RESUMO
Introduction: Low temperature inhibits the growth of most microorganisms. However, some microbes can grow well in a low temperature, even a freezing temperature. Methods: In this study, the mechanisms conferring cold resistance in the cryophylactic yeast Metschnikowia (M.) pulcherrima MS612, an isolate of the epidermis of ice grapes, were investigated based on comparative transcriptome analysis. Results: A total of 6018 genes and 374 differentially expressed genes (> 2-fold, p < 0.05) were identified using RNA-Seq. The differentially expressed genes were mainly involved in carbohydrate and energy metabolism, transport mechanisms, antifreeze protection, lipid synthesis, and signal transduction. M. pulcherrima MS612 maintained normal growth at low temperature (5°C) by enhancing energy metabolism, sterol synthesis, metal ion homeostasis, amino acid and MDR transport, while increased synthesis of glycerol and proline transport to improve its resistance to the freezing temperature (-5°C). Furthermore, cAMP-PKA and ERAD signaling pathways contribute to resist the low temperature and the freezing temperature, respectively. Conclusion: This study provides new insights into cold resistance in cryophylactic microorganisms for maneuvering various metabolism to resist different cold environment.
RESUMO
Terpenoids, as the main components of the floral scent, exhibit interspecific variations and spatial specificity in Chrysanthemum genus. Here, we selected two primary species as the ancestors of C. morifolium along with two classic cultivars to investigate the influence of domestication on the variations in emission and production of floral terpenoids. The results indicated that the wild relatives emitted and accumulated higher levels of terpenoids in their disc florets and phyllaries & receptacles compared to the cultivars. Six gene modules associated with terpenoid production in three floral organs were characterized through WGCNA. Furthermore, 28 terpene synthase (TPS) genes were identified from both wild relatives and cultivars by comparative transcriptome database. In vitro enzymatic activity assay revealed that several products of monoterpenoids (α-pinene and α-terpinene) and sesquiterpenoids (ß-farnesene, α-copaene and γ-curcumene), were commonly catalyzed by TPSs identified from wild relatives and cultivars. Nevertheless, we found that ß-myrcene, ß-elemene, ß-cadinene and ß-caryophyllene were predominantly produced by TPSs in the wild relatives, while d-limonene and ß-copaene were specifically catalyzed by TPSs in the cultivars. It was also observed that the expression of the CiLSTPS3 gene could be associated with the emission and accumulation of ß-caryophyllene in floral scent. Overall, the complex biochemical functions of TPSs, along with their varying expression patterns, significantly contribute to the interspecific variations of floral terpenoids in the Chrysanthemum genus. Our findings provide new insights into the molecular and biochemical mechanisms underlying the impact of domestication on the production of floral terpenoids in Chrysanthemum.
RESUMO
Herbivores harbor gut microbes that affect their development and contribute to their nutrition, reproduction, and survival. Plant defenses could target the herbivore's beneficial gut microbes, but this has not been well studied in rice. In this context, we identified a rice terpene synthase gene, Os04g0341500. It was strongly induced after feeding by rice striped stem borers (SSB, Chilo suppressalis), and it can catalyze the (E)-ß-farnesene (Eßf) synthesis. When added to artificial diets, Eßf impaired the development and survival of SSB larvae. High-throughput amplicon sequencing revealed that SSB fed on Eßf were decreased in beneficial gut microbes, compared to those feeding on the corresponding control feed. In vitro feeding of Eßf suggested that this antimicrobial sesquiterpene directly inhibited the growth of SSB gut microbes. The present study suggested that the Eßf-induced decrease of relative abundance of gut microbes potentially impairs larval development and survival in SSB.
Assuntos
Bactérias , Microbioma Gastrointestinal , Larva , Mariposas , Oryza , Sesquiterpenos , Animais , Sesquiterpenos/farmacologia , Sesquiterpenos/metabolismo , Oryza/parasitologia , Oryza/microbiologia , Oryza/química , Oryza/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Mariposas/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , HerbivoriaRESUMO
Procambarus clarkii (Girard, 1852) has important economic value in China and internationally. In this research, the comparative transcriptome analysis was used to reveal molecular mechanisms of influences of photoperiod and light intensity on ovarian development in P. clarkii for the first time. Some genes (such as laminin, collagen, integrin beta, catenin) and pathways (including TGF-beta signaling pathway, focal adhesion, ECM-receptor interaction) associated with ovarian development and oocyte maturation were significantly upregulated. Some genes related to circadian clock (such as CLK, PER) were identified in this research. The results indicated that when light intensity or photoperiod increased, P. clarkii could up-regulate the expression levels of the laminin and collagen, thereby synthesizing related proteins, promoting meiosis of the oocytes, thus increasing the number of oocytes in the ovary. At the same time, P. clarkii could up-regulate the expression levels of integrin beta, integrin alpha 6, and diacylglycerol to synthesize related proteins, thereby promoting the formation of proteins and fats such as triglycerides, these proteins and fats can provide material basis for maturation and development of oocytes, resulting in oocyte maturation and ovarian development. P. clarkii could synthesize related proteins by upregulating expression levels of genes (such as catenin), these proteins or hormones can adhere to other actins (such as integrins), thereby stabilizing the morphology of the oocytes and ensuring normal development. Meantime, the increase in light intensity or photoperiod could cause release GSH and VTG, resulting in oocytes development and maturation. The data in this research can reveal molecular mechanisms of impacts of photoperiod and light intensity on oocyte maturation and ovarian development in P. clarkii, can offer crucial genomic data for studying developmental mechanisms of ovary and oocyte in crustacean.
RESUMO
Transposon mutagenesis screening of Bacillus subtilis YB-1471, a novel rhizosphere biocontrol agent of Fusarium crown rot (FCR) of wheat, resulted in the identification of orf04391, linked to reduced biofilm formation. The gene encodes a protein possessing a putative tertiary structure of a "double-wing" DNA-binding domain. Expression of orf04391 increased during biofilm development in stationary cultures and during rapid growth in shaking cultures. An orf04391 deletion strain showed reduced biofilm production related to lower levels of the extracellular matrix, and the mutant also had reduced sporulation, adhesion, root colonization, and FCR biocontrol efficiency. Transcriptome analysis of YB-1471 and Δorf04391 in stationary culture showed that the loss of orf04391 resulted in altered expression of numerous genes, including sinI, an initiator of biofilm formation. DNA binding was shown with his-tagged Orf04391 binding to the sinIR operon in vivo and in vitro. Orf04391 appears to be a transcriptional regulator of biofilm formation in B. subtilis through the Spo0A-SinI/SinR pathway.
Assuntos
Bacillus subtilis , Proteínas de Bactérias , Fusarium , Doenças das Plantas , Triticum , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Biofilmes/crescimento & desenvolvimento , Fusarium/genética , Fusarium/metabolismo , Fusarium/fisiologia , Regulação Bacteriana da Expressão Gênica , Doenças das Plantas/microbiologia , Triticum/microbiologiaRESUMO
Leishmaniasis is one of the most important neglected tropical parasitic diseases, manifesting various clinical forms depending on the parasite species and the genetic background of the host. In order to elucidate the underlying mechanisms of reptilian defense against pathogenic Leishmania species and to delineate the global gene expression profile alterations during host-pathogen interaction, we established experimental animal and cell models using both heterothermic lizards (Phrynocephalus przewalskii) and homothermic mammals (BALB/c mice) infected with pathogenic Leishmania infantum (high virulence HCZ strain) and Leishmania donovani (low virulence 801 strain). Overall, the lizards didn't show any obvious clinical symptoms or immune responses in vivo. Using RNA-seq methodology, differentially expressed genes identified in the HCZ and 801-comparison groups of P. przewalskii were primarily associated with arginine biosynthesis, the MAPK signaling pathway and the PI3K-Akt signaling pathway. In contrast, higher parasite loads, exacerbated hepatic inflammatory lesions and enhanced immune responses were observed in BALB/c mice, with DEGs predominantly associated with immunological diseases, innate and adaptive immune responses. By integrating transcriptional data from reptile and mammalian hosts, we elucidated the pivotal role of amino acid metabolism and lipid metabolism in parasite control. In contrast to findings from animal experiments, Leishmania parasites effectively infected peritoneal macrophages of lizards in vitro, demonstrating a high infection rate. Furthermore, we used RT-qPCR to detect changes in cytokine expression in macrophages and found that Th1-type cytokines were significantly upregulated in lizards, facilitating the clearance of the HCZ strain 24 hours post-infection. Conversely, cytokine expression was generally suppressed in BALB/c mice, allowing immune evasion by the parasites.
Assuntos
Perfilação da Expressão Gênica , Leishmania infantum , Leishmaniose Visceral , Lagartos , Camundongos Endogâmicos BALB C , Animais , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/veterinária , Lagartos/parasitologia , Camundongos , Leishmania infantum/genética , Leishmania donovani/genética , Leishmania donovani/patogenicidade , Feminino , Transcriptoma , Carga Parasitária , Interações Hospedeiro-PatógenoRESUMO
Low temperature is one of the most important environmental factors that inhibits rice growth and grain yield. Transcription factors (TFs) play crucial roles in chilling acclimation by regulating gene expression. However, transcriptional dynamics and key regulators responding to low temperature remain largely unclear in rice. In this study, a transcriptome-based comparative analysis was performed to explore genome-wide gene expression profiles between a chilling-resistant cultivar DC90 and a chilling-susceptible cultivar 9311 at a series of time points under low temperature treatment and recovery condition. A total of 3,590 differentially expressed genes (DEGs) between two cultivars were determined and divided into 12 co-expression modules. Meanwhile, several biological processes participating in the chilling response such as abscisic acid (ABA) responses, water deprivation, protein metabolic processes, and transcription regulator activities were revealed. Through weighted gene co-expression network analysis (WGCNA), 15 hub TFs involved in chilling conditions were identified. Further, we used the gene regulatory network (GRN) to evaluate the top 50 TFs, which might have potential roles responding to chilling stress. Finally, five TFs, including a C-repeat binding factor (OsCBF3), a zinc finger-homeodomain protein (OsZHD8), a tandem zinc finger protein (OsTZF1), carbon starved anther (CSA), and indeterminate gametophyte1 (OsIG1) were identified as crucial candidates responsible for chilling resistance in rice. This study deepens our understanding in the gene regulation networks of chilling stress in rice and offers potential gene resources for breeding climate-resilient crops.
RESUMO
Bud sports in fruit crops often result in new cultivars with unique traits, such as distinct fruit size and color, compared to their parent plants. This study investigates the phenotypic differences and gene expression patterns in Tonewase and Ohtanenashi persimmon bud sports compared to those in their parent, Hiratanenashi, based on RNA-seq data. Tonewase is characterized by early maturation, whereas Ohtanenashi is noted for its larger fruit size. Despite the importance of these traits in determining fruit quality, their molecular bases in persimmons have been understudied. We compared transcriptome-level differences during fruit development between the bud sport samples and their original cultivar. Comprehensive transcriptome analyses identified 15,814 differentially expressed genes and 26 modules via weighted gene co-expression network analysis. Certain modules exhibited unique expression patterns specific to the different cultivars during fruit development, likely contributing to the phenotypic differences observed. Specifically, M11, M16, M22, and M23 were uniquely expressed in Tonewase, whereas M13 and M24 showed distinct patterns in Ohtanenashi. By focusing on genes with distinct expression profiles, we aimed to uncover the genetic basis of cultivar-specific traits. Our findings suggest that changes in the expression of genes associated with ethylene and cell wall pathways may drive Tonewase's earlier maturation, whereas genes related to the cell cycle within the M24 module appear crucial for Ohtanenashi's larger fruit size. Additionally, ethylene and transcription factor genes within this module may contribute to the increased fruit size observed. This study elucidates the differences in transcriptomic changes during fruit development between the two bud sport samples and their original cultivar, enhancing our understanding of the genetic determinants influencing fruit size and maturation.
RESUMO
Introduction: Scleroderma bovista can form symbiotic ectomycorrhizal fungi with hazel roots. The mechanism through which S. bovista promotes hazelnut growth remains unclear. Methods: This study aimed to evaluate the effect of ectomycorrhizal fungus S. bovista on the growth and development of hazel roots and gene expression changes through comparative transcriptome analysis. Results: After inoculation with S. bovista, the fungus symbiotically formed ectomycorrhiza with hazel roots. The fresh weights of the aboveground and underground parts of My treatment (inoculated with S. bovista and formed mycorrhiza) were much higher than those of the control, respectively. The length, project area, surface area, volume, forks, and diameter of the inoculated seedlings root were 1.13 to 2.48 times higher than those of the control. In the paired comparison, 3,265 upregulated and 1,916 downregulated genes were identified. The most significantly enriched Gene Ontology term for the upregulated Differentially Expressed Genes was GO:0005215 (transporter activity). Immunohistochemical analysis suggested that the expression levels of auxin and Auxin Response Factor9 were significantly increased by S. bovista after the formation of mycorrhizal fungi in hazelnut root tips. Discussion: These results indicate that genes related to auxin biosynthesis, transport and signaling, and transport of nutrients may contribute to root development regulation in hazel ectomycorrhiza.
RESUMO
BACKGROUND: Venoms have repeatedly evolved over 100 occasions throughout the animal tree of life, making them excellent systems for exploring convergent evolutionary novelty. Growing evidence supports that venom evolution is predominantly driven by prey or host-related selection pressures, and the expression patterns of venom glands reflect adaptive evolution. However, it remains elusive whether the evolution of expression patterns in venom glands is likewise a convergent evolution driven by their prey/host species. RESULTS: We utilized parasitoid wasps that had independently adapted to Drosophila hosts as models to investigate the convergent evolution of venom gland transcriptomes in 19 hymenopteran species spanning ~ 200 million years of evolution. Comparative transcriptome analysis reveals that the global expression patterns among the venom glands of Drosophila parasitoid wasps do not achieve higher similarity compared to non-Drosophila parasitoid wasps. Further evolutionary analyses of expression patterns at the single gene, orthogroup, and Gene Ontology (GO) term levels indicate that some orthogroups/GO terms show correlation with the Drosophila parasitoid wasps. However, these groups rarely include genes highly expressed in venom glands or putative venom genes in the Drosophila parasitoid wasps. CONCLUSIONS: Our study suggests that convergent evolution may not play a predominant force shaping gene expression levels in the venom gland of the Drosophila parasitoid wasps, offering novel insights into the co-evolution between venom and prey/host.
Assuntos
Evolução Molecular , Transcriptoma , Venenos de Vespas , Vespas , Animais , Vespas/genética , Vespas/fisiologia , Venenos de Vespas/genética , Drosophila/genética , Drosophila/parasitologia , Interações Hospedeiro-Parasita/genética , Evolução BiológicaRESUMO
Vicia villosa (VV) and Vicia sativa (VS) are legume forages highly valued for their excellent nitrogen fixation. However, no research has addressed the mechanisms underlying their differences in nitrogen fixation. This study employed physiological, cytological, and comparative transcriptomic approaches to elucidate the disparities in nitrogen fixation between them. Our results showed that the total amount of nitrogen fixed was 60.45% greater in VV than in VS, and the comprehensive nitrogen response performance was 94.19% greater, while the nitrogen fixation efficiency was the same. The infection zone and differentiated bacteroid proportion in mature VV root nodules were 33.76% and 19.35% greater, respectively, than those in VS. The size of the VV genome was 15.16% larger than that of the VS genome, consistent with its greater biomass. A significant enrichment of the flavonoid biosynthetic pathway was found only for VV-specific genes, among which chalcone-flavonone isomerase, caffeoyl-CoA-O-methyltransferase and stilbene synthase were extremely highly expressed. The VV-specific genes also exhibited significant enrichment in symbiotic nodulation; genes related to nodule-specific cysteine-rich peptides (NCRs) comprised 61.11% of the highly expressed genes. qRTâPCR demonstrated that greater enrichment and expression of the dominant NCR (Unigene0004451) were associated with greater nodule bacteroid differentiation and greater nitrogen fixation in VV. Our findings suggest that the greater total nitrogen fixation of VV was attributed to its larger biomass, leading to a greater nitrogen demand and enhanced fixation physiology. This process is likely achieved by the synergistic effects of high bacteroid differentiation along with high expression of flavonoid and NCR genes.
Assuntos
Flavonoides , Fixação de Nitrogênio , Transcriptoma , Fixação de Nitrogênio/genética , Flavonoides/metabolismo , Transcriptoma/genética , Vicia sativa/genética , Vicia sativa/metabolismo , Vicia/genética , Vicia/metabolismo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cisteína/metabolismo , Peptídeos/metabolismo , Peptídeos/genéticaRESUMO
Foliar pigmentation patterns vary among plant species and growth conditions. In this study, we utilize hyperspectral imaging to assess foliar pigmentation in the bryophyte Marchantia polymorpha under nutrient stress and identify associated genetic factors. Using singular value decomposition (SVD) for feature selection, we quantitate color variations induced by deficiencies in phosphate, nitrate, magnesium, calcium, and iron. Pseudo-colored thallus images show that disrupting MpWRKY10 causes irregular pigmentation with auronidin accumulation. Transcriptomic profiling shows that MpWRKY10 regulates phenylpropanoid pathway enzymes and R2R3-MYB transcription factors during phosphate deficiency, with MpMYB14 upregulation preceding pigment accumulation. MpWRKY10 is downregulated in older, pigmented thalli under phosphate deficiency but maintained in young thalli, where it suppresses pigmentation genes. This downregulation is absent in pigmented thalli due to aging. Comparative transcriptome analysis suggests similar WRKY and MYB roles in nutrient response and pigmentation in red-leaf lettuce, alluding to conserved genetic factors controlling foliar pigmentation patterns under nutrient deficiency.
Assuntos
Regulação da Expressão Gênica de Plantas , Imageamento Hiperespectral , Marchantia , Pigmentação , Proteínas de Plantas , Pigmentação/genética , Marchantia/genética , Marchantia/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Imageamento Hiperespectral/métodos , Folhas de Planta/metabolismo , Folhas de Planta/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genéticaRESUMO
BACKGROUND: 2-Phenylethanol (2-PE) is one of the most widely used spices. Recently, 2-PE has also been considered a potential aviation fuel booster. However, the lack of scientific understanding of the 2-PE biosynthetic pathway and the cellular response to 2-PE cytotoxicity are the most important obstacles to the efficient biosynthesis of 2-PE. RESULTS: Here, metabolic engineering and tolerance engineering strategies were used to improve the production of 2-PE in Komagataella phaffii. First, the endogenous genes encoding the amino acid permease GAP1, aminotransferase AAT2, phenylpyruvate decarboxylase KDC2, and aldehyde dehydrogenase ALD4 involved in the Ehrlich pathway and the 2-PE stress response gene NIT1 in K. phaffii were screened and characterized via comparative transcriptome analysis. Subsequently, metabolic engineering was employed to gradually reconstruct the 2-PE biosynthetic pathway, and the engineered strain S43 was obtained, which produced 2.98 g/L 2-PE in shake flask. Furthermore, transcriptional profiling analyses were utilized to screen for novel potential tolerance elements. Our results demonstrated that cells with knockout of the PDR12 and C4R2I5 genes exhibited a significant increase in 2-PE tolerance. To confirm the practical applications of these results, deletion of the PDR12 and C4R2I5 genes in the hyper 2-PE producing strain S43 dramatically increased the production of 2-PE by 18.12%, and the production was 3.54 g/L. CONCLUSION: This is the highest production of 2-PE produced by K. phaffii via L-phenylalanine conversion. These identified K. phaffii endogenous elements are highly conserved in other yeast species, suggesting that manipulation of these homologues might be a useful strategy for improving aromatic alcohol production. These results also enrich the understanding of aromatic compound biosynthetic pathways and 2-PE tolerance, and provide new elements and strategies for the synthesis of aromatic compounds by microbial cell factories.
RESUMO
Spodoptera litura commonly known as the cutworm, is among the most destructive lepidopteran pests affecting over 120 plants species. The powerful destructive nature of this lepidopteran is attributable to its high reproductive capacity. The testicular fusion that occurs during metamorphosis from larvae to pupa in S.litura positively influences the reproductive success of the offspring. In contrast, Bombyx mori, the silkworm, retains separate testes throughout its life and does not undergo this fusion process. Microscopic examination reveals that during testicular fusion in S.litura, the peritoneal sheath becomes thinner and more translucent, whereas in B.mori, the analogous region thickens. The outer basement membrane in S.litura exhibits fractures, discontinuity, and uneven thickness accompanied by a significant presence of cellular secretions, large cell size, increased vesicles, liquid droplets, and a proliferation of rough endoplasmic reticulum and mitochondria. In contrast, the testicular peritoneal sheath of B.mori at comparable developmental stage exhibits minimal change. Comparative transcriptomic analysis of the testicular peritoneal sheath reveals a substantial difference in gene expression between the two species. The disparity in differential expressed genes (DEGs) is linked to an enrichment of numerous transcription factors, intracellular signaling pathways involving Ca2+ and GTPase, as well as intracellular protein transport and signaling pathways. Meanwhile, structural proteins including actin, chitin-binding proteins, membrane protein fractions, cell adhesion, extracellular matrix proteins are predominantly identified. Moreover, the study highlights the enrichment of endopeptidases, serine proteases, proteolytic enzymes and matrix metalloproteins, which may play a role in the degradation of the outer membrane. Five transcription factors-Slforkhead, Slproline, Slcyclic, Slsilk, and SlD-ETS were identified, and their expression pattern were confirmed by qRT-PCR. they are candidates for participating in the regulation of testicular fusion. Our findings underscore significant morphological and trancriptomic variation in the testicular peritoneal sheath of S.litura compared to the silkworm, with substantial changes at the transcriptomic level coinciding with testicular fusion. The research provides valuable clues for understanding the complex mechanisms underlying this unique phenomenon in insects.
Assuntos
Bombyx , Spodoptera , Testículo , Transcriptoma , Animais , Masculino , Spodoptera/genética , Testículo/metabolismo , Transcriptoma/genética , Bombyx/genética , Bombyx/metabolismo , Larva/genética , Larva/metabolismo , Metamorfose Biológica/genética , Metamorfose Biológica/fisiologiaRESUMO
Aeromonas veronii, an opportunistic pathogen, is known to cause serious infections across various species. In our previous study, we discovered that A. veronii GL2 exhibited a virulence up to ten times greater than that of FO1. To ascertain the factors contributing to the disparity in virulence between the two strains, we conducted a comparative transcriptome analysis. This analysis reveals a significant upregulation (P < 0.05) of the ascR gene in GL2 compared with FO1. Additionally, six differentially expressed genes (DEGs) were identified within the "Bacterial secretion system" pathway (map03070), with ascR being an essential component of type III secretion system (T3SS). AscR, considered as SctR family export apparatus subunit within the T3SS, has ambiguous roles in the biological properties, gene expression profiles, virulence and colonization of A. veronii. Therefore, we constructed a mutant strain (ΔascR) by homologous recombination. Comparative analysis with the wide-type GL2 reveals no significant differences in terms of colony morphology, growth curve, hemolytic activity and protease activity. However, significant reductions (P < 0.01) were observed in the abilities of biofilm formation and swimming mobility. No remarkable difference was noted in the lengths of flagella. The LD50 value of ΔascR was to be 5.15 times higher than that of GL2. Interestingly, the mRNA expression of ascC, ascD, ascJ and ascI genes in the T3SS, and mshB, mshE, mshK and mshP genes in the MSHA type pili were significantly upregulated (P < 0.05) in ΔascR, potentially due to transcriptional compensation. Further analysis of enzymatic biomarkers revealed that ΔascR might not destruct the recognition of innate immune response in host remarkably, but the colonization levels of A.veronii were significantly suppressed (P < 0.01) in ΔascR group. In conclusion, the ascR gene may be a key determinant in regulating the virulence of A. veronii, and the destruction of the T3SS caused by ascR deficiency results in these notable changes.
Assuntos
Aeromonas veronii , Regulação Bacteriana da Expressão Gênica , Transcriptoma , Sistemas de Secreção Tipo III , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Aeromonas veronii/patogenicidade , Aeromonas veronii/genética , Virulência/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Perfilação da Expressão Gênica , Biofilmes/crescimento & desenvolvimento , AnimaisRESUMO
The mechanism of ethylene (ET)-regulated salinity stress response remains largely unexplained, especially for semi-halophytes and halophytes. Here, we present the results of the multifaceted analysis of the model semi-halophyte Mesembryanthemum crystallinum L. (common ice plant) ET biosynthesis pathway key components' response to prolonged (14 days) salinity stress. Transcriptomic analysis revealed that the expression of 3280 ice plant genes was altered during 14-day long salinity (0.4 M NaCl) stress. A thorough analysis of differentially expressed genes (DEGs) showed that the expression of genes involved in ET biosynthesis and perception (ET receptors), the abscisic acid (ABA) catabolic process, and photosynthetic apparatus was significantly modified with prolonged stressor presence. To some point this result was supported with the expression analysis of the transcript amount (qPCR) of key ET biosynthesis pathway genes, namely ACS6 (1-aminocyclopropane-1-carboxylate synthase) and ACO1 (1-aminocyclopropane-1-carboxylate oxidase) orthologs. However, the pronounced circadian rhythm observed in the expression of both genes in unaffected (control) plants was distorted and an evident downregulation of both orthologs' was induced with prolonged salinity stress. The UPLC-MS analysis of the ET biosynthesis pathway rate-limiting semi-product, namely of 1-aminocyclopropane-1-carboxylic acid (ACC) content, confirmed the results assessed with molecular tools. The circadian rhythm of the ACC production of NaCl-treated semi-halophytes remained largely unaffected by the prolonged salinity stress episode. We speculate that the obtained results represent an image of the steady state established over the past 14 days, while during the first hours of the salinity stress response, the view could be completely different.
Assuntos
Etilenos , Regulação da Expressão Gênica de Plantas , Estresse Salino , Plantas Tolerantes a Sal , Etilenos/biossíntese , Etilenos/metabolismo , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo , Mesembryanthemum/metabolismo , Mesembryanthemum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vias Biossintéticas , Perfilação da Expressão Gênica/métodos , Ácido Abscísico/metabolismo , Salinidade , TranscriptomaRESUMO
Microbial degradation of feathers offers potential for bioremediation, yet the microbial response mechanisms warrant additional investigation. In prior work, Pseudomonas aeruginosa Gxun-7, which demonstrated robust degradation of feathers at elevated concentrations, was isolated. However, the molecular mechanism of this degradation remains only partially understood. To investigate this, we used RNA sequencing (RNA-seq) to examine the genes that were expressed differentially in P. aeruginosa Gxun-7 when exposed to 25 g/L of feather substrate. The RNA-seq analysis identified 5571 differentially expressed genes; of these, 795 were upregulated and 603 were downregulated. Upregulated genes primarily participated in proteolysis, amino acid, and pyruvate metabolism. Genes encoding proteases, as well as those involved in sulfur metabolism, phenazine synthesis, and type VI secretion systems, were notably elevated, highlighting their crucial function in feather decomposition. Integration of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) taxonomies, combined with a review of the literature, led us to propose that metabolic feather degradation involves environmental activation, reducing agent secretion, protease release, peptide/amino acid uptake, and metabolic processes. Sulfite has emerged as a critical activator of keratinase catalysis, while cysteine serves as a regulatory mediator. qRT-PCR assay results for 11 selected gene subset corroborated the RNA-seq findings. This study enhances our understanding of the transcriptomic responses of P. aeruginosa Gxun-7 to feather degradation and offers insights into potential degradation mechanisms, thereby aiding in the formulation of effective feather waste management strategies in poultry farming.
RESUMO
Grass carp (Ctenopharyngodon idella) and barbel chub (Squaliobarbus curriculus)-both Leuciscinae subfamily species-demonstrate differences in grass carp reovirus (GCRV) infection resistance. We infected barbel chubs with type II GCRV and subjected their liver, spleen, head kidney, and trunk kidney samples to investigate anti-GCRV immune mechanisms via RNA sequencing and quantitative real-time polymerase chain reaction (qRT-PCR). We identified 139, 970, 867, and 2374 differentially expressed genes (DEGs) in the liver, spleen, head kidney, and trunk kidney, respectively. Across all four tissues, gene ontology analysis revealed significant immune response-related DEG enrichment, and the Kyoto Encyclopedia of Genes and Genomes analysis revealed pattern recognition receptor (PRR) and cytokine-related pathway enrichment. We noted autophagy pathway enrichment in the spleen, head kidney, and trunk kidney; apoptosis pathway enrichment in the spleen and trunk kidney; and complement- and coagulation-cascade pathway enrichment in only the spleen. Comparative transcriptome analysis between GCRV-infected barbel chubs and uninfected barbel chubs comprehensively revealed that PRR, cytokine-related, complement- and coagulation-cascade, apoptosis, and autophagy pathways are potential key factors influencing barbel chub resistance to GCRV infection. qRT-PCR validation of 11 immune-related DEGs confirmed our RNA-seq data's accuracy. These findings provide a theoretical foundation and empirical evidence for the understanding of GCRV infection resistance in barbel chub and hybrid grass carp-barbel chub breeding.
RESUMO
Fusarium asiaticum is a destructive phytopathogenic fungus that causes Fusarium head blight of wheat (FHB), leading to serious yield and economic losses to cereal crops worldwide. Our previous studies indicated that target-site mutations (K216R/E, S217P/L, or E420K/G/D) of Type I myosin FaMyo5 conferred high resistance to phenamacril. Here, we first constructed one sensitive strain H1S and three point mutation resistant strains HA, HC and H1R. Then we conducted comparative transcriptome analysis of these F. asiaticum strains after 1 and 10 µg·mL-1 phenamacril treatment. Results indicated that 2135 genes were differentially expressed (DEGs) among the sensitive and resistant strains. The DEGs encoding ammonium transporter MEP1/MEP2, nitrate reductase, copper amine oxidase 1, 4-aminobutyrate aminotransferase, amino-acid permease inda1, succinate-semialdehyde dehydrogenase, 2, 3-dihydroxybenzoic acid decarboxylase, etc., were significantly up-regulated in all the phenamacril-resistant strains. Compared to the control group, a total of 1778 and 2097 DEGs were identified in these strains after 1 and 10 µg·mL-1 phenamacril treatment, respectively. These DEGs involved in 4-aminobutyrate aminotransferase, chitin synthase 1, multiprotein-bridging factor 1, transcriptional regulatory protein pro-1, amino-acid permease inda1, ATP-dependent RNA helicase DED1, acetyl-coenzyme A synthetase, sarcoplasmic/endoplasmic reticulum calcium ATPase 2, etc., showed significantly down-regulated expression in phenamacril-sensitive strain but not in resistant strains after phenamacril treatment. In addition, cyanide hydratase, mating-type protein MAT-1, putative purine nucleoside permease, plasma membrane protein yro2, etc., showed significantly co-down-regulated expression in all the strains after phenamacril treatment. Taken together, This study provides deep insights into the resistance regulation mechanism and the inhibitory effect of fungicide phenamacril and these new annotated proteins or enzymes are worth for the discovery of new fungicide targets.
Assuntos
Farmacorresistência Fúngica , Fungicidas Industriais , Fusarium , Fusarium/efeitos dos fármacos , Fusarium/genética , Fungicidas Industriais/farmacologia , Farmacorresistência Fúngica/genética , Perfilação da Expressão Gênica , Transcriptoma/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Doenças das Plantas/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismoRESUMO
A novel enrofloxacin-degrading fungus was isolated from a rhizosphere sediment of the submerged macrophyte Vallisneria spiralis L.. The isolate, designated KC0924g, was identified as a member of the genus Humicola based on morphological characteristics and tandem conserved sequence analysis. The optimal temperature and pH for enrofloxacin degradation by strain KC0924g were 28 °C and 9.0, respectively. Under such condition, 98.2% of enrofloxacin with an initial concentration of 1 mg L-1 was degraded after 72 h of incubation, with nine possible degradation products identified. Four different metabolic pathways were proposed, which were initiated by cleavage of the piperazine moiety, hydroxylation of the aromatic ring, oxidative decarboxylation, or defluorination. In addition to enrofloxacin, strain KC0924g also degraded other fluoroquinolone antibiotics (ciprofloxacin, norfloxacin, and ofloxacin), malachite green (an illegal additive in aquaculture), and leucomalachite green. Pretreatment of cells of strain KC0924g with Cu2+ accelerated ENR degradation. Furthermore, it was speculated that a flavin-dependent monooxygenase was involved in ENR degradation, based on the increased transcriptional levels of these two genes after Cu2+ induction. This work enriches strain resources for enrofloxacin remediation and, more importantly, would facilitate studies on the molecular mechanism of ENR degradation with degradation-related transcriptome available.