Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Anim Sci ; 100(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370127

RESUMO

Compromised pregnancies result in a poorly functioning placenta restricting the amount of oxygen and nutrient supply to the fetus resulting in intrauterine growth restriction (IUGR). Supplementing dietary melatonin during a compromised pregnancy increased uteroplacental blood flow and prevented IUGR in a seasonal-dependent manner. The objectives were to evaluate seasonal melatonin-mediated changes in temporal alterations of the bovine placental vascularity and transcript abundance of clock genes, angiogenic factors, and nutrient sensing genes in 54 underfed pregnant Brangus heifers (Fall, n = 29; Summer, n = 25). At day 160 of gestation, heifers were assigned to treatments consisting of adequately fed (ADQ-CON; 100% NRC; n = 13), nutrient restricted (RES-CON; 60% NRC; n = 13), and ADQ or RES supplemented with 20 mg/d of melatonin (ADQ-MEL, n = 13; RES-MEL, n = 15). The animals were fed daily at 0900 hours until day 240 where Cesarean sections were performed in the morning (0500 hours) or afternoon (1300 hours) for placentome collections. In both seasons, we observed a temporal alteration of the core clock genes in the cotyledonary tissue in a season-dependent manner. In the fall, ARNTL, CLOCK, NR1D1, and RORA transcript abundance were decreased (P ≤ 0.05) in the afternoon compared to the morning; whereas in the summer, ARNTL, PER2, and RORA expression were increased (P ≤ 0.05) in the afternoon. Interestingly, in both seasons, there was a concomitant temporal increase (P ≤ 0.05) of cotyledonary blood vessel perfusion and caruncular melatonin receptor 1A transcript abundance. Melatonin supplementation did not alter the melatonin receptor 1A transcript abundance (P > 0.05), however, in the summer, melatonin supplementation increased cotyledonary VEGFA, CRY1, and RORA (P ≤ 0.05) transcript abundance. In addition, during the summer the placentomes from underfed dams had increased average capillary size and HIF1α transcript abundance compared to those adequately fed (P ≤ 0.05). In conclusion, these data indicate increased cotyledonary blood vessel size and blood distribution after feeding to better facilitate nutrient transport. Interestingly, the maternal nutritional plane appears to play a crucial role in regulating the bovine placental circadian clock. Based on these findings, the regulation of angiogenic factors and clock genes in the bovine placenta appears to be an underlying mechanism of the therapeutic effect of dietary melatonin supplementation in the summer.


Maternal nutrient restriction during the last trimester of pregnancy impairs the fetal development, increases morbidity and mortality, and reduces its performance in adult life. Animals with compromised pregnancies exhibit a reduction in uterine blood flow thereby limiting the nutrients available for the fetus to grow and develop. Melatonin, a hormone that many people use as a sleep aid, could be a solution as a potential therapeutic in cattle since it has antioxidant properties and has been shown to regulate blood flow and rescue fetal weight during compromised pregnancies. In the current study, we examined the changes in placental vascularity and gene expression when supplementing underfed dams with dietary melatonin during late gestation in a group of fall-calving and spring-calving heifers. Contrary to our hypothesis melatonin did not control the placental circadian clock gene network, while maternal nutrient restriction disrupted the gene expression in the placenta. Furthermore, this study found that gene expression in the placenta is seasonally dependent.


Assuntos
Doenças dos Bovinos , Melatonina , Gravidez , Animais , Bovinos , Feminino , Placenta/irrigação sanguínea , Estações do Ano , Fatores de Transcrição ARNTL/farmacologia , Receptores de Melatonina , Suplementos Nutricionais , Retardo do Crescimento Fetal/veterinária
2.
J Dev Orig Health Dis ; 10(3): 322-333, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30968806

RESUMO

Complications of pregnancy remain key drivers of morbidity and mortality, affecting the health of both the mother and her offspring in the short and long term. There is lack of detailed understanding of the pathways involved in the pathology and pathogenesis of compromised pregnancy, as well as a shortfall of effective prognostic, diagnostic and treatment options. In many complications of pregnancy, such as in preeclampsia, there is an increase in uteroplacental vascular resistance. However, the cause and effect relationship between placental dysfunction and adverse outcomes in the mother and her offspring remains uncertain. In this review, we aim to highlight the value of gestational hypoxia-induced complications of pregnancy in elucidating underlying molecular pathways and in assessing candidate therapeutic options for these complex disorders. Chronic maternal hypoxia not only mimics the placental pathology associated with obstetric syndromes like gestational hypertension at morphological, molecular and functional levels, but also recapitulates key symptoms that occur as maternal and fetal clinical manifestations of these pregnancy disorders. We propose that gestational hypoxia provides a useful model to study the inter-relationship between placental dysfunction and adverse outcomes in the mother and her offspring in a wide array of examples of complicated pregnancy, such as in preeclampsia.


Assuntos
Retardo do Crescimento Fetal/etiologia , Hipertensão Induzida pela Gravidez/fisiopatologia , Hipóxia/complicações , Pré-Eclâmpsia/etiologia , Feminino , Humanos , Gravidez
3.
Anim Reprod Sci ; 193: 68-78, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29636210

RESUMO

Using a mid to late gestation model of intrauterine growth restriction, uteroplacental secretion of progesterone and estradiol-17ß were examined. From day 50 to 130 of gestation, 31 ewe lambs were allocated to receive 100% (ADQ) or 60% (RES) of nutrient requirements. At day 130, umbilical and uterine artery blood flows were determined and blood samples were collected from maternal saphenous artery, gravid uterine vein, umbilical vein, and umbilical artery. Uteroplacental secretion of progesterone was increased in RES compared to ADQ fed dams. There was a net secretion and net metabolism of estradiol-17ß in RES, and ADQ fed dams, respectively. In relation to steroid synthesis, cotyledonary abundance of steroidogenic acute regulatory protein was greater in RES compared with ADQ fed dams, while abundance of aromatase was not different between dietary treatments. Caruncular aldo-keto reductase 1C abundance was less in RES compared to ADQ fed dams. The increase in progesterone secretion, therefore, is due in part to an increase in synthesis and a decrease in placental catabolism. Caruncular cytochrome P450 3A, which catalyzes the conversion of estrogens to catechol-estrogens, was in lesser abundance in RES compared to ADQ fed dams. Opposite responses in estradiol-17ß uteroplacental secretion compared with metabolism may be mediated through placental estrogen metabolism via cytochrome P450 enzymes.


Assuntos
Modelos Animais de Doenças , Estradiol/metabolismo , Retardo do Crescimento Fetal/metabolismo , Placenta/metabolismo , Progesterona/metabolismo , Ovinos , Útero/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Estradiol/sangue , Feminino , Retardo do Crescimento Fetal/sangue , Retardo do Crescimento Fetal/patologia , Fenômenos Fisiológicos da Nutrição Materna , Placenta/patologia , Circulação Placentária , Gravidez , Progesterona/sangue , Ovinos/metabolismo , Artéria Uterina/química , Artéria Uterina/metabolismo , Útero/patologia
4.
Theriogenology ; 86(1): 288-305, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27173956

RESUMO

Uteroplacental development is a crucial step facilitating conceptus growth. Normal placental development comprises extensive placental angiogenesis to support fetoplacental transport, meeting the metabolic demands of the fetus. Compromised pregnancies due to maternal stressors such as over or undernutrition, maternal age or parity, altered body mass index, or genetic background result in altered vascular development of the placenta. This negatively affects placental growth and placental function and ultimately results in poor pregnancy outcomes. Nonetheless, the placenta acts as a sensor to the maternal stressors and undergoes modifications, which some have termed placental programming, to ensure healthy development of the conceptus. Sex steroid hormones such as estradiol-17ß and progesterone, chemokines such as chemokine ligand 12, and angiogenic/vasoactive factors such as vascular endothelial growth factors, placental growth factor, angiopoietins, and nitric oxide regulate uteroplacental development and hence are often used as therapeutic targets to rescue compromised pregnancies. Interestingly, the presence of sex steroid receptors has been identified in the fetal membranes (developing fetal placenta). Environmental steroid mimetics known as endocrine disrupting compounds disrupt conceptus development and lead to transgenerational impairments by epigenetic modification of placental gene expression, which is another area deserving intense research efforts. This review attempts to summarize current knowledge concerning intrinsic and extrinsic factors affecting selected reproductive functions with the emphasis on placental development.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Fenômenos Fisiológicos da Nutrição Materna , Placenta/irrigação sanguínea , Ruminantes/fisiologia , Animais , Poluentes Ambientais , Feminino , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA