Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124746, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38955065

RESUMO

Organic materials have several important characteristics that make them suitable for use in optoelectronics and optical signal processing applications. For absorption and emission maxima, the stabilities and photoactivities of conjugated organic chromophores can be tailored by selecting a suitable parent structure and incorporating substituents that predictably change the optical characteristics. However, a high-throughput design of efficient conjugated organic chromophores without using trial-and-error experimental approaches is required. In this study, machine learning (ML) is used to design and test the conjugated organic chromophores and predict light absorption and emission behavior. Many machine learning models are tried to select the best models for the prediction of absorption and emission maxima. Extreme gradient boosting regressor has appeared as the best model for the prediction of absorption maxima. Random forest regressor stands out as the best model for the prediction of emission maxima. Breaking Retrosynthetically Interesting Chemical Substructures (BRICS) is used to generate 10,000 organic chromophores. Chemical similarity analysis is performed to obtain a deeper understanding of the characteristics and actions of compounds. Furthermore, clustering and heatmap approaches are utilized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA