Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Wellcome Open Res ; 9: 488, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39386965

RESUMO

Critical knowledge gaps have impeded progress towards reducing the global burden of disease due to Mycobacterium ulcerans, the cause of the neglected tropical disease Buruli ulcer (BU). Development of a controlled human infection model of BU has been proposed as an experimental platform to explore host-pathogen interactions and evaluate tools for prevention, diagnosis, and treatment. We have previously introduced the use case for a new human model and identified M. ulcerans JKD8049 as a suitable challenge strain. Here, we present a provisional protocol for an initial study, for transparent peer review during the earliest stages of protocol development. Following simultaneous scientific peer review and community/stakeholder consultation of this provisional protocol, we aim to present a refined protocol for institutional review board (IRB) evaluation.


This paper describes a provisional clinical protocol for the pilot human challenge model of Mycobacterium ulcerans infection, which causes the skin disease 'Buruli ulcer' (BU). BU is typically painless and begins as a small area of redness or swelling, and is curable with antibiotics. If the diagnosis is delayed, it can result in large ulceration and disability. Side effects from antibiotics are common but rarely severe; nevertheless, preventative strategies, such as vaccination, are urgently needed. The overarching project, known as 'MuCHIM', aims to establish a safe and acceptable controlled human challenge model (CHIM) of this disease in healthy volunteers in Melbourne, Australia. This pilot protocol primarily aims to establish that it is safe and acceptable to participants, and secondarily to confirm successful establishment of infection and the infection rate amongst participants. We also aim to test less invasive diagnostic tests, assess immune responses to infection, to understand changes in the human microbiome during the trial, and explore microbiological characteristics of M. ulcerans infection. If this pilot is successful, we hope to test vaccines and other therapeutics using this model, which could blunt or reduce the rising incidence of this disease in Australia, while further informing vaccine development research.

2.
Front Immunol ; 15: 1457785, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39257585

RESUMO

Controlled human infection model (CHIM) studies, which involve deliberate exposure of healthy human volunteers to an infectious agent, are recognised as important tools to advance vaccine development. These studies not only facilitate estimates of vaccine efficacy, but also offer an experimental approach to study disease pathogenesis and profile vaccine immunogenicity in a controlled environment, allowing correlation with clinical outcomes. Consequently, the data from CHIMs can be used to identify immunological correlates of protection (CoP), which can help accelerate vaccine development. In the case of invasive Salmonella infections, vaccination offers a potential instrument to prevent disease. Invasive Salmonella disease, caused by the enteric fever pathogens Salmonella enterica serovar Typhi (S. Typhi) and S. Paratyphi A, B and C, and nontyphoidal Salmonella (iNTS), remains a significant cause of mortality and morbidity in low- and middle-income countries, resulting in over 200,000 deaths and the loss of 15 million DALYs annually. CHIM studies have contributed to the understanding of S. Typhi infection and provided invaluable insight into the development of vaccines and CoP following vaccination against S. Typhi. However, CoP are less well understood for S. Paratyphi A and iNTS. This brief review focuses on the contribution of vaccine-CHIM trials to our understanding of the immune mechanisms associated with protection following vaccines against invasive Salmonella pathogens, particularly in relation to CoP.


Assuntos
Infecções por Salmonella , Vacinas contra Salmonella , Humanos , Vacinas contra Salmonella/imunologia , Infecções por Salmonella/imunologia , Infecções por Salmonella/prevenção & controle , Salmonella typhi/imunologia , Vacinação , Eficácia de Vacinas , Febre Tifoide/prevenção & controle , Febre Tifoide/imunologia , Salmonella/imunologia
3.
bioRxiv ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39282326

RESUMO

Background: Human noroviruses are a leading cause of acute and sporadic gastroenteritis worldwide. The evolution of human noroviruses in immunocompromised persons has been evaluated in many studies. Much less is known about the evolutionary dynamics of human norovirus in healthy adults. Methods: We used sequential samples collected from a controlled human infection study with GI.1/Norwalk/US/68 virus to evaluate intra- and inter-host evolution of a human norovirus in healthy adults. Up to 12 samples from day 1 to day 56 post-challenge were sequenced using a norovirus-specific capture probe method. Results: Complete genomes were assembled, even in samples that were below the limit of detection of standard RT-qPCR assays, up to 28 days post-challenge. Analysis of 123 complete genomes showed changes in the GI.1 genome in all persons, but there were no conserved changes across all persons. Single nucleotide variants resulting in non-synonymous amino acid changes were observed in all proteins, with the capsid VP1 and nonstructural protein NS3 having the largest numbers of changes. Conclusions: These data highlight the potential of a new capture-based sequencing approach to assemble human norovirus genomes with high sensitivity and demonstrate limited conserved immune pressure-driven evolution of GI.1 virus in healthy adults.

4.
Front Immunol ; 15: 1446072, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39324143

RESUMO

The mucosal immune system is a critical first line of defense to infectious diseases, as many pathogens enter the body through mucosal surfaces, disrupting the balanced interactions between mucosal cells, secretory molecules, and microbiota in this challenging microenvironment. The mucosal immune system comprises of a complex and integrated network that includes the gut-associated lymphoid tissues (GALT). One of its primary responses to microbes is the secretion of IgA, whose role in the mucosa is vital for preventing pathogen colonization, invasion and spread. The mechanisms involved in these key responses include neutralization of pathogens, immune exclusion, immune modulation, and cross-protection. The generation and maintenance of high affinity IgA responses require a delicate balance of multiple components, including B and T cell interactions, innate cells, the cytokine milieu (e.g., IL-21, IL-10, TGF-ß), and other factors essential for intestinal homeostasis, including the gut microbiota. In this review, we will discuss the main cellular components (e.g., T cells, innate lymphoid cells, dendritic cells) in the gut microenvironment as mediators of important effector responses and as critical players in supporting B cells in eliciting and maintaining IgA production, particularly in the context of enteric infections and vaccination in humans. Understanding the mechanisms of humoral and cellular components in protection could guide and accelerate the development of more effective mucosal vaccines and therapeutic interventions to efficiently combat mucosal infections.


Assuntos
Microbioma Gastrointestinal , Imunidade nas Mucosas , Imunoglobulina A , Humanos , Animais , Imunoglobulina A/imunologia , Microbioma Gastrointestinal/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Linfócitos B/imunologia , Anticorpos Antibacterianos/imunologia , Linfócitos T/imunologia , Imunidade Inata
5.
J Infect Dis ; 230(2): e457-e464, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38709726

RESUMO

Tools to evaluate and accelerate tuberculosis (TB) vaccine development are needed to advance global TB control strategies. Validated human infection studies for TB have the potential to facilitate breakthroughs in understanding disease pathogenesis, identify correlates of protection, develop diagnostic tools, and accelerate and de-risk vaccine and drug development. However, key challenges remain for realizing the clinical utility of these models, which require further discussion and alignment among key stakeholders. In March 2023, the Wellcome Trust and the International AIDS Vaccine Initiative convened international experts involved in developing both TB and bacillus Calmette-Guérin (BCG) human infection studies (including mucosal and intradermal challenge routes) to discuss the status of each of the models and the key enablers to move the field forward. This report provides a summary of the presentations and discussion from the meeting. Discussions identified key issues, including demonstrating model validity, to provide confidence for vaccine developers, which may be addressed through demonstration of known vaccine effects (eg, BCG vaccination in specific populations), and by comparing results from field efficacy and human infection studies. The workshop underscored the importance of establishing safe and acceptable studies in high-burden settings, and the need to validate >1 model to allow for different scientific questions to be addressed as well as to provide confidence to vaccine developers and regulators around use of human infection study data in vaccine development and licensure pathways.


Assuntos
Vacinas contra a Tuberculose , Tuberculose , Humanos , Tuberculose/prevenção & controle , Tuberculose/imunologia , Vacinas contra a Tuberculose/imunologia , Vacinas contra a Tuberculose/administração & dosagem , Desenvolvimento de Vacinas , Vacina BCG/imunologia , Vacina BCG/administração & dosagem , Mycobacterium tuberculosis/imunologia , Animais
6.
Talanta ; 276: 126221, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38776768

RESUMO

Streptococcus pyogenes (Group A Streptococcus; GAS) is a Gram-positive bacterium responsible for substantial human mortality and morbidity. Conventional diagnosis of GAS pharyngitis relies on throat swab culture, a low-throughput, slow, and relatively invasive 'gold standard'. While molecular approaches are becoming increasingly utilized, the potential of saliva as a diagnostic fluid for GAS infection remains largely unexplored. Here, we present a novel, high-throughput, sensitive, and robust speB qPCR assay that reliably detects GAS in saliva using innovative 3base™ technology (Genetic Signatures Limited, Sydney, Australia). The assay has been validated on baseline, acute, and convalescent saliva samples generated from the Controlled Human Infection for Vaccination Against Streptococcus (CHIVAS-M75) trial, in which healthy adult participants were challenged with emm75 GAS. In these well-defined samples, our high-throughput assay outperforms throat culture and conventional qPCR in saliva respectively, affirming the utility of the 3base™ platform, demonstrating the feasibility of saliva as a diagnostic biofluid, and paving the way for the development of novel non-invasive approaches for the detection of GAS and other oropharyngeal pathogens.


Assuntos
Faringite , Saliva , Streptococcus pyogenes , Humanos , Streptococcus pyogenes/isolamento & purificação , Saliva/microbiologia , Faringite/microbiologia , Faringite/diagnóstico , Infecções Estreptocócicas/diagnóstico , Infecções Estreptocócicas/microbiologia , Adulto , Reação em Cadeia da Polimerase em Tempo Real/métodos
7.
Microorganisms ; 12(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38674674

RESUMO

Controlled human infection models are important tools for the evaluation of vaccines against diseases where an appropriate correlate of protection has not been identified. Enterotoxigenic Escherichia coli (ETEC) strain LSN03-016011/A (LSN03) is an LT enterotoxin and CS17-expressing ETEC strain useful for evaluating vaccine candidates targeting LT-expressing strains. We sought to confirm the ability of the LSN03 strain to induce moderate-to-severe diarrhea in a healthy American adult population, as well as the impact of immunization with an investigational cholera/ETEC vaccine (VLA-1701) on disease outcomes. A randomized, double-blinded pilot study was conducted in which participants received two doses of VLA1701 or placebo orally, one week apart; eight days after the second vaccination, 30 participants (15 vaccinees and 15 placebo recipients) were challenged with approximately 5 × 109 colony-forming units of LSN03. The vaccine was well tolerated, with no significant adverse events. The vaccine also induced serum IgA and IgG responses to LT. After challenge, 11 of the placebo recipients (73.3%; 95%CI: 48.0-89.1) and 7 of the VLA1701 recipients (46.7%; 95%CI: 24.8-68.8) had moderate-to-severe diarrhea (p = 0.26), while 14 placebo recipients (93%) and 8 vaccine recipients (53.3%) experienced diarrhea of any severity, resulting in a protective efficacy of 42.9% (p = 0.035). In addition, the vaccine also appeared to provide protection against more severe diarrhea (p = 0.054). Vaccinees also tended to shed lower levels of the LSN03 challenge strain compared to placebo recipients (p = 0.056). In addition, the disease severity score was lower for the vaccinees than for the placebo recipients (p = 0.046). In summary, the LSN03 ETEC challenge strain induced moderate-to-severe diarrhea in 73.3% of placebo recipients. VLA1701 vaccination ameliorated disease severity, as observed by several parameters, including the percentage of participants experiencing diarrhea, as well as stool frequency and ETEC severity scores. These data highlight the potential value of LSN03 as a suitable ETEC challenge strain to evaluate LT-based vaccine targets (NCT03576183).

8.
Biologicals ; 85: 101748, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38350349

RESUMO

Controlled Human Infectious Model studies (CHIM) involve deliberately exposing volunteers to pathogens. To discuss ethical issues related to CHIM, the European Vaccine Initiative and the International Alliance for Biological Standardization organised the workshop "Ethical Approval for CHIM Clinical Trial Protocols", which took place on May 30-31, 2023, in Brussels, Belgium. The event allowed CHIM researchers, regulators, ethics committee (EC) members, and ethicists to examine the ethical criteria for CHIM and the role(s) of CHIM in pharmaceutical development. The discussions led to several recommendations, including continued assurance that routine ethical requirements are met, assurance that participants are well-informed, and that preparation of study documents must be both ethically and scientifically sound from an early stage. Study applications must clearly state the rationale for the challenge compared to alternative study designs. ECs need to have clear guidance and procedures for evaluating social value and assessing third-party risks. Among other things, public trust in research requires minimisation of harm to healthy volunteers and third-party risk. Other important considerations include appropriate stakeholder engagement, public education, and access to health care for participants after the study.


Assuntos
Desenvolvimento de Medicamentos , Projetos de Pesquisa , Humanos , Voluntários Saudáveis
9.
Wellcome Open Res ; 9: 2, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38362541

RESUMO

Background: As well as suffering a high burden of pneumococcal disease people living with HIV (PLHIV) may contribute to community transmission in sub-Saharan African (sSA) settings. Pneumococcal vaccination is not currently offered to PLHIV in sSA but may prevent disease and reduce transmission. More evidence of vaccine effectiveness against carriage in PLHIV is needed. An Experimental Human Pneumococcal Carriage model (EHPC) has been safely and acceptably used in healthy adults in Malawi to evaluate pneumococcal vaccines against carriage and to identify immune correlates of protection from carriage. This study will establish the same model in PLHIV and will be the first controlled human infection model (CHIM) in this key population. Methods: Healthy participants with and without HIV will be inoculated intranasally with Streptococcus pneumoniae serotype 6B. Sequential cohorts will be challenged with increasing doses to determine the optimal safe challenge dose to establish experimental carriage. Nasal fluid, nasal mucosal, and blood samples will be taken before inoculation and on days 2, 7, 14, and 21 following inoculation to measure pneumococcal carriage density and identify immune correlates of protection from carriage. The vast majority of natural pneumococcal carriage events in PLHIV do not result in invasive disease and no invasive disease is expected in this study. However, robust participant safety monitoring is designed to identify signs of invasive disease early should they develop, and to implement treatment immediately. Participants will complete a Likert-style questionnaire at study-end to establish acceptability. Interpretations: We expect the EHPC model to be safely and acceptably implemented in PLHIV. The CHIM can then be used to accelerate pneumococcal vaccine evaluations in this population, and an evidence-based pneumococcal vaccination policy for PLHIV in sSA.

10.
Clin Microbiol Rev ; 37(1): e0009423, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38226640

RESUMO

Neisseria gonorrhoeae infection is an important public health issue, with an annual global incidence of 87 million. N. gonorrhoeae infection causes significant morbidity and can have serious long-term impacts on reproductive and neonatal health and may rarely cause life-threatening disease. Global rates of N. gonorrhoeae infection have increased over the past 20 years. Importantly, rates of antimicrobial resistance to key antimicrobials also continue to increase, with the United States Centers for Disease Control and Prevention identifying drug-resistant N. gonorrhoeae as an urgent threat to public health. This review summarizes the current evidence for N. gonorrhoeae vaccines, including historical clinical trials, key N. gonorrhoeae vaccine preclinical studies, and studies of the impact of Neisseria meningitidis vaccines on N. gonorrhoeae infection. A comprehensive survey of potential vaccine antigens, including those identified through traditional vaccine immunogenicity approaches, as well as those identified using more contemporary reverse vaccinology approaches, are also described. Finally, the potential epidemiological impacts of a N. gonorrhoeae vaccine and research priorities for further vaccine development are described.


Assuntos
Anti-Infecciosos , Gonorreia , Vacinas , Recém-Nascido , Humanos , Neisseria gonorrhoeae , Gonorreia/tratamento farmacológico , Gonorreia/epidemiologia , Gonorreia/prevenção & controle
11.
J Infect Dis ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38019956

RESUMO

BACKGROUND: A controlled human infection model for assessing tuberculosis (TB) immunity can accelerate new vaccine development. METHODS: In this phase 1 dose escalation trial, 92 healthy adults received a single intradermal injection of 2 × 106 to 16 × 106 colony-forming units of Bacillus Calmette-Guérin (BCG). The primary endpoints were safety and BCG shedding as measured by quantitative polymerase chain reaction, colony-forming unit plating, and MGIT BACTEC culture. RESULTS: Doses up to 8 × 106 were safe, and there was evidence for increased BCG shedding with dose escalation. The MGIT time-to-positivity assay was the most consistent and precise measure of shedding. Power analyses indicated that 10% differences in MGIT time to positivity (area under the curve) could be detected in small cohorts (n = 30). Potential biomarkers of mycobacterial immunity were identified that correlated with shedding. Transcriptomic analysis uncovered dose- and time-dependent effects of BCG challenge and identified a putative transcriptional TB protective signature. Furthermore, we identified immunologic and transcriptomal differences that could represent an immune component underlying the observed higher rate of TB disease incidence in males. CONCLUSIONS: The safety, reactogenicity, and immunogenicity profiles indicate that this BCG human challenge model is feasible for assessing in vivo TB immunity and could facilitate the vaccine development process. CLINICAL TRIALS REGISTRATION: NCT01868464 (ClinicalTrials.gov).

12.
Immunother Adv ; 3(1): ltad024, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020312

RESUMO

HIC-Vac is an international network of researchers dedicated to developing human infection challenge studies to accelerate vaccine development against pathogens of high global impact. The HIC-Vac Annual Meeting (3rd and 4th November 2022) brought together stakeholders including researchers, ethicists, volunteers, policymakers, industry partners, and funders with a strong representation from low- and middle-income countries. The network enables sharing of research findings, especially in endemic regions. Discussions included pandemic preparedness and the role of human challenge to accelerate vaccine development during outbreak, with industry speakers emphasising the great utility of human challenge in vaccine development. Public consent, engagement, and participation in human challenge studies were addressed, along with the role of embedded social science and empirical studies to uncover social, ethical, and regulatory issues around human infection challenge studies. Study volunteers shared their experiences and motivations for participating in studies. This report summarises completed and ongoing human challenge studies across a variety of pathogens and demographics, and addresses other key issues discussed at the meeting.

13.
Wellcome Open Res ; 8: 111, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808389

RESUMO

Invasive non-typhoidal Salmonella disease (iNTS) is a major cause of morbidity and mortality globally, particularly as a cause of bloodstream infection in children and immunocompromised adults in sub-Saharan Africa. Vaccines to prevent non-typhoidal Salmonella (NTS) would represent a valuable public health tool in this setting to avert cases and prevent expansion of antimicrobial resistance. Several NTS and combination typhoidal-NTS vaccine candidates are in early-stage development, although the pathway to licensure is unclear due to challenges in conducting large phase III field trials. Controlled human infection models (CHIM) present an opportunity to accelerate vaccine development for a range of enteric pathogens. Several recent typhoidal Salmonella CHIMs have been conducted safely and have played pivotal roles in progressing vaccine candidates to pre-qualification and licensure. The Challenge Non-Typhoidal Salmonella (CHANTS) consortium has been formed with funding from the Wellcome Trust, to deliver the first NTS CHIM, which can act as a platform for future vaccine evaluation. This paper reports the conclusions of a consultation group workshop convened with key stakeholders. The aims of this meeting were to: (1) define the rationale for an NTS CHIM (2) map the NTS vaccine pipeline (3) refine study design and (4) establish potential future use cases.

14.
J Mol Biol ; 435(24): 168322, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37866477

RESUMO

Infectious diseases continue to account for a significant portion of global deaths despite the use of vaccines for several centuries. Immunization programs around the world are a testament to the great success of multiple vaccines, yet there are still diseases without vaccines and others that require safer more effective ones. Addressing uncontrolled and emerging disease threats is restrained by the limitations and bottlenecks encountered with traditional vaccine development paradigms. Recent advances in modern molecular biology technologies have enhanced the interrogation of host pathogen interaction and deciphered complex pathways, thereby uncovering the myriad interplay of biological events that generate immune protection against foreign agents. Consequent to insights into the immune system, modern biology has been instrumental in the development and production of next generation 21st century vaccines. As these biological tools, commonly and collectively referred to as 'omics, became readily available, there has been a renewed consideration of Controlled Human Infection Models (CHIMs). Successful and reproducible CHIMs can complement modern molecular biology for the study of infectious diseases and development of effective vaccines in a regulated process that mitigates risk, cost, and time, with capacity to discern immune correlates of protection.


Assuntos
Doenças Transmissíveis , Desenvolvimento de Vacinas , Vacinas , Humanos , Imunização/métodos
15.
EBioMedicine ; 97: 104832, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37837930

RESUMO

BACKGROUND: A controlled human infection model for schistosomiasis (CHI-S) can speed up vaccine development and provides insight into early immune responses following schistosome exposure. Recently, we established CHI-S model using single-sex male-only Schistosoma mansoni (Sm) cercariae in Schistosoma-naïve individuals. Given important differences in antigenic profile and human immune responses to schistosomes of different sex, we pioneered a single-sex female-only CHI-S model for future use in vaccine development. METHODS: We exposed 13 healthy, Schistosoma-naïve adult participants to 10 (n = 3) or 20 (n = 10) female cercariae and followed for 20 weeks, receiving treatment with praziquantel (PZQ) 60 mg/kg at week 8 and 12 after exposure. FINDINGS: The majority (11/13) participants reported rash and/or itch at the site of exposure, 5/13 had transient symptoms of acute schistosomiasis. Exposure to 20 cercariae led to detectable infection, defined as serum circulating anodic antigen levels >1.0 pg/mL, in 6/10 participants. Despite two rounds of PZQ treatment, 4/13 participants showed signs of persistent infection. Additional one- or three-day PZQ treatment (1 × 60 mg/kg and 3 × 60 mg/kg) or artemether did not result in cure, but over time three participants self-cured. Antibody, cellular, and cytokine responses peaked at week 4 post infection, with a mixed Th1, Th2, and regulatory profile. Cellular responses were (most) discriminative for symptoms. INTERPRETATION: Female-only infections exhibit similar clinical and immunological profiles as male-only infections but are more resistant to PZQ treatment. This limits future use of this model and may have important implications for disease control programs. FUNDING: European Union's Horizon 2020 (grant no. 81564).


Assuntos
Anti-Helmínticos , Esquistossomose mansoni , Adulto , Animais , Humanos , Masculino , Feminino , Esquistossomose mansoni/tratamento farmacológico , Voluntários Saudáveis , Schistosoma mansoni , Praziquantel/farmacologia , Praziquantel/uso terapêutico , Citocinas , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico
16.
Clin Infect Dis ; 77(Suppl 3): S216-S223, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37579202

RESUMO

Global elimination of hepatitis C virus (HCV) will be difficult to attain without an effective HCV vaccine. Controlled human infection (CHI) studies with HCV were not considered until recently, when highly effective treatment became available. However, now that successful treatment of a deliberate HCV infection is feasible, it is imperative to evaluate the ethics of establishing a program of HCV CHI research. Here, we evaluate the ethics of studies to develop an HCV CHI model in light of 10 ethical considerations: sufficient social value, reasonable risk-benefit profile, suitable site selection, fair participant selection, robust informed consent, proportionate compensation or payment, context-specific stakeholder engagement, fair and open collaboration, independent review and oversight, and integrated ethics research. We conclude that it can be ethically acceptable to develop an HCV CHI model. Indeed, when done appropriately, developing a model should be a priority on the path toward global elimination of HCV.


Assuntos
Hepacivirus , Hepatite C , Humanos , Hepatite C/epidemiologia , Hepatite C/prevenção & controle , Hepatite C/tratamento farmacológico , Consentimento Livre e Esclarecido , Antivirais/uso terapêutico
17.
Clin Infect Dis ; 77(Suppl 3): S224-S230, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37579204

RESUMO

Ethical human subjects research requires participants to be treated safely and respectfully, yet much bioethical debate takes place without participants. We aim to address this gap in the context of controlled human infection model (CHIM) research. Based upon our own experience as study participants, and bolstered by a survey of 117 potential hepatitis C virus CHIM participants, we present ideas to inform efficient, ethical, and scientifically useful study design. We advocate for full protocol transparency, higher compensation, commitment to the rapid dissemination of study results, and proactive efforts to detail risk-minimization efforts as early as possible in the recruitment process, among other measures. We encourage researchers to proactively partner with volunteer advocacy organizations that promote collective representation of volunteers to maximize their agency, and guard against ethical issues arising from healthy human subjects research.


Assuntos
Hepacivirus , Voluntários , Humanos , Projetos de Pesquisa
18.
Clin Infect Dis ; 77(Suppl 3): S270-S275, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37579206

RESUMO

Controlled human infection model trials for hepatitis C virus represent an important opportunity to identify correlates of protective immunity against a well-characterized inoculum of hepatitis C virus and how such responses are modified by vaccination. In this article, we discuss the approach to immunological monitoring during such trials, including a set of recommendations for optimal sampling schedule and preferred immunological assays to examine the different arms of the immune response. We recommend that this approach be adapted to different trial designs. Finally, we discuss how these studies can provide surrogate predictors of the success of candidate vaccines.


Assuntos
Hepacivirus , Hepatite C , Humanos , Monitorização Imunológica , Vacinação
19.
Clin Infect Dis ; 77(Suppl 3): S262-S269, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37579209

RESUMO

The design of a clinical trial for a controlled human infection model (CHIM) to accelerate hepatitis C virus (HCV) vaccine development requires careful consideration. The design of a potential approach to HCV CHIM is outlined, involving initial sentinel cohorts to establish the safety and curability of the viral inoculum followed by larger cohorts to establish the spontaneous clearance rate for each inoculum. The primary endpoint would be HCV clearance by 24 weeks post-inoculation, recognizing that the prevention of chronic infection would be the primary goal of HCV vaccine candidates. Additional considerations are discussed, including the populations to be enrolled, the required monitoring approach, indications for antiviral therapy, and the required sample size for different CHIM approaches. Finally, safety considerations for CHIM participants are discussed.


Assuntos
Hepatite C Crônica , Hepatite C , Vacinas , Humanos , Hepacivirus , Tamanho da Amostra , Hepatite C/prevenção & controle , Hepatite C/tratamento farmacológico , Hepatite C Crônica/prevenção & controle , Hepatite C Crônica/tratamento farmacológico , Antivirais/uso terapêutico
20.
Trends Parasitol ; 39(8): 626-637, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37336700

RESUMO

For pathogenic organisms, faster rates of multiplication promote transmission success, the potential to harm hosts, and the evolution of drug resistance. Parasite multiplication rates (PMRs) are often quantified in malaria infections, given the relative ease of sampling. Using modern and historical human infection data, we show that established methods return extraordinarily - and implausibly - large PMRs. We illustrate how inflated PMRs arise from two facets of malaria biology that are far from unique: (i) some developmental ages are easier to sample than others; (ii) the distribution of developmental ages changes over the course of infection. The difficulty of accurately quantifying PMRs demonstrates a need for robust methods and a subsequent re-evaluation of what is known even in the well-studied system of malaria.


Assuntos
Malária Falciparum , Malária , Parasitos , Animais , Humanos , Malária Falciparum/parasitologia , Plasmodium falciparum , Malária/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA