Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Environ Geochem Health ; 46(8): 292, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976118

RESUMO

Groundwater, as an essential resource, holds significant importance for human production and livelihoods. With the deterioration of the water environment, the issue of groundwater quality has become an urgent international concern. This study focused on the Fenghuang Mountain Area (FMA) and collected a total of 41 sets of samples including pore groundwater (PGW), fissure groundwater (FGW), karst groundwater (KGW), and river water (RW). Hydrochemical analysis methods were employed to identify the hydrochemical characteristics and controlling factors. The entropy-weighted water quality index (EWQI) and health risk assessment model were utilized to assess the groundwater quality and nitrate health risk, respectively. The results indicated that the dominant anion and cation in both groundwater and surface water in the FMA were HCO3- and Ca2+, respectively, with the main hydrochemical type being HCO3-Ca. Groundwater and surface water in the FMA were primarily controlled by rock weathering process, with ion concentrations influenced mainly by the dissolution of halite, sylvite, carbonates (calcite and dolomite), silicates, and gypsum, as well as by reverse anion exchange process. PGW was significantly affected by agricultural activities, with NO3- concentration closely related to human activities. The water quality of FGW was relatively good, with Class I and Class II water accounting for the highest proportion, reaching 84.62%. The high-value area of EWQI in PGW was influenced by human activities. The impact of nitrate health risk on children was significantly greater than on adults, with FGW having the lowest health risk and PGW having the highest health risk. The research results can provide important guarantees for the rational development and utilization of water resources in the FMA and the sustainable development of the economy in Northeast China.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Nitratos , Poluentes Químicos da Água , Qualidade da Água , China , Medição de Risco , Água Subterrânea/química , Humanos , Nitratos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Criança , Adulto , Rios/química
2.
Mitochondrion ; 78: 101926, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944367

RESUMO

Mitochondria are singular cell organelles essential for many cellular functions, which includes responding to stress, regulating calcium levels, maintaining protein homeostasis, and coordinating apoptosis response. The vitality of cells, therefore, hinges on the optimal functioning of these dynamic organelles. Mitochondrial Quality Control Mechanisms (MQCM) play a pivotal role in ensuring the integrity and functionality of mitochondria. Perturbations in these mechanisms have been closely associated with the pathogenesis of neurodegenerative disorders such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis. Compelling evidence suggests that targeting specific pathways within the MQCM could potentially offer a therapeutic avenue for rescuing mitochondrial integrity and mitigating the progression of neurodegenerative diseases. The intricate interplay of cellular stress, protein misfolding, and impaired quality control mechanisms provides a nuanced understanding of the underlying pathology. Consequently, unravelling the specific MQCM dysregulation in neurodegenerative disorders becomes paramount for developing targeted therapeutic strategies. This review delves into the impaired MQCM pathways implicated in neurodegenerative disorders and explores emerging therapeutic interventions. By shedding light on pharmaceutical and genetic manipulations aimed at restoring MQCM efficiency, the discussion aims to provide insights into novel strategies for ameliorating the progression of neurodegenerative diseases. Understanding and addressing mitochondrial quality control mechanisms not only underscore their significance in cellular health but also offer a promising frontier for advancing therapeutic approaches in the realm of neurodegenerative disorders.

3.
J Fungi (Basel) ; 10(5)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38786687

RESUMO

Fruits and vegetables are an important part of the human diet, but during transportation and storage, microbial pathogens attack and spoil fruits and vegetables, causing huge economic losses to agriculture. Traditionally used chemical fungicides leave chemical residues, leading to environmental pollution and health risks. With the emphasis on food safety, biocontrol agents are attracting more and more attention due to their environmental friendliness. Endophytic fungi are present in plant tissues and do not cause host disease. The volatile organic compounds (VOCs) they produce are used to control postharvest diseases due to their significant antifungal activity, as well as their volatility, safety and environmental protection characteristics. This review provides the concept and characterization of endophytic fungal VOCs, concludes the types of endophytic fungi that release antifungal VOCs and their biological control mechanisms, as well as focuses on the practical applications and the challenges of applying VOCs as fumigants. Endophytic fungal VOCs can be used as emerging biocontrol resources to control postharvest diseases that affect fruits and vegetables.

4.
Biomedicines ; 12(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38790961

RESUMO

Novel therapies for the treatment of familial dilated cardiomyopathy (DCM) are lacking. Shaping research directions to clinical needs is critical. Triggers for the progression of the disorder commonly occur due to specific gene variants that affect the production of sarcomeric/cytoskeletal proteins. Generally, these variants cause a decrease in tension by the myofilaments, resulting in signaling abnormalities within the micro-environment, which over time result in structural and functional maladaptations, leading to heart failure (HF). Current concepts support the hypothesis that the mutant sarcomere proteins induce a causal depression in the tension-time integral (TTI) of linear preparations of cardiac muscle. However, molecular mechanisms underlying tension generation particularly concerning mutant proteins and their impact on sarcomere molecular signaling are currently controversial. Thus, there is a need for clarification as to how mutant proteins affect sarcomere molecular signaling in the etiology and progression of DCM. A main topic in this controversy is the control of the number of tension-generating myosin heads reacting with the thin filament. One line of investigation proposes that this number is determined by changes in the ratio of myosin heads in a sequestered super-relaxed state (SRX) or in a disordered relaxed state (DRX) poised for force generation upon the Ca2+ activation of the thin filament. Contrasting evidence from nanometer-micrometer-scale X-ray diffraction in intact trabeculae indicates that the SRX/DRX states may have a lesser role. Instead, the proposal is that myosin heads are in a basal OFF state in relaxation then transfer to an ON state through a mechano-sensing mechanism induced during early thin filament activation and increasing thick filament strain. Recent evidence about the modulation of these mechanisms by protein phosphorylation has also introduced a need for reconsidering the control of tension. We discuss these mechanisms that lead to different ideas related to how tension is disturbed by levels of mutant sarcomere proteins linked to the expression of gene variants in the complex landscape of DCM. Resolving the various mechanisms and incorporating them into a unified concept is crucial for gaining a comprehensive understanding of DCM. This deeper understanding is not only important for diagnosis and treatment strategies with small molecules, but also for understanding the reciprocal signaling processes that occur between cardiac myocytes and their micro-environment. By unraveling these complexities, we can pave the way for improved therapeutic interventions for managing DCM.

5.
Mar Environ Res ; 198: 106496, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38640691

RESUMO

The carbonate chemistry in river-dominated marginal seas is highly heterogeneous, and there is ongoing debate regarding the definition of atmospheric CO2 source or sink. On this basis, we investigated the carbonate chemistry and air-sea CO2 fluxes in a hotspot estuarine area: the Changjiang Estuary during winter and summer. The spatial characteristics of the carbonate system were influenced by water mixing of three end-members in winter, including the Changjiang freshwater with low total alkalinity (TA) concentration, the less saline Yellow Sea Surface Water with high TA, and the saline East China Sea (ECS) offshore water with moderate TA. While in summer with increased river discharge, the carbonate system was regulated by simplified two end-member mixing between the Changjiang freshwater and the ECS offshore water. By performing the end-member mixing model on DIC variations in the river plume region, significant biological addition of DIC was found in winter with an estimation of -120 ± 113 µmol kg-1 caused by wintertime organic matter remineralization from terrestrial source. While this biological addition of DIC shifted to DIC removal due to biological production in summer supported by the increased nutrient loading from Changjiang River. The pCO2 dynamics in the river plume and the ECS offshore were both subjected to physical mixing of freshwater and seawater, whether in winter and summer. In the inner estuary without horizontal mixing, the pCO2 dynamics were mainly influenced by biological uptake in winter and temperature in summer. The inner estuary, the river plume, and the ECS offshore were sources of atmospheric CO2, with their contributions varying seasonally. The Changjiang runoff enhanced the inner estuary's role as a CO2 source in summer, while intensive biological uptake reduced the river plume's contribution.


Assuntos
Dióxido de Carbono , Carbonatos , Monitoramento Ambiental , Estuários , Rios , Estações do Ano , Água do Mar , Dióxido de Carbono/análise , Carbonatos/análise , China , Rios/química , Água do Mar/química , Poluentes Químicos da Água/análise , Poluentes Atmosféricos/análise
6.
Int J Clin Health Psychol ; 24(1): 100423, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38059070

RESUMO

Background/objective: A neurocognitive model of distancing has systematically identified a set of brain regions that support the control mechanisms for emotion regulation (ER). However, the temporal dynamics of these control mechanisms during ER remains unclear. Method: To address this issue, we recorded behavioral and electroencephalogram (EEG) data to compare proactive and reactive ER modes in an adapted ER task (N = 30 adults). In different ER modes, participants were instructed to downregulate their negative emotional experiences by applying the reappraisal tactic of distancing. Results: The behavioral results showed that proactive ER, which involves preparing for the upcoming regulation, reduced the negative emotional experience more than reactive ER, which involves no preparation process, in the reappraisal-negative condition. This indicated that proactive ER was more effective than reactive ER in regulating negative emotions. Event-related potential (ERP) and multivariate pattern analysis (MVPA) results showed that ER through distancing involved two phases: First, the reappraisal cue enhanced the allocation of attention to activate the mental building blocks and constructed a new perspective in the preparation process. Second, participants who benefited from the preparation process initiated the ER earlier and adaptively re-engaged in the ER if time permitted. Conclusions: Taken together, the control mechanisms underlying the preparation process influence the timing of ER, while the control mechanisms underlying the regulation process determine the regulatory effect.

7.
Biomolecules ; 13(12)2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38136659

RESUMO

Mitochondria play a key role in cellular functions, including energy production and oxidative stress regulation. For this reason, maintaining mitochondrial homeostasis and proteostasis (homeostasis of the proteome) is essential for cellular health. Therefore, there are different mitochondrial quality control mechanisms, such as mitochondrial biogenesis, mitochondrial dynamics, mitochondrial-derived vesicles (MDVs), mitophagy, or mitochondrial unfolded protein response (mtUPR). The last item is a stress response that occurs when stress is present within mitochondria and, especially, when the accumulation of unfolded and misfolded proteins in the mitochondrial matrix surpasses the folding capacity of the mitochondrion. In response to this, molecular chaperones and proteases as well as the mitochondrial antioxidant system are activated to restore mitochondrial proteostasis and cellular function. In disease contexts, mtUPR modulation holds therapeutic potential by mitigating mitochondrial dysfunction. In particular, in the case of neurodegenerative diseases, such as primary mitochondrial diseases, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic Lateral Sclerosis (ALS), or Friedreich's Ataxia (FA), there is a wealth of evidence demonstrating that the modulation of mtUPR helps to reduce neurodegeneration and its associated symptoms in various cellular and animal models. These findings underscore mtUPR's role as a promising therapeutic target in combating these devastating disorders.


Assuntos
Doenças Mitocondriais , Doenças Neurodegenerativas , Animais , Doenças Neurodegenerativas/metabolismo , Mitocôndrias/metabolismo , Envelhecimento , Resposta a Proteínas não Dobradas
8.
Cephalalgia ; 43(10): 3331024231202240, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37795647

RESUMO

BACKGROUND: It is unclear whether cortical hyperexcitability in chronic migraine with medication overuse headache (CM-MOH) is due to increased thalamocortical drive or aberrant cortical inhibitory mechanisms. METHODS: Somatosensory evoked potentials (SSEP) were performed by electrical stimulation of the median nerve (M), ulnar nerve (U) and simultaneous stimulation of both nerves (MU) in 27 patients with CM-MOH and, for comparison, in 23 healthy volunteers (HVs) of a comparable age distribution. We calculated the degree of cortical lateral inhibition using the formula: 100 - [MU/(M + U) × 100] and the level of thalamocortical activation by analyzing the high frequency oscillations (HFOs) embedded in parietal N20 median SSEPs. RESULTS: Compared to HV, CM-MOH patients showed higher lateral inhibition (CM-MOH 52.2% ± 15.4 vs. HV 40.4% ± 13.3; p = 0.005), which positively correlated with monthly headache days, and greater amplitude of pre-synaptic HFOs (p = 0.010) but normal post-synaptic HFOs (p = 0.122). CONCLUSION: Our findings suggest that central neuronal circuits are highly sensitized in CM-MOH patients, at both thalamocortical and cortical levels. The observed changes could be due to the combination of dysfunctional central pain control mechanisms, hypersensitivity and hyperresponsiveness directly linked to the chronic intake of acute migraine drugs.


Assuntos
Transtornos da Cefaleia Secundários , Transtornos de Enxaqueca , Humanos , Sensibilização do Sistema Nervoso Central , Potenciais Somatossensoriais Evocados/fisiologia , Nervo Mediano/fisiologia
9.
Heliyon ; 9(7): e17702, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37539120

RESUMO

Hepatic ischemia-reperfusion injury is a phenomenon in which exacerbating damage of liver cells due to restoration of blood flow following ischemia during liver surgery, especially those involving liver transplantation. Mitochondria, the energy-producing organelles, are crucial for cell survival and apoptosis and have evolved a range of quality control mechanisms to maintain homeostasis in the mitochondrial network in response to various stress conditions. Hepatic ischemia-reperfusion leads to disruption of mitochondrial quality control mechanisms, as evidenced by reduced mitochondrial autophagy, excessive division, reduced fusion, and inhibition of biogenesis. This leads to dysfunction of the mitochondrial network. The accumulation of damaged mitochondria ultimately results in apoptosis of hepatocytes due to the release of apoptotic proteins like cytochrome C. This worsens hepatic ischemia-reperfusion injury. Currently, hepatic ischemia-reperfusion injury protection is being studied using different approaches such as drug pretreatment, stem cells and exosomes, genetic interventions, and mechanical reperfusion, all aimed at targeting mitochondrial quality control mechanisms. This paper aims to provide direction for future research on combating HIRI by reviewing the latest studies that focus on targeting mitochondrial quality control mechanisms.

10.
J Clin Med ; 12(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37629258

RESUMO

The step-aside movement, also known as the dodging step, is a common maneuver for avoiding obstacles while walking. However, differences in neural control mechanisms and ankle strategies compared to straight walking can pose a risk of falling. This study aimed to examine the differences in tibialis anterior (TA), peroneus longus (PL), and soleus (SOL) muscle contractions, foot center of pressure (CoP) displacement, and ground reaction force (GRF) generation between step-aside movement and straight walking to understand the mechanism behind step-aside movement during walking. Twenty healthy young male participants performed straight walking and step-aside movements at comfortable walking speeds. The participants' muscle contractions, CoP displacement, and GRF were measured. The results show significant greater bilateral ankle muscle contractions during the push and loading phases of step-aside movement than during straight walking. Moreover, the CoP displacement, GRF generation mechanism, and timing differed from those observed during straight walking. These findings provide valuable insights for rehabilitation professionals in the development of clinical decisions for populations at a risk of falls and lacking gait stability.

11.
mSystems ; 8(2): e0081622, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36912639

RESUMO

The scale of post-transcriptional regulation and the implications of its interplay with other forms of regulation in environmental acclimation are underexplored for organisms of the domain Archaea. Here, we have investigated the scale of post-transcriptional regulation in the extremely halophilic archaeon Halobacterium salinarum NRC-1 by integrating the transcriptome-wide locations of transcript processing sites (TPSs) and SmAP1 binding, the genome-wide locations of antisense RNAs (asRNAs), and the consequences of RNase_2099C knockout on the differential expression of all genes. This integrated analysis has discovered that 54% of all protein-coding genes in the genome of this haloarchaeon are likely targeted by multiple mechanisms for putative post-transcriptional processing and regulation, with about 20% of genes likely being regulated by combinatorial schemes involving SmAP1, asRNAs, and RNase_2099C. Comparative analysis of mRNA levels (transcriptome sequencing [RNA-Seq]) and protein levels (sequential window acquisition of all theoretical fragment ion spectra mass spectrometry [SWATH-MS]) for 2,579 genes over four phases of batch culture growth in complex medium generated additional evidence for the conditional post-transcriptional regulation of 7% of all protein-coding genes. We demonstrate that post-transcriptional regulation may act to fine-tune specialized and rapid acclimation to stressful environments, e.g., as a switch to turn on gas vesicle biogenesis to promote vertical relocation under anoxic conditions and modulate the frequency of transposition by insertion sequence (IS) elements of the IS200/IS605, IS4, and ISH3 families. Findings from this study are provided as an atlas in a public Web resource (https://halodata.systemsbiology.net). IMPORTANCE While the transcriptional regulation landscape of archaea has been extensively investigated, we currently have limited knowledge about post-transcriptional regulation and its driving mechanisms in this domain of life. In this study, we collected and integrated omics data from multiple sources and technologies to infer post-transcriptionally regulated genes and the putative mechanisms modulating their expression at the protein level in Halobacterium salinarum NRC-1. The results suggest that post-transcriptional regulation may drive environmental acclimation by regulating hallmark biological processes. To foster discoveries by other research groups interested in the topic, we extended our integrated data to the public in the form of an interactive atlas (https://halodata.systemsbiology.net).


Assuntos
Archaea , Transcriptoma , Humanos , Archaea/genética , Transcriptoma/genética , Genoma , RNA Antissenso/genética , Ribonucleases/genética
12.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834825

RESUMO

The most common alterations affecting mitochondria, and associated with cardiac pathological conditions, implicate a long list of defects. They include impairments of the mitochondrial electron transport chain activity, which is a crucial element for energy formation, and that determines the depletion of ATP generation and supply to metabolic switches, enhanced ROS generation, inflammation, as well as the dysregulation of the intracellular calcium homeostasis. All these signatures significantly concur in the impairment of cardiac electrical characteristics, loss of myocyte contractility and cardiomyocyte damage found in cardiac diseases. Mitochondrial dynamics, one of the quality control mechanisms at the basis of mitochondrial fitness, also result in being dysregulated, but the use of this knowledge for translational and therapeutic purposes is still in its infancy. In this review we tried to understand why this is, by summarizing methods, current opinions and molecular details underlying mitochondrial dynamics in cardiac diseases.


Assuntos
Cardiopatias , Dinâmica Mitocondrial , Humanos , Dinâmica Mitocondrial/fisiologia , Cardiopatias/metabolismo , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Mitocôndrias Cardíacas/metabolismo
13.
mBio ; 13(6): e0247222, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36214559

RESUMO

The increasing emergence of drug-resistant fungal infections has necessitated a search for new compounds capable of combating fungal pathogens of plants, animals, and humans. Microorganisms represent the main source of antibiotics with applicability in agriculture and in the clinic, but many aspects of their metabolic potential remain to be explored. This report describes the discovery and characterization of a new antifungal compound, solanimycin, produced by a hybrid polyketide/nonribosomal peptide (PKS/NRPS) system in Dickeya solani, the enterobacterial pathogen of potato. Solanimycin was active against a broad range of plant-pathogenic fungi of global economic concern and the human pathogen Candida albicans. The genomic cluster responsible for solanimycin production was defined and analyzed to identify the corresponding biosynthetic proteins, which include four multimodular PKS/NRPS proteins and several tailoring enzymes. Antifungal production in D. solani was enhanced in response to experimental conditions found in infected potato tubers and high-density fungal cultures. Solanimycin biosynthesis was cell density dependent in D. solani and was controlled by both the ExpIR acyl-homoserine lactone and Vfm quorum-sensing systems of the bacterial phytopathogen. The expression of the solanimycin cluster was also regulated at the post-transcriptional level, with the regulator RsmA playing a major role. The solanimycin biosynthetic cluster was conserved across phylogenetically distant bacterial genera, and multiple pieces of evidence support that the corresponding gene clusters were acquired by horizontal gene transfer. Given its potent broad-range antifungal properties, this study suggests that solanimycin and related molecules may have potential utility for agricultural and clinical exploitation. IMPORTANCE Fungal infections represent a major clinical, agricultural, and food security threat worldwide, which is accentuated due to the difficult treatment of these infections. Microorganisms represent a prolific source of antibiotics, and current data support that this enormous biosynthetic potential has been scarcely explored. To improve the performance in the discovery of novel antimicrobials, there is a need to diversify the isolation niches for new antibiotic-producing microorganisms as well as to scrutinize novel phylogenetic positions. With the identification of the antifungal antibiotic solanimycin in a broad diversity of phytopathogenic Dickeya spp., we provide further support for the potential of plant-associated bacteria for the biosynthesis of novel antimicrobials. The complex regulatory networks involved in solanimycin production reflect the high metabolic cost of bacterial secondary metabolism. This metabolic regulatory control makes many antibiotics cryptic under standard laboratory conditions, and mimicking environmental conditions, as shown here, is a strategy to activate cryptic antibiotic clusters.


Assuntos
Antifúngicos , Bactérias , Animais , Humanos , Antifúngicos/metabolismo , Filogenia , Bactérias/metabolismo , Enterobacteriaceae/genética , Fungos/metabolismo , Antibacterianos/metabolismo
14.
J Bacteriol ; 204(10): e0026822, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36121290

RESUMO

The molecular machine necessary for protein synthesis, the ribosome, is generally considered constitutively functioning and lacking any inherent regulatory capacity. Yet ribosomes are commonly heterogeneous in composition and the impact of ribosome heterogeneity on translation is not well understood. Here, we determined that changes in ribosome protein composition govern gene expression in the intracellular bacterial pathogen Francisella tularensis. F. tularensis encodes three distinct homologs for bS21, a ribosomal protein involved in translation initiation, and analysis of purified F. tularensis ribosomes revealed they are heterogeneous with respect to bS21. The loss of one homolog, bS21-2, resulted in significant changes to the cellular proteome unlinked to changes in the transcriptome. Among the reduced proteins were components of the type VI secretion system (T6SS), an essential virulence factor encoded by the Francisella Pathogenicity Island. Furthermore, loss of bS21-2 led to an intramacrophage growth defect. Although multiple bS21 homologs complemented the loss of bS21-2 with respect to T6SS protein abundance, bS21-2 was uniquely necessary for robust intramacrophage growth, suggesting bS21-2 modulates additional virulence gene(s) distinct from the T6SS. Our results indicate that ribosome composition in F. tularensis, either directly or indirectly, posttranscriptionally modulates gene expression and virulence. Our findings are consistent with a model in which bS21 homologs function as posttranscriptional regulators, allowing preferential translation of specific subsets of mRNAs, likely at the stage of translation initiation. This work also raises the possibility that bS21 in other organisms may function similarly and that ribosome heterogeneity may permit many bacteria to posttranscriptionally regulate gene expression. IMPORTANCE While bacterial ribosomes are commonly heterogeneous in composition (e.g., incorporating different homologs for a ribosomal protein), how heterogeneity impacts translation is unclear. We found that the intracellular human pathogen Francisella tularensis has heterogeneous ribosomes, incorporating one of three homologs for ribosomal protein bS21. Furthermore, one bS21 homolog posttranscriptionally governs the expression of the F. tularensis type VI secretion system, an essential virulence factor. This bS21 homolog is also uniquely important for robust intracellular growth. Our data support a model in which bS21 heterogeneity leads to modulation of translation, providing another source of posttranscriptional gene regulation. Regulation of translation by bS21, or other sources of ribosomal heterogeneity, may be a conserved mechanism to control gene expression across the bacterial phylogeny.


Assuntos
Francisella tularensis , Tularemia , Sistemas de Secreção Tipo VI , Humanos , Virulência , Sistemas de Secreção Tipo VI/genética , Proteínas Ribossômicas/genética , Proteoma/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Ribossomos/metabolismo , Expressão Gênica , Tularemia/microbiologia
15.
Stud Hist Philos Sci ; 95: 145-157, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36029564

RESUMO

Autoinhibition is a design principle realized in many molecular mechanisms in biology. After explicating the notion of a design principle and showing that autoinhibition is such a principle, we focus on how researchers discovered instances of autoinhibition, using research establishing the autoinhibition of the molecular motors kinesin and dynein as our case study. Research on kinesin and dynein began in the fashion described in accounts of mechanistic explanation but, once the mechanisms had been discovered, researchers discovered that they exhibited a second phenomenon, autoinhibition. The discovery of autoinhibition not only reverses the pattern in terms of which philosophers have understood mechanism discovery but runs counter to the one phenomenon-one mechanism principle assumed to relate mechanisms and the phenomena they explain. The ubiquity of autoinhibition as a design principle, therefore, necessitates a philosophical understanding of mechanisms that recognizes how they can participate in more than one phenomenon. Since mechanisms with this design are released from autoinhibition only when they are acted on by control mechanisms, we advance a revised account of mechanisms that accommodates attribution of multiple phenomena to the same mechanism and distinguishes them from other processes that control them.


Assuntos
Dineínas , Cinesinas
17.
Front Integr Neurosci ; 16: 944303, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35859708

RESUMO

A common motivation for engaging in reductionistic research is to ground explanations in the most basic processes operative in the mechanism responsible for the phenomenon to be explained. I argue for a different motivation-directing inquiry to the level of organization at which the components of a mechanism enable the work that results in the phenomenon. In the context of reductionistic accounts of cognitive information processing I argue that this requires going down to a level that is largely overlooked in these discussions, that of chemistry. In discussions of cognitive information processing, the brain is often viewed as essentially an electrical switching system and many theorists treat electrical switching as the level at which mechanistic explanations should bottom out. I argue, drawing on examples of peptidergic and monoaminergic neurons, that how information is processed is determined by the specific chemical reactions occurring in individual neurons. Accordingly, mechanistic explanations of cognitive information processing need to take into account the chemical reactions involved.

18.
Environ Sci Pollut Res Int ; 29(47): 71150-71164, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35589900

RESUMO

Groundwater is an important resource of water in arid and semi-arid agricultural regions. Thus, identification of hydrogeochemical characters and the influence of geospatial variability and flow pooling are of significance on groundwater resources management and making irrigation decisions in salinized areas. The study specifically focused on the Hetao Irrigation District located in the semi-arid region of northern China. A total of 85 groundwater samples (42 from the upstream Shenwu Irrigation Area (SWIA), 43 from the downstream Wulate Irrigation Area (WLTIA)) were collected, and 15 water quality indexes were analyzed. Methods including mathematical statistics, Piper diagram, Gibbs model, forward succession model, and ionic rations were used to analyze the hydrochemical characteristics and evolution mechanisms, RSBC, PS, SAR, WQI were selected to evaluate water quality and irrigation suitability from the perspective of salt and alkali damage. Results showed that the groundwater of the study area is weakly alkaline, SWIA is mainly fresh water (47.62%), WLTIA is mainly brackish water (65.12%), and the hydrochemistry of the groundwater consists of Cl-Na type and Cl·SO-Ca·Mg. The solute content of downstream (WLTIA) is higher than that of upstream (SWIA), Na+ and Cl- have obvious advantages in WLTIA, and they are the main contribution indicators of groundwater TDS in the study area. The groundwater is subjected to the ongoing influence of rock weathering, ions exchange, and evaporate crystallization Na+ mainly originates from the dissolution of evaporate salt rock and silicate rock, and Ca2+ from the dissolution of gypsum and carbonate. The order of contribution of different rocks is evaporation rock > silicate rock > carbonate rock. Based on the classifications of sodium absorption ratio (SAR), residual sodium bicarbonate (RSBC), and potential salinity (PS), most of the groundwater samples are unsuitable for irrigating, and the groundwater quality of the SWIA is better than that of the WLTIA.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Sulfato de Cálcio , Carbonatos/análise , China , Monitoramento Ambiental , Água Subterrânea/química , Sódio , Bicarbonato de Sódio , Poluentes Químicos da Água/análise , Qualidade da Água
19.
Brain Behav Immun ; 103: 205-214, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35470014

RESUMO

The immune system, which evolved as a protective system, can paradoxically mediate lethal effects when it is over-activated. These effects can be traced back to infected insects and are mainly mediated by phylogenetically old cytokines that have been found already in starfishes and sponges. We hypothesize that these anti-homeostatic effects are important for restricting the cumulative risk of transmission of highly mutating environmental pathogens that may endanger species, particularly when they start to originate and expand. Considering the Darwinian view that evolution is a permanent process, this anti-homeostatic program is preserved and expressed even when there is no risk for the species. Here, we review these aspects and discuss how evolutionary-imposed anti-homeostatic immune programs are expressed during acute and chronic human diseases, which can be further aggravated in the absence of medical interventions. The relevance of early identification of ancestral biomarkers that predict a shift from protective to deleterious immune outcomes is emphasized.


Assuntos
Citocinas , Doença Crônica , Homeostase , Humanos
20.
Sensors (Basel) ; 22(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35009886

RESUMO

Use of head-mounted displays (HMDs) and hand-held displays (HHDs) may affect the effectiveness of stability control mechanisms and impair resistance to falls. This study aimed to examine whether the ability to control stability during locomotion is diminished while using HMDs and HHDs. Fourteen healthy adults (21-46 years) were assessed under single-task (no display) and dual-task (spatial 2-n-back presented on the HMD or the HHD) conditions while performing various locomotor tasks. An optical motion capture system and two force plates were used to assess locomotor stability using an inverted pendulum model. For perturbed standing, 57% of the participants were not able to maintain stability by counter-rotation actions when using either display, compared to the single-task condition. Furthermore, around 80% of participants (dual-task) compared to 50% (single-task) showed a negative margin of stability (i.e., an unstable body configuration) during recovery for perturbed walking due to a diminished ability to increase their base of support effectively. However, no evidence was found for HMDs or HHDs affecting stability during unperturbed locomotion. In conclusion, additional cognitive resources required for dual-tasking, using either display, are suggested to result in delayed response execution for perturbed standing and walking, consequently diminishing participants' ability to use stability control mechanisms effectively and increasing the risk of falls.


Assuntos
Acidentes por Quedas , Óculos Inteligentes , Adulto , Marcha , Humanos , Locomoção , Posição Ortostática , Caminhada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA