota. However, some targeted populations analyzed by qPCR were found to be disrupted at the end of the probiotic treatment or after one week of washout. Populations such as Cluster IV, Cluster XVIa, and Roseburia spp., were increased indicating a potential gut health-promoting butyrogenic effect of the probiotic supplementation. In two of the systems, bifidogenic effects were observed, while in the third, the treatment caused a decrease in bifidobacteria. For the health-detrimental biomarker Escherichia-Shigella, a mild decrease in all systems was observed in the proximal colon sections, but these genera were highly increased in the distal colon sections. By the end of the washout, Bacteroides-Prevotella was found consistently boosted, which could have inflammatory consequences in the intestinal context. Although the probiotics had minimal influence on most quantified metabolites, ammonia consistently decreased after one week of daily probiotic supplementation. In reporter gene assays, aryl hydrocarbon receptor (AhR) activation was favored by the metabolic output obtained from post-treatment periods. Exposure of a human intestinal cell model to fermentation supernatant obtained after probiotic supplementation induced a trend to decrease the mRNA expression of immunomodulatory cytokines (IL-6, IL-8). Overall, with some exceptions, a positive impact of H. coagulans and L. casei probiotic mix was observed in the three parallel experiments, despite inter-individual differences. This study might serve as an in vitro pipeline for the impact assessment of probiotic combinations on the human gut microbiota.


Assuntos
Microbioma Gastrointestinal , Lacticaseibacillus casei , Probióticos , Humanos , Probióticos/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Voluntários Saudáveis , Fezes/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação
6.
Food Sci Nutr ; 12(4): 2650-2660, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628202

RESUMO

Bay laurel (Laurus nobilis L.) contains active antioxidative phenolic components that are beneficial to human health. However, none was examined and reported utilizing health effects related to inflammatory bowel diseases (IBD) mainly ulcerative colitis (UC) in correlation to gut microbiota (GM). Thus, the current study aimed to investigate the impacts of bay leaves on UC albino rats targeting on the GM composition and their metabolites production (i.e., short-chain fatty acids; SCFAs) for improving the gut barrier functions. UC models were induced by supplementing 5% DSS into their drinking water. The models were then divided randomly for the diet with 1%, 2%, and 3% of bay leaves, as well as two control studies (positive and negative). Colon-to-body weight ratio was used as an indicator for the presence of edema tissue. From the collected fecal samples at 0, 24 h, and final day, the population changes of gut microbiota (Lactobacillus, Bifidobacteria, Clostridium, and sulfate-reducing bacteria) and SCFAs production were evaluated using fluorescence in situ hybridization (FISH) and gas-liquid chromatography (GC). The colon-to-body weight ratio of the rat models consuming 2% and 3% bay leaves was found to be significantly lower with better recovery of colonic function. Models consuming 3% bay leaves showed the best treatment effects on GM compositions; promoting the growth of Bifidobacteria and Lactobacillus in addition to producing high butyric acid levels. Meanwhile, the number of Clostridium and SRB was significantly reduced. Conclusively, consuming bay leaves brought significant colon health benefits other than stimulating appetite for a better taste.

7.
Antioxidants (Basel) ; 13(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38539817

RESUMO

Intrauterine growth restriction (IUGR) pigs are characterized by long-term growth failure, metabolic disorders, and intestinal microbiota imbalance. The characteristics of the negative effects of IUGR at different growth stages of pigs are still unclear. Therefore, this study explored through multi-omics analyses whether the IUGR damages the intestinal barrier function and alters the colonization and metabolic profiles of the colonic microbiota in growing-finishing pigs. Seventy-two piglets (36 IUGR and 36 NBW) were allocated for this trial to analyze physiological and plasma biochemical parameters, as well as oxidative damage and inflammatory response in the colon. Moreover, the colonic microbiota communities and metabolome were examined using 16s rRNA sequencing and metabolomics technologies to reveal the intestinal characteristics of IUGR pigs at different growth stages (25, 50, and 100 kg). IUGR altered the concentrations of plasma glucose, total protein, triglycerides, and cholesterol. Colonic tight junction proteins were markedly inhibited by IUGR. IUGR decreased plasma T-AOC, SOD, and GSH levels and colonic SOD-1, SOD-2, and GPX-4 expressions by restraining the Nrf2/Keap1 signaling pathway. Moreover, IUGR increased colonic IL-1ß and TNF-α levels while reducing IL-10, possibly through activating the TLR4-NF-κB/ERK pathway. Notably, IUGR pigs had lower colonic Streptococcus abundance and Firmicutes-to-Bacteroidetes ratio at the 25 kg BW stage while having higher Firmicutes abundance at the 100 kg BW stage; moreover, IUGR pigs had lower SCFA concentrations. Metabolomics analysis showed that IUGR increased colonic lipids and lipid-like molecules, organic acids and derivatives, and organoheterocyclic compounds concentrations and enriched three differential metabolic pathways, including linoleic acid, sphingolipid, and purine metabolisms throughout the trial. Collectively, IUGR altered the nutrient metabolism, redox status, and colonic microbiota community and metabolite profiles of pigs and continued to disrupt colonic barrier function by reducing antioxidant capacity via the Nrf2/Keap1 pathway and activating inflammation via the TLR4-NF-κB/ERK pathway during the growing-finishing stage. Moreover, colonic Firmicutes and Streptococcus could be potential regulatory targets for modulating the metabolism and health of IUGR pigs.

8.
Int J Biol Macromol ; 262(Pt 2): 130167, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360226

RESUMO

This study investigated the characteristics of polysaccharides from date pomace using microwave-assisted deep eutectic solvents. The impact on the gut microbiota and probiotics growth was examined in vitro. The study also examined its antioxidant properties, ability to inhibit enzymes linked to diabetes and high blood pressure, impact on cell growth, and physical properties. The isolated MPS had an average molecular weight of 8073.38 kDa and contained mannose, galacturonic acid, galactose, glucose, and fructose in specific proportions. At a concentration of 1000 mg/L, MPS showed strong antioxidant activity, with significant scavenging rates in various tests such as DPPH (57.0 ± 1.05 %) and ABTS (66.4 ± 2.48 %). MPS displayed 77 %, 80 %, and 43 % inhibition for α-amylase, α-glucosidase, and ACE-inhibition, respectively. MPS displayed significant antiproliferative effects, achieving 100 % and 99 % inhibition against Caco-2 and MCF-7 cells at 2500 mg/L, respectively. MPS showed broad-spectrum antibacterial properties against both Gram-positive and Gram-negative foodborne bacteria. Gemmiger formicilis, Blautia species, Collinsella aerofaciens, and Bifidobacterium longum showed strong positive correlations, suggesting increased SCFA production. Network analysis indicated species correlations, with 86 % showing negative correlations with Escherichia and Enterococcus saccharolyticus. MPS was abundant in Firmicutes, Actinobacteria, and Proteobacteria phyla. Date pomace could serve as a dietary fiber source, promoting better health.


Assuntos
Microbioma Gastrointestinal , Prebióticos , Humanos , Solventes Eutéticos Profundos , Células CACO-2 , Micro-Ondas , Polissacarídeos/farmacologia , Bactérias Gram-Negativas
9.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397126

RESUMO

Alterations in the microbiota composition, or ecological dysbiosis, have been implicated in the development of various diseases, including allergic diseases and asthma. Examining the relationship between microbiota alterations in the host and cough variant asthma (CVA) may facilitate the discovery of novel therapeutic strategies. To elucidate the diversity and difference of microbiota across three ecological niches, we performed 16S rDNA amplicon sequencing on lung, ileum, and colon samples. We assessed the levels of interleukin-12 (IL-12) and interleukin-13 (IL-13) in guinea pig bronchoalveolar lavage fluid using the enzyme-linked immunosorbent assay (ELISA). We applied Spearman's analytical method to evaluate the correlation between microbiota and cytokines. The results demonstrated that the relative abundance, α-diversity, and ß-diversity of the microbial composition of the lung, ileum, and colon varied considerably. The ELISA results indicated a substantial increase in the level of IL-13 and a decreasing trend in the level of IL-12 in the CVA guinea pigs. The Spearman analysis identified a correlation between Mycoplasma, Faecalibaculum, and Ruminococcus and the inflammatory factors in the CVA guinea pigs. Our guinea pig model showed that core microorganisms, such as Mycoplasma in the lung, Faecalibaculum in the ileum, and Ruminococcus in the colon, may play a crucial role in the pathogenesis of CVA. The most conspicuous changes in the ecological niche were observed in the guinea pig ileum, followed by the lung, while relatively minor changes were observed in the colon. Notably, the microbial structure of the ileum niche approximated that of the colon niche. Therefore, the results of this study suggest that CVA development is closely related to the dysregulation of ileal, lung, and colon microbiota and the ensuing inflammatory changes in the lung.


Assuntos
Variante Tussígena da Asma , Microbiota , Cobaias , Animais , Interleucina-13 , Pulmão/patologia , Íleo , Colo , Interleucina-12
10.
J Anim Sci Biotechnol ; 14(1): 158, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38143275

RESUMO

BACKGROUND: Diarrhea is a major cause of reduced growth and mortality in piglets during the suckling and weaning periods and poses a major threat to the global pig industry. Diarrhea and gut dysbiosis may in part be prevented via improved early postnatal microbial colonization of the gut. To secure better postnatal gut colonization, we hypothesized that transplantation of colonic or gastric content from healthy donors to newborn recipients would prevent diarrhea in the recipients in the post-weaning period. Our objective was to examine the impact of transplanting colonic or gastric content on health and growth parameters and paraclinical parameters in recipient single-housed piglets exposed to a weaning transition and challenged with enterotoxigenic Escherichia coli (ETEC). METHODS: Seventy-two 1-day-old piglets were randomized to four groups: colonic microbiota transplantation (CMT, n = 18), colonic content filtrate transplantation (CcFT, n = 18), gastric microbiota transplantation (GMT, n = 18), or saline (CON, n = 18). Inoculations were given on d 2 and 3 of life, and all piglets were milk-fed until weaning (d 20) and shortly after challenged with ETEC (d 24). We assessed growth, diarrhea prevalence, ETEC concentration, organ weight, blood parameters, small intestinal morphology and histology, gut mucosal function, and microbiota composition and diversity. RESULTS: Episodes of diarrhea were seen in all groups during both the milk- and the solid-feeding phase, possibly due to stress associated with single housing. However, CcFT showed lower diarrhea prevalence on d 27, 28, and 29 compared to CON (all P < 0.05). CcFT also showed a lower ETEC prevalence on d 27 (P < 0.05). CMT showed a higher alpha diversity and a difference in beta diversity compared to CON (P < 0.05). Growth and other paraclinical endpoints were similar across groups. CONCLUSION: In conclusion, only CcFT reduced ETEC-related post-weaning diarrhea. However, the protective effect was marginal, suggesting that higher doses, more effective modalities of administration, longer treatment periods, and better donor quality should be explored by future research to optimize the protective effects of transplantation.

11.
Front Microbiol ; 14: 1293160, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116527

RESUMO

Oregano essential oil (OEO) primarily contains phenolic compounds and can serve as a dietary supplement for fattening bulls. However, the precise molecular mechanism underlying this phenomenon remains largely elusive. Therefore, this study investigated the impact of adding OEO to diet on the integrity of the intestinal barrier, composition of the colonic microbiome, and production of microbial metabolites in fattening bulls. Our goal was to provide insights into the utilization of plant essential oil products in promoting gastrointestinal health and welfare in animals. We employed amplicon sequencing and metabolome sequencing techniques to investigate how dietary supplementation with OEO impacted the intestinal barrier function in bulls. The inclusion of OEO in the diet resulted in several notable effects on the colon of fattening bulls. These effects included an increase in the muscle thickness of the colon, goblet cell number, short-chain fatty acid concentrations, digestive enzyme activity, relative mRNA expression of intestinal barrier-related genes, and relative expression of the anti-inflammatory factor IL-10. Additionally, α-amylase activity and the relative mRNA expression of proinflammatory cytokines decreased. Moreover, dietary OEO supplementation increased the abundance of intestinal Bacteroides, Coprobacillus, Lachnospiraceae_UCG_001, and Faecalitalea. Metabolomic analysis indicated that OEO primarily increased the levels of 5-aminovaleric acid, 3-methoxysalicylic acid, and creatinine. In contrast, the levels of maltose, lactulose, lactose, and D-trehalose decreased. Correlation analysis showed that altered colonic microbes and metabolites affected intestinal barrier function. Taken together, these results demonstrate that OEO facilitates internal intestinal environmental homeostasis by promoting the growth of beneficial bacteria while inhibiting harmful ones.

12.
Antioxidants (Basel) ; 12(11)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-38001779

RESUMO

This study evaluated the effects of betaine supplementation in sows and/or their offspring's diets on the redox status, immune and inflammatory levels, colonic barrier function, and colonic microbial community of offspring piglets. Thirty-six Bama mini-sows on day 3 of gestation and their weaned offspring piglets (28 d of age) were randomly allocated to the following treatments: (1) sows and their weaned offspring fed the basal diet (control group, Con group); (2) sows fed the basal diet with 3.50 kg/t betaine, and their weaned offspring fed the basal diet (sows betaine group, SB group); (3) sows fed the basal diet with 3.50 kg/t betaine, and their weaned offspring fed the basal diet with 2.50 kg/t betaine (sow-offspring betaine group, S-OB group). Six offspring piglets from each group were selected to collect plasma and colon samples on d 30, 60, and 90 after weaning. Compared with the Con group, the plasma levels of IgA, IgM, GSH-Px, and SOD during d 30-90 after weaning, IFN-α, T-AOC, and GSH on d 30 and 60 after weaning were increased, while MDA during d 30-90 after weaning was decreased in the SB and S-OB groups (p < 0.05). In addition, the plasma levels of IFN-γ on d 60 and T-AOC on d 30 after weaning were higher in the S-OB group than those in the Con group (p < 0.05). In the colon, betaine supplementation increased plasma T-AOC, GSH, and SOD levels while decreasing MDA concentration (p < 0.05). Betaine supplementation improved the colonic protein abundances of ZO-1, occludin, and claudin in offspring and activated the Nrf2/Keap1 signaling pathway while inhibiting the TLR4-NF-κB/MAPK signaling pathway on d 90 after weaning. The 16S rRNA sequencing results showed that betaine supplementation altered colonic microbiota composition by increasing the relative abundances of Verrucomicrobia and Actinobacteria in the SB group while decreasing proinflammatory-associated microbiota abundances (Tenericutes, Prevotella, and Parabacteroides) (p < 0.05). Collectively, these findings suggest that dietary betaine supplementation in sows and/or their offspring could improve offspring piglets' redox status and immune and anti-inflammatory levels and enhance the colonic barrier function by activating Nrf2/Keap1 and inhibiting TLR4-NF-κB/MAPK signaling pathways.

13.
Int J Biol Macromol ; 253(Pt 6): 127108, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37776927

RESUMO

This study investigated the effects of Moringa oleifera polysaccharide on growth performance indicators, serum biochemical indicators, immune organ indicators, colonic morphology, colonic microbiomics and colonic transcriptomics in newborn calves. 21 newborn calves were randomly divided into three groups of 7 calves per treatment group: control group (no Moringa oleifera polysaccharide addition); low-dose group (Moringa oleifera polysaccharide 0.5 g/kg); and high-dose group (Moringa oleifera polysaccharide 1 g/kg). This trial used gavage to feed MOP to calves. The test lasted 8 weeks. Calves were humanely electroshocked on the last day of the trial and slaughtered afterwards. Thymus, spleen, blood and colonic contents were collected for further testing. The results of this trial showed that MOP significantly increased the body weight of newborn calves and reduced the rate of calf diarrhea, thus promoting calf growth. Fecal scores showed a linear decrease with the addition of MOP. In terms of serum biochemistry, feeding MOP significantly increased serum ALB levels in a linear fashion. In terms of serum antioxidants, feeding MOP linearly increased CAT and T-AOC levels and decreased MDA concentrations, and in terms of serum immunity, feeding MOP linearly increased IgA, IgG, and IgM levels. At the same time, MOP regulated the abundance of Firmicutes and Bacteroidetes in the intestinal tract of calves, which reduced the occurrence of diarrhea. In addition, moringa polysaccharide could regulate genes related to inflammatory signaling pathways such as MAPK signaling pathway, TGF-beta signaling pathway, PI3K-Akt signaling pathway and TNF signaling pathway in calves' intestine to reduce the occurrence of intestinal inflammation. In conclusion, MOP can be used as a novel ruminant additive for the prevention of enteritis in calves.


Assuntos
Microbiota , Moringa oleifera , Animais , Bovinos , Moringa oleifera/química , Transcriptoma , Fosfatidilinositol 3-Quinases , Polissacarídeos/farmacologia , Polissacarídeos/análise , Diarreia , Folhas de Planta/química
14.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37631043

RESUMO

The microbiome of the colon is characterized by its great diversity. This varies not only intra- but also interindividually and is influenced by endogenous and exogenous factors, such as dietary and lifestyle factors. The aim of this work was to investigate the extent to which the degradation of the drug sulfasalazine is influenced by different microbiota. Therefore, the in vitro model MimiCol3 was used, which represents the physiological conditions of the ascending colon. In addition to a representative physiological volume, the pH value, redox potential and an anaerobic atmosphere are important to provide the bacteria with the best possible growth conditions. Stool samples were taken from three healthy subjects, comparing omnivorous, vegetarian and meat-rich diets, and cultured for 24 h. However, the nutrient medium used for cultivation led to the alignment of the bacterial composition of the microbiota. The previously observed differences between the diets could not be maintained. Nevertheless, the similar degradation of sulfasalazine was observed in all microbiota studied in MimiCol3. This makes MimiCol3 a suitable in vitro model for metabolism studies in the gut microbiome.

15.
Carbohydr Polym ; 316: 121074, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37321749

RESUMO

This research investigated the effect of different types of plant cell wall fibres, including cereal (i.e., barley, sorghum, and rice), legume (i.e., pea, faba bean, and mung bean), and tuber (potato, sweet potato, and yam) cell wall fibres on in vitro faecal fermentation profiles and gut microbiota composition. The cell wall composition, specifically the content of lignin and pectin, was found to have a significant influence on the gut microbiota and fermentation outcomes. Compared with type I cell walls (legume and tuber) which have high pectin content, the type II cell walls (cereal) which are high in lignin but low in pectin had a lower fermentation rates and less short-chain fatty acid production. The redundancy analysis showed samples with similar fibre composition and fermentation profiles clustered together, and the principal coordinate analysis revealed separation among different types of cell walls and closer proximity among the same cell wall types. These findings emphasize the importance of cell wall composition in shaping the microbial community during fermentation and contribute to a better understanding of the relationship between plant cell walls and gut health. This research has practical implications for the development of functional foods and dietary interventions.


Assuntos
Fabaceae , Microbioma Gastrointestinal , Lignina/metabolismo , Fermentação , Pectinas/metabolismo , Ácidos Graxos Voláteis/metabolismo , Parede Celular/metabolismo , Fabaceae/metabolismo , Fezes , Grão Comestível/metabolismo , Fibras na Dieta/metabolismo
16.
Anim Nutr ; 14: 43-55, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37234948

RESUMO

Antibiotic resistance of pathogens, which is caused by the abuse of in-feed antibiotics, threatens the sustainable development of livestock production. The present study aimed to investigate the efficiency of porcine intestinal antimicrobial peptide (PIAP) as an alternative to in-feed antibiotics in terms of growth performance, intestinal morphology, digestive enzymes and immunity, and microbiota community of the post-weaning piglets. A total of 204 piglets (Duroc × Landrace × Yorkshire, weaned at 28 d age) with a similar body weight of 7.97 ± 1.04 kg were randomly allocated to 4 groups (51 piglets per group): (1) control group: basal diet; (2) AB group: antibiotic, basal diet + chlortetracycline (1000 mg/kg from d 1 to 24; 500 mg/kg from d 25 to 37); (3) P1 group: basal diet + a relatively low dose of PIAP (400 mg/kg from d 1 to 24; 300 mg/kg from d 25 to 37); (4) P2 group, basal diet + a relatively high dose of PIAP (600 mg/kg from d 1 to 24; 500 mg/kg from d 25 to 37). The results showed that serum indicators of hepatocyte damage and relative organ weight were not affected by these treatments (P > 0.05). Compared with the AB treatment, the P1 treatment remarkably decreased jejunal crypt depth and increased jejunal and ileal villus height:crypt depth ratio (P < 0.05). The values of jejunal maltase, lactase, sucrase, intestinal alkaline phosphatase, and secretory immunoglobulin A (SIgA) in the P1 group were sharply increased compared with those in the control and P2 groups (P < 0.05). Compared with the control group, the P1 group decreased serum concentrations of D-lactate, diamine oxidase, and endotoxin (P < 0.05), and increased the abundance of Lactobacillus reuteri (P < 0.05) in the colonic feces. Furthermore, there was a positive correlation between the abundance of L. reuteri and the concentrations of maltase, lactase, sucrase, and SIgA (P < 0.05). Collectively, dietary supplementation with a relatively low dose of PIAP (400 mg/kg from d 1 to 24; 300 mg/kg from d 25 to 37) demonstrates beneficial effects on intestinal morphology, digestive enzymes, immunity, and permeability by shaping the gut microbiota composition in weaned piglets. This study will provide a valuable reference for using PIAP as an in-feed antibiotic alternative in swine production.

17.
J Biosci Bioeng ; 136(1): 67-73, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37105857

RESUMO

Partially hydrolyzed guar gums (PHGGs) are prebiotic soluble dietary fibers. High molecular-weight PHGGs have rapid fermentation and high short-chain fatty acid (SCFA) productivity rates, compared to low molecular-weight PHGGs. Therefore, low molecular-weight PHGGs may have less pronounced prebiotic effects than high molecular-weight PHGGs. However, the effects of PHGGs of different molecular weights on the human intestinal microbiota, as well as their fermentation ability and prebiotic effects, have not been investigated. The aim of this study was to evaluate the effects of two PHGGs of different molecular weights, Sunfiber-R (SF-R; 20 kDa) and Sunfiber-V (SF-V; 5 kDa), on human colonic microbiota and SCFA production. A human intestinal in vitro fermentation model was operated by fecal samples with and without the PHGGs. The addition of 0.2% SF-R or SF-V increased the relative abundance of Bacteroides spp., especially that of Bacteroides uniformis. This increase corresponded to a significant (p = 0.030) and non-significant (p = 0.073) increase in propionate production in response to SF-R and SF-V addition, respectively. Both fibers increased the relative abundance of Faecalibacterium and stimulated an increase in the abundance of unclassified Lachnospiraceae and Bifidobacterium. In conclusion, the low molecular-weight PHGG exerted prebiotic effects on human colonic microbiota to increase SCFA production and bacteria that are beneficial to human health in a manner similar to that of the high molecular-weight forms of PHGG.


Assuntos
Ácidos Graxos Voláteis , Galactanos , Humanos , Fermentação , Peso Molecular , Mananas/farmacologia , Gomas Vegetais/metabolismo , Fezes/microbiologia , Fibras na Dieta/farmacologia
18.
J Anim Physiol Anim Nutr (Berl) ; 107(2): 564-573, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35668615

RESUMO

The purpose of this study was to investigate the effects of faecal microbiota transfer (FMT) with lactation Min sows as faecal donor on blood immunity, small intestine amino acid transport capacity, bile acid circulation, and colon microbiota of recipient piglets. From Days 1 to 10, the recipient group (R group) was orally inoculated with a faecal suspension. The control group (Con group) was orally inoculated with sterile physiological saline. On Day 21, the results showed that the immunoglobulin A (IgA) concentration in plasma of the R group was increased (p < 0.05). The expression of 4F2hc in the jejunal mucosa and ileum mucosa of the R group was ameliorated (p < 0.05). The relative abundance of Synergistetes in the colon of the R group was increased, Proteobacteria was diminished by FMT (p < 0.05). On Day 40, the concentrations of IgA, IgG, and interleukin-2 detected in the plasma of the R group were increased (p < 0.05). FXR and fibroblast growth factor 19 gene expression was upregulated in ileum mucosa, CYP7A1 and Na+ taurocholate cotransporter polypeptide gene expression were downregulated in the liver and organic solute transporters α/ß was downregulated in colonic mucosa (p < 0.05). The relative abundance of Proteobacteria and Spirochaetes in the colon of the R group was decreased (p < 0.05). In conclusion, an early FMT with lactation Min sows as faecal donors can alter the small intestine amino acid transport capacity, bile acid circulation, and colonic microbiota of recipient piglets during lactation and after weaning.


Assuntos
Ácidos e Sais Biliares , Transplante de Microbiota Fecal , Suínos , Animais , Feminino , Transplante de Microbiota Fecal/veterinária , Intestino Delgado , Aminoácidos , Imunoglobulina A
19.
Int J Biol Macromol ; 226: 965-973, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36526066

RESUMO

Intact cells, as the smallest unit of whole foods, were isolated from three legume crops and fermented with human faecal inoculum to elucidate the effect of food macro-nutrients compositional difference (starch, proteins and lipids) on in vitro colonic fermentation profiles. After 48 h of fermentation, the highest production of short-chain fatty acids (SCFAs) were observed for the pea cells, abundance in starch (64.9 %, db). In contrast, branch chain fatty acids (BCFAs) were the major metabolites for protein-enriched soybean cells (protein content 56.9 %, db). The peanut cells rich in lipids (49.2 %, db) has the lowest fermentation rate among the three varieties. Correspondingly, pea cells favoured the growth of Bifidobacterium, whereas soybean and peanut cells promoted an abundance of Bacteroides and Shigella, respectively. Furthermore, except the intact pea cells promoting the abundance of butyrate producer Roseburia, a similar fermentation pattern was found between intact and broken cells suggesting that macro-nutrient types, rather than structure, dominate the production of metabolites in colonic fermentation. The findings elucidate how the food compositional difference can modulate the gut microbiome and thus provide the knowledge to design whole food legumes-based functional foods.


Assuntos
Fabaceae , Microbiota , Humanos , Amido/química , Células Vegetais , Fermentação , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Fabaceae/metabolismo , Verduras
20.
Front Vet Sci ; 9: 982349, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246311

RESUMO

Gut microbiota and its metabolites play a key role in host metabolism. Our previous study found supplemental Lactobacillus delbrueckii affected lipid metabolism of pigs, however, the underlying mechanism is unclear. In this study, we investigated the effects of L. delbrueckii on colonic bacteria composition and its metabolites, serum lipids and hormone levels, fat metabolism related enzyme activity and gene expression in various tissues of growing-finishing pigs. Twelve pigs were randomly distributed into two groups (n = 6), and pigs in each group were fed diets with (Con + LD) or without (Con) 0.1 % L. delbrueckii for 28 days. Results exhibited the deceased triglyceride (TG) levels and elevated free fatty acid (FFA) contents in serum and increased concentrations of butyric acid in colonic digesta after L. delbrueckii supplementation. Dietary L. delbrueckii increased abundance of Lactobacillus and Butyrivibri and tended to increase abundance of Akkermansia and Megasphaera in colonic digesta. L. delbrueckii consumption up-regulated glucagon-like peptide1 (GLP-1), monocarboxylate transporter1 (MTC1) and sodium-dependent monocarboxylate transporter1 (SMCT1) expression in colonic tissue. Administration of L. delbrueckii tended to increase lipoprotein lipase (LPL) activity, up-regulated CPT-1, angiopoietin-like protein 4 (Angpt14), LPL and triglyceride hydrolase (TGH) expression and down-regulated fatty acid synthetase (FAS), G protein-coupled receptor 41(GPR41) and GPR43 expression in the liver. L. delbrueckii addition increased adenosine monophosphate activated protein kinase (AMPK) expression in longissimus dorsi, upregulated LPL, CPT-1, Angptl4 and cluster of differentiation 36 (CD36) expression in subcutaneous fat, and enhanced LPL, CPT-1, TGH, adipocyte determination and differentiation-dependent factor 1 (ADD1) and hormone sensitive lipase (HSL) expression in leaf lard. These findings suggested that L. delbrueckii might enhance lipolysis and fatty acid ß-oxidation to lower serum TG levels via colonic microbiota modulation and short chain fatty acids-mediated lipid metabolism of growing-finishing pigs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA