Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Food Microbiol ; 122: 104560, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38839236

RESUMO

Although bacteriophage-based biosensors hold promise for detecting Staphylococcus aureus in food products in a timely, simple, and sensitive manner, the associated targeting mechanism of the biosensors remains unclear. Herein, a colourimetric biosensor SapYZU11@ZnFe2O4, based on a broad-spectrum S. aureus lytic phage SapYZU11 and a ZnFe2O4 nanozyme, was constructed, and its capacity to detect viable S. aureus in food was evaluated. Characterisation of SapYZU11@ZnFe2O4 revealed its effective immobilisation, outstanding biological activity, and peroxidase-like capability. The peroxidase activity of SapYZU11@ZnFe2O4 significantly decreased after the addition of S. aureus, potentially due to blockage of the nanozyme active sites. Moreover, SapYZU11@ZnFe2O4 can detect S. aureus from various sources and S. aureus isolates that phage SapYZU11 could not lyse. This may be facilitated by the adsorption of the special receptor-binding proteins on the phage tail fibre and wall teichoic acid receptors of S. aureus. Besides, SapYZU11@ZnFe2O4 exhibited remarkable sensitivity and specificity when employing colourimetric techniques to rapidly determine viable S. aureus counts in food samples, with a detection limit of 0.87 × 102 CFU/mL. Thus, SapYZU11@ZnFe2O4 has broad application prospects for the detection of viable S. aureus cells on food substrates.


Assuntos
Técnicas Biossensoriais , Colorimetria , Contaminação de Alimentos , Microbiologia de Alimentos , Staphylococcus aureus , Staphylococcus aureus/isolamento & purificação , Técnicas Biossensoriais/métodos , Colorimetria/métodos , Contaminação de Alimentos/análise , Fagos de Staphylococcus , Limite de Detecção
2.
Heliyon ; 10(9): e28965, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38694067

RESUMO

A sustainable procedure offering green, simple, and rapid analysis was developed to determine benzalkonium chloride (BKC) in pharmaceutical preparations. The determination using smartphones was based on the ion pair colorimetric reaction with bromothymol blue (BTB), which produces a yellow color. The intensity of the product color, which is proportional to the concentration of BKC, was detected and evaluated using a smartphone camera and an image processing application. The procedure was performed in a microliter and was rapidly detected within 1 min after incubation. This offered high throughput at 28 samples per well plate in duplicate. Linear calibration, which was a plot of BKC concentrations and relative red intensities, was in the range of 2.0-24.0 µg/mL with an R2 of 0.997. The limits of detection (LOD) and quantitation (LOQ) were 1.0 and 3.2 µg/mL, respectively. This work was successful in applying it to pharmaceutical materials, disinfectant products, and pharmaceutical products containing BKC. It was discovered that the concentrations of BKC as an active ingredient in pharmaceutical materials were 82% w/v, whereas those in disinfectant products ranged from 0.4 to 2.1% w/v. In pharmaceutical products, ophthalmic drops and nasal sprays contain BKC as preservatives in the 0.01-0.02, and the 0.02% w/v, respectively. The results obtained by the proposed procedure compared with a reference titration method showed no significant differences at a 95% confidence level with 1.2-3.4% RSDs. This promotes the efficiency of pharmaceutical preparations regarding infection prevention and control by ensuring that available disinfectants contain a sufficient concentration of BKC. Additionally, this improves the efficiency of pharmaceutical preparations for quality control of pharmaceutical products by ensuring that the available preservatives maintain a sufficient concentration throughout the lifespan of the products.

3.
Mikrochim Acta ; 191(6): 331, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38744722

RESUMO

A broad host range phage-based nanozyme (Fe-MOF@SalmpYZU47) was prepared for colorimetric detection of multiple Salmonella enterica strains. The isolation of a broad host range phage (SalmpYZU47) capable of infecting multiple S. enterica strains was achieved. Then, it was directly immobilized onto the Fe-MOF to prepare Fe-MOF@SalmpYZU47, exhibiting peroxidase-like activity. The peroxidase-like activity can be specifically inhibited by multiple S. enterica strains, benefiting from the broad host range capture ability of Fe-MOF@SalmpYZU47. Based on it, a colorimetric detection approach was developed for S. enterica in the range from 1.0 × 102 to 1.0 × 108 CFU mL-1, achieving a low limit of detection (LOD) of 11 CFU mL-1. The Fe-MOF@SalmpYZU47 was utilized for detecting S. enterica in authentic food samples, achieving recoveries ranging from 91.88 to 105.34%. Hence, our proposed broad host range phage-based nanozyme exhibits significant potential for application in the colorimetric detection of pathogenic bacteria.


Assuntos
Colorimetria , Limite de Detecção , Estruturas Metalorgânicas , Salmonella enterica , Colorimetria/métodos , Salmonella enterica/isolamento & purificação , Salmonella enterica/química , Estruturas Metalorgânicas/química , Microbiologia de Alimentos/métodos , Contaminação de Alimentos/análise , Peroxidase/química
4.
Int J Food Microbiol ; 416: 110657, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38452659

RESUMO

Although bacteriophage-based biosensors are promising tools for rapid, convenient, and sensitive detection of Staphylococcus aureus in food products, the effect of biosensors using temperate phages as biorecognition elements to detect viable S. aureus isolates remains unclear. In this study, three temperate S. aureus phages were isolated and their biological features (one-step growth, host range, pH stability, temperature stability, and adsorption rate) were evaluated as the biological element. The selected phage SapYZUs8 was immobilized on the nanozyme Cu-MOF via electrostatic interactions to generate SapYZUs8@Cu-MOF, and its detection performance in real food (skim milk and pork) was then evaluated. Compared with phages SapYZUm7 and SapYZUs16, phage SapYZUs8 exhibited a broader host range, greater pH stability (3-12), and a better absorption rate (92 %, 8 min) suitable for S. aureus detection, which is likely the result of the DNA replication (DNA helicase) and phage tail protein genes in the SapYZUs8 genome. Therefore, phage SapYZUs8 was fixed on Cu-MOF to generate SapYZUs8@Cu-MOF, which exhibited good sensitivity and specificity for rapid colourimetric detection of viable S. aureus. The method took <0.5 h, and the detection limit was 1.09 × 102 CFU/mL. In addition, SapYZUs8@Cu-MOF was successfully employed for the colourimetric detection of S. aureus in food samples without interference from different food additives, NaCl concentrations, or pH values. With these benefits, it allows rapid visual assessment of S. aureus levels.


Assuntos
Bacteriófagos , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Colorimetria , Alimentos , Fagos de Staphylococcus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA