Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Heliyon ; 10(15): e34930, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39144939

RESUMO

The natural convection in cavities is frequently used in fluid mechanics and heat transfer engineering, such as heat exchangers, electronics, solar collectors, and growing crystals. However, the physics of natural convection flow and heat transfer in cavities with split baffles is least understood. The fundamental aim of this research is to investigate the impact of heated split baffles positioned at various locations on steady-state free convection within a sinusoidal corrugated star cavity. In this model configuration, the outer wavy enclosure is maintained at a constant temperature of T c , while the inner split baffles are heated at a constant temperature of T h . The finite element method is employed to discretize and solve the governing equations describing the fluid flow and heat transfer within the enclosure. This numerical approach aimed to analyze the effects of baffle inclination angles, baffle spacing, Rayleigh number on the fluid dynamics and convective thermal transport characteristics. The variation in velocity and temperature profile is illustrated through the streamlines and isotherm contours. Moreover, the numerical result is displayed in term N u a v g of the heat transfer, which are analyzed for inside space of baffles and angles of the baffle ( θ = 0 0 , 45 0 , 90 0 ) . The key finding demonstrates that increasing the Rayleigh numbers and the different positions (up, central, down) of inner vertical split baffles enhances the magnitude of the velocity by 88.1 % , 85.9 and 89.6 % respectively. Furthermore, for the inner rectangular split baffle angles of 0 ° , 45 ° , and 90 ° , and within the Rayleigh number range of 10 4 to 10 6 , the N u a v g exhibits significant variations, with maximum increases of 71.9 % , 46.7 % and a subsequent decrease of 45.9 % .

2.
Heliyon ; 10(14): e34580, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39130463

RESUMO

Mixed convective nanofluid flow has substantial importance in improvement of thermal performance, and thermal engineering to meet the global energy crisis. In this study, mixed convective nanofluid flow in a porous-wavy channel with an inner heated triangular obstacle under magnetic field effect is numerically examined. Nanofluid within the channel is heated and cooled from its bottom and top wavy-surfaces. A heated triangular cylinder is located at the centerline of the wavy-channel. Finite element method is utilized to solve the non-dimensional governing equations. The code is validated comparing present results with published numerical and experimental results. The response surface method is also implemented to analyze the obtained results and its sensitivity. The numerical results indicate that strength of flow velocity is accelerated with rising Reynolds number, Darcy numbers and inlet-outlet ports length but declined for Hartmann number and volume fraction. Heat transferring rate and heat transfer irreversibility are substantially increased for higher values of Reynolds number, inlet-outlet ports length, Darcy number and nanoparticle volume fraction but a reverse trend is occurred for magnetic field effect. The thermal performance is found significantly improved with simultaneous increment in Re, ϕ, Da and decrement in Ha. Positive sensitivity is achieved for input factors Re, ϕ, Da in computing N u a v while negative sensitivity to Ha. Heat transfer rate is found more sensitive to the impact of Re and ϕ compared to Da and Ha. 45.59 % more heat transmission potentiality is developed for using Al2O3-H2O nanofluid (vol.5 %) instead of using base fluid water. Heat transfer enhancement rate is decreased by 36.22 % due to impact of magnetic field strength. In addition, 84.12 % more heat transferring rate is recorded in presence of triangular obstacle. Moreover, irreversibility components are influenced significantly for the presence of heated triangular obstacle. Bejan number is also found declined for increasing physical parameters. The findings of this investigation may offer a guideline for finding experimental results to design high-performance convective heat exchangers.

3.
J Nucl Med ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39142829

RESUMO

Diffuse intrinsic pontine glioma (DIPG) is a rare childhood malignancy with poor prognosis. There are no effective treatment options other than external beam therapy. We conducted a pilot, first-in-human study using 124I-omburtamab imaging and theranostics as a therapeutic approach using a localized convection-enhanced delivery (CED) technique for administering radiolabeled antibody. We report the detailed pharmacokinetics and dosimetry results of intratumoral delivery of 124I-omburtamab. Methods: Forty-five DIPG patients who received 9.0-370.7 MBq of 124I-omburtamab intratumorally via CED underwent serial brain and whole-body PET/CT imaging at 3-5 time points after injection within 4, 24-48, 72-96, 120-144, and 168-240 h from the end of infusion. Serial blood samples were obtained for kinetic analysis. Whole-body, blood, lesion, and normal-tissue activities were measured, kinetic parameters (uptake and clearance half-life times) estimated, and radiation-absorbed doses calculated using the OLINDA software program. Results: All patients showed prominent activity within the lesion that was retained over several days and was detectable up to the last time point of imaging, with a mean 124I residence time in the lesion of 24.9 h and dose equivalent of 353 ± 181 mSv/MBq. Whole-body doses were low, with a dose equivalent of 0.69 ± 0.28 mSv/MBq. Systemic distribution and activities in normal organs and blood were low. Radiation dose to blood was very low, with a mean value of 0.27 ± 0.21 mGy/MBq. Whole-body clearance was monoexponential with a mean biologic half-life of 62.7 h and an effective half-life of 37.9 h. Blood clearance was biexponential, with a mean biologic half-life of 22.2 h for the rapid α phase and 155 h for the slower ß phase. Conclusion: Intratumoral CED of 124I-omburtamab is a novel theranostics approach in DIPG. It allows for delivery of high radiation doses to the DIPG lesions, with high lesion activities and low systemic activities and high tumor-to-normal-tissue ratios and achieving a wide safety margin. Imaging of the actual therapeutic administration of 124I-omburtamab allows for direct estimation of the therapeutic lesion and normal-tissue-absorbed doses.

4.
Artigo em Inglês | MEDLINE | ID: mdl-39136387

RESUMO

In the presence of appropriate substrates, surface-anchored enzymes can act as pumps and propel fluid through microchambers. Understanding the dynamic interplay between catalytic reactions and fluid flow is vital to enhancing the accuracy and utility of flow technology. Through a combination of experimental observations and numerical modeling, we show that coupled enzyme pumps can exhibit flow enhancement, flow suppression, and changes in the directionality (reversal) of the fluid motion. The pumps' ability to regulate the flow path is due to the reaction selectivity of the enzymes; the resultant fluid motion is only triggered by the presence of certain reactants. Hence, the reactants and the sequence in which they are present in the solution and the layout of the enzyme-attached patches form an "instruction set" that guides the flowing solution to specific sites in the system. Such systems can operate as sensors that indicate concentrations of reactants through measurement of the trajectory along which the flow demonstrates a maximal speed. The performed simulations suggest that the solutal buoyancy mechanism causes fluid motion and is responsible for all of the observed effects. More broadly, our studies provide a new route for forming self-organizing flow systems that can yield fundamental insight into nonequilibrium, dynamical systems.

5.
ACS Appl Mater Interfaces ; 16(32): 43016-43025, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39088740

RESUMO

Motile droplets using Marangoni convection are attracting attention for their potential as cell-mimicking small robots. However, the motion of droplets relative to the internal and external environments that generate Marangoni convection has not been quantitatively described. In this study, we used an aqueous two-phase system [poly(ethylene glycol) (PEG) and dextran] in an elongated chamber to generate motile dextran droplets in a constant PEG concentration gradient. We demonstrated that dextran droplets move by Marangoni convection, resulting from the PEG concentration gradient and the active transport of PEG and dextran into and out of the motile dextran droplet. Furthermore, by spontaneously incorporating long DNA into the dextran droplets, we achieved cell-like motility changes controlled by coexisting environment-sensing molecules. The DNA changes its position within the droplet and motile speed in response to external conditions. In the presence of Mg2+, the coil-globule transition of DNA inside the droplet accelerates the motile speed due to the decrease in the droplet's dynamic viscosity. Globule DNA condenses at the rear part of the droplet along the convection, while coil DNA moves away from the droplet's central axis, separating the dipole convections. These results provide a blueprint for designing autonomous small robots using phase-separated droplets, which change the mobility and molecular distribution within the droplet in reaction with the environment. It will also open unexplored areas of self-assembly mechanisms through phase separation under convections, such as intracellular phase separation.


Assuntos
DNA , Dextranos , Polietilenoglicóis , Dextranos/química , Polietilenoglicóis/química , DNA/química , Viscosidade , Soluções
6.
Sci Rep ; 14(1): 16565, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019961

RESUMO

The work numerically investigated laminar natural convection heat transfer from the single sphere with a constant heat flux surface in air over the wide range of Grashof number ( 10 ≤ G r ≤ 10 7 ). The more efficient and precise numerical method based on Bejan et al. was employed here, the accuracy of which has been confirmed through validation against a single sphere case. The heat transfer characteristics were systemically analyzed in terms of isothermal contours and streamlines around the sphere, dimensionless temperature and velocity profiles. Additionally, local Nusselt number as well as local pressure and friction drag coefficients were studied with different Grashof number. In comparison to the sphere with uniform heat flux surface, the heat transfer from the isothermal sphere was found to be enhanced attributable to a more robust buoyancy force and a steeper temperature gradient. Moreover, the average Nusselt number for the sphere with a constant heat flux between 60.4 and 98.6% of the isothermal sphere's value, this range being contingent upon the specific Grashof number. What's more, the proposed correlation addresses a notable void in the predictive understanding of heat transfer from the sphere with uniform heat flux, which is scenario prevalent in various engineering applications, particularly for the cooling of electrical and nuclear systems, and offer values for academic research.

7.
Anal Chim Acta ; 1317: 342903, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39030023

RESUMO

BACKGROUND: Precise localized printing of plasmonic nanoparticles at desired locations can find a plethora of applications in diverse areas, including nanophotonics, nanomedicine, and microelectronics. The focused laser beam-assisted optical printing technique has illustrated its potential for the localized printing of differently shaped plasmonic particles. However, the technique is either time-consuming or often requires focused optical radiation, limiting its practical applications. While the optothermal printing technique has recently emerged as a promising technique for the direct and rapid printing of plasmonic nanoparticles onto transparent substrates at lower laser intensities, its potential to print the plasmonic nanoparticles to the core of the optical fiber platforms and utilize it for biological cell trapping as well as an analytical platform remains unexplored. RESULTS: Herein, we demonstrate the thermal-convection-assisted printing of the Ag plasmonic nanoparticles from the plasmonic colloidal solution onto the core of single-mode optical fiber and its multi-functional applications. The direct printing of plasmonic structure on the fiber core via the thermal-convection mechanism is devoid of the requirement of any additional chemical ligand to the fiber core. Further, we demonstrated the potential of the developed plasmonic fiber probe as a multifunctional surface-enhanced Raman spectroscopic (SERS) platform for sensing, chemical reaction monitoring, and single-cell studies. The developed SERS fiber probe is found to detect crystal violet in an aqueous solution as low as 100 pM, with a plasmonic enhancement of 107. Additionally, the capability of the fiber-tip platform to monitor the surface plasmon-driven chemical reaction of 4-nitrothiophenol (4NTP) dimerizing into p, p'-dimercaptoazobenzene (DMAB) is demonstrated. Further, the versatility of the fiber probe as an effective platform for opto-thermophoretic trapping of single biological cells such as yeast, along with its Raman spectroscopic studies, is also shown here. SIGNIFICANCE: In this study, we illustrate for the first time the optothermal direct printing of plasmonic nanoparticles onto the core of a single-mode fiber. Further, the study demonstrates that such plasmonic nanoparticle printed fiber tip can act as a multi-functional analytical platform for optothermally trap biological particles as well as monitoring plasmon-driven chemical reactions. In addition, the plasmonic fiber tip can be used as a cost-effective SERS analytical platform and is thus expected to find applications in diverse areas.


Assuntos
Nanopartículas Metálicas , Fibras Ópticas , Prata , Análise de Célula Única , Análise Espectral Raman , Análise Espectral Raman/métodos , Nanopartículas Metálicas/química , Prata/química , Compostos de Sulfidrila/química , Fenóis/análise , Fenóis/química , Humanos , Impressão
8.
ACS Appl Mater Interfaces ; 16(28): 37318-37327, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38953533

RESUMO

Structural color, renowned for its enduring vibrancy, has been extensively developed and applied in the fields of display and anticounterfeiting. However, its limitations in brightness and saturation hinder further application in these areas. Herein, we propose a pendant evaporation self-assembly method to address these challenges simultaneously. By leveraging natural convection and Marangoni flow synchronization, the self-assembly process enhances the dynamics and duration of colloidal nanoparticles, thereby enhancing the orderliness of colloidal photonic crystals. On average, this technique boosts the brightness of structural color by 20% and its saturation by 35%. Moreover, pendant evaporation self-assembly is simple and convenient to operate, making it suitable for industrial production. We anticipate that its adoption will remarkably advance the industrialization of structural color, facilitating its engineering applications across various fields, such as display technology and anticounterfeiting identification.

9.
Micromachines (Basel) ; 15(7)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39064355

RESUMO

This paper presents a micromachined thermal convective accelerometer with low power and high reliability. This accelerometer comprises a heater and two thermistors. The central heater elevates the temperature of the chip above ambient levels while the symmetrically arranged thermistors monitor the temperature differentials induced by acceleration. The heater and thermistors are fabricated on a glass substrate using a standard micro-electromechanical systems (MEMS) process flow, and the fabricated sensor is installed on a rotation platform and a shaking table experimental setup to perform the experiment. The results indicate that the sensor has the capability to measure accelerations surpassing 80 m/s2, with an approximate linear sensitivity of 110.69 mV/g. This proposed thermal convective accelerometer offers promising potential for various applications requiring precise acceleration measurements in environments where low power consumption and high reliability are paramount.

10.
Sci Rep ; 14(1): 17095, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048607

RESUMO

The current analytical study is dedicated to the boundary layer regime where heat and mass transfer rates are ruled by natural convection. A rectangular enclosure filled with a combination of an arbitrary buoyancy ratio has an Oseen-linear solution, and the position of Beavers and Joseph's condition is employed at the porous fluid interface. Thermal radiation's interaction with a porous lining influences overall heat transfer in a system. Porous linings and radiation are employed in many applications, such as furnaces, insulation, heat exchangers, solar energy collecting and storage, and heat control in electronics. The effect of slip and radiation is to increase the flow rate because of the reduction in friction at the surface. It indicates the fact that temperature and concentration are rapidly lowering. As the slip parameter and radiation parameter increase, the heat and mass transport increase due to the rise in velocity. The Nusselt and Sherwood numbers reach their maximum when the radiation parameter, Rayleigh number, and slip parameter are increased. The findings of the Nusslet number and Sherwood numbers are related to the finite situations of the slip parameter tending to infinity, the radiation parameter going to zero and the angle 90°.

11.
Proc Natl Acad Sci U S A ; 121(28): e2403699121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38954544

RESUMO

Despite the ubiquity of thermal convection in nature and artificial systems, we still lack a unified formulation that integrates the system's geometry, fluid properties, and thermal forcing to characterize the transition from free to confined convective regimes. The latter is broadly relevant to understanding how convection transports energy and drives mixing across a wide range of environments, such as planetary atmospheres/oceans and hydrothermal flows through fractures, as well as engineering heatsinks and microfluidics for the control of mass and heat fluxes. Performing laboratory experiments in Hele-Shaw geometries, we find multiple transitions that are identified as remarkable shifts in flow structures and heat transport scaling, underpinning previous numerical studies. To unveil the mechanisms of the geometrically controlled transition, we focus on the smallest structure of convection, posing the following question: How free is a thermal plume in a closed system? We address this problem by proposing the degree of confinement [Formula: see text]-the ratio of the thermal plume's thickness in an unbounded domain to the lateral extent of the system-as a universal metric encapsulating all the physical parameters. Here, we characterize four convective regimes different in flow dimensionality and time dependency and demonstrate that the transitions across the regimes are well tied with [Formula: see text]. The introduced metric [Formula: see text] offers a unified characterization of convection in closed systems from the plume's standpoint.

12.
Sci Rep ; 14(1): 15165, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956434

RESUMO

This paper aims to study the natural convective magneto-hydrodynamic flow of fluid through vertical concentric annuli with iso-flux heating under the conditions of constant internal heat absorption and an induced magnetic field. By solving the set of dimensionless coupled governing equations, we were able to obtain exact expressions for the temperature field, velocity field, and induced magnetic field. We also managed to derive the formulas for skin friction, mass flux, and induced current density. We also examined the effects of non-dimensional parameters on skin friction and mass flux. For easy comprehension and interpretation, the results are provided graphically and in tabular form. The heat absorption parameter, the induced current density, the induced magnetic field, and velocity exhibit a negative trend as the Hartmann number (Ha) value increases. The induced magnetic field has the effect of raising both the induced current density and velocity profile. It is found that, when a fluid absorbs heat, the heat absorption parameter experiences reverse flow. For the heat-absorbing fluids, the radii ratio has the effect of increasing velocity, induced magnetic field, and induced current density. The numerical values of skin friction and mass flux at cylindrical walls increase (decrease) with increasing heat absorption parameter and generally it has decreasing tendency with increasing Hartmann number.

13.
Sci Rep ; 14(1): 15987, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987494

RESUMO

Our life is strongly affected by turbulent convective flows, driven by time-dependent thermal forcing, especially diurnal heating of the Earth's surface by the Sun. In a laboratory experiment, we investigate their analogues: We study complex and extraordinary properties of turbulent buoyancy driven flows generated due to periodic modulation of the temperature of the plates of a Rayleigh-Bénard cell, with amplitudes both smaller and larger than either the positive or negative mean temperature difference between the top and bottom. We probe the turbulent flow of our working fluid - cryogenic helium gas - using temperature sensors placed in the cell interior and embedded in its plates. We discuss spatial and temporal structure of the heat flow, generalize validity of Nusselt versus Rayleigh number scaling Nu ∝ Ra γ with γ ≈ 1 / 3 at very high Ra for modulated convection and argue that this system represents a benchmark model which helps us understand the energy budget of ocean currents or weather formation on Earth subject to diurnal Sun heating as well as similar natural flows on Earth-like planets.

14.
Heliyon ; 10(13): e33897, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39071649

RESUMO

In this study, we investigated buoyancy-induced convection in a permeable square hollow containing four embedded cylinders and subjected to a magnetic field using numerical methods. The finite element approach was used to solve the governing equations of the system as well as the initial and boundary conditions. We analyzed the effects of the emerging non-dimensional quantities on the flow pattern and thermal field, as well as entropy production, in relation to the thermophysical properties of the obstacles. In the limiting case, we compared our results with already published work and found outstanding concurrence. Our simulations revealed that increasing cylinder spacing leads to higher thermal entropy generation, while fluid friction irreversibility has the opposite effect. Additionally, the imposed magnetic field significantly suppressed temperature distribution and flow field, resulting in low thermal transmission within the cavity.

15.
Oncol Lett ; 28(3): 440, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39081966

RESUMO

Despite the implementation of multimodal treatments after surgery, glioblastoma (GBM) remains an incurable disease, posing a significant challenge in neuro-oncology. In this clinical setting, local therapy (LT), a developing paradigm, has received significant interest over time due to its potential to overcome the drawbacks of conventional therapy options for GBM. The present review aimed to trace the historical development, highlight contemporary advances and provide insights into the future horizons of LT in GBM management. In compliance with the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols criteria, a systematic review of the literature on the role of LT in GBM management was conducted. A total of 2,467 potentially relevant articles were found and, after removal of duplicates, 2,007 studies were screened by title and abstract (Cohen's κ coefficient=0.92). Overall, it emerged that 15, 10 and 6 clinical studies explored the clinical efficiency of intraoperative local treatment modalities, local radiotherapy and local immunotherapy, respectively. GBM recurrences occur within 2 cm of the radiation field in 80% of cases, emphasizing the significant influence of local factors on recurrence. This highlights the urgent requirement for LT strategies. In total, three primary reasons have thus led to the development of numerous LT solutions in recent decades: i) Intratumoral implants allow the blood-brain barrier to be bypassed, resulting in limited systemic toxicity; ii) LT facilitates bridging therapy between surgery and standard treatments; and iii) given the complexity of GBM, targeting multiple components of the tumor microenvironment through ligands specific to various elements could have a synergistic effect in treatments. Considering the spatial and temporal heterogeneity of GBM, the disease prognosis could be significantly improved by a combination of therapeutic strategies in the era of precision medicine.

16.
Sci Rep ; 14(1): 14152, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898150

RESUMO

Natural convection in a square porous cavity with a partial magnetic field is investigated in this work. The magnetic field enters a part of the left wall horizontally. The horizontal walls of the cavity are thermally insulated. The wave vertical wall on the right side is at a low temperature, while the left wall is at a high temperature. The Brinkman-Forchheimer-extended Darcy equation of motion is utilized in the construction of the fluid flow model for the porous media. The Finite Element Method (FEM) was used to solve the problem's governing equations, and the current study was validated by comparing it to earlier research. On streamlines, isotherms, and Nusselt numbers, changes in the partial magnetic field length, Hartmann number, Rayleigh number, Darcy number, and number of wall waves have been examined. This paper will show that the magnetic field negatively impacts heat transmission. This suggests that the magnetic field can control heat transfer and fluid movement. Additionally, it was shown that heat transfer improved when the number of wall waves increased.

17.
Proc Natl Acad Sci U S A ; 121(25): e2322572121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38875148

RESUMO

Shear forces affect self-assembly processes ranging from crystallization to fiber formation. Here, the effect of mild agitation on amyloid fibril formation was explored for four peptides and investigated in detail for A[Formula: see text]42, which is associated with Alzheimer's disease. To gain mechanistic insights into the effect of mild agitation, nonseeded and seeded aggregation reactions were set up at various peptide concentrations with and without an inhibitor. First, an effect on fibril fragmentation was excluded by comparing the monomer-concentration dependence of aggregation kinetics under idle and agitated conditions. Second, using a secondary nucleation inhibitor, Brichos, the agitation effect on primary nucleation was decoupled from secondary nucleation. Third, an effect on secondary nucleation was established in the absence of inhibitor. Fourth, an effect on elongation was excluded by comparing the seeding potency of fibrils formed under idle or agitated conditions. We find that both primary and secondary nucleation steps are accelerated by gentle agitation. The increased shear forces facilitate both the detachment of newly formed aggregates from catalytic surfaces and the rate at which molecules are transported in the bulk solution to encounter nucleation sites on the fibril and other surfaces. Ultrastructural evidence obtained with cryogenic transmission electron microscopy and free-flow electrophoresis in microfluidics devices imply that agitation speeds up the detachment of nucleated species from the fibril surface. Our findings shed light on the aggregation mechanism and the role of detachment for efficient secondary nucleation. The results inform on how to modulate the relative importance of different microscopic steps in drug discovery and investigations.


Assuntos
Amiloide , Amiloide/metabolismo , Amiloide/química , Cinética , Humanos , Resistência ao Cisalhamento , Agregados Proteicos , Peptídeos/química , Peptídeos/metabolismo , Doença de Alzheimer/metabolismo
18.
Adv Healthc Mater ; : e2400438, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885495

RESUMO

Two-photon polymerization (TPP) is an additive manufacturing technique with micron-scale resolution that is rapidly gaining ground for a range of biomedical applications. TPP is particularly attractive for the creation of microscopic three-dimensional structures in biocompatible and noncytotoxic resins. Here, TPP is used to develop microfluidic interfaces which provide chronic fluidic access to the brain of preclinical research models. These microcatheters can be used for either convection-enhanced delivery (CED) or for the repeated collection of liquid biopsies. In a brain phantom, infusions with the micronozzle result in more localized distribution clouds and lower backflow compared to a control catheter. In mice, the delivery interface enables faster, more precise, and physiologically less disruptive fluid injections. A second microcatheter design enables repeated, longitudinal sampling of cerebrospinal fluid (CSF) over time periods as long as 250 days. Moreover, further in vivo studies demonstrate that the blood-CSF barrier is intact after chronic implantation of the sampling interface and that samples are suitable for downstream molecular analysis for the identification of nucleic acid- or peptide-based biomarkers. Ultimately, the versatility of this fabrication technique implies a great translational potential for simultaneous drug delivery and biomarker tracking in a range of human neurological diseases.

19.
Appl Radiat Isot ; 211: 111415, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38936285

RESUMO

Radioisotopes are widely used in the fields of medicine, science, and industry. The growing demand for medical radioisotopes has driven research on alternative production methods. In particular, both isotopes of 67Cu and 68Ge play vital roles in the medical environment in many countries to be used in the radio-immunotherapy and the positron emission tomography imaging, respectively. This study designed a multi-target system consisting of two Zn and one Ga2O3 plates to enable simultaneous production of the medical radioisotopes 67Cu and 68Ge using 100 MeV proton beams. To understand the thermal effect on the multi-targets, we examined the distribution of energy absorbed in each solid plate target when exposed to an accelerated proton beam through the thermal-fluid analysis based on ANSYS simulation. For confirming thermal stability for two Zn targets and one Ga2O3 target, the modified water flow path inside the multi-target system was designed effectively with the controlled distribution of multiple sub-holes between main inlet and the following four channels. It was confirmed that the newly designed multi-target system of Zn and Ga2O3 solid plates shows higher thermal stability than the case of uniform distribution of water inlet, which means it could be exposed to a higher current beam of 7.57% to decrease the processing time.

20.
Small ; : e2403141, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874056

RESUMO

Unique suspension solar evaporator is one of the effective measures to address the major bottleneck of the emerging interfacial evaporators, i.e., the accumulation of salts on the surface. Yet, it remains a considerable challenge to avoid substantial heat loss underwater. Herein, a suspension wood-based evaporator is proposed with a thermal convection structure that effectively balances the contradiction between salt-resistance ability and heat loss. Benefitting from the heat centralization due to thermal convection, such suspension evaporator exhibits an excellent steam generation rate, which increases from 1.23 to 1.63 kg m-2 h-1 compared to the conventional suspension evaporator. Simultaneously, the steam generation rate retention improves from 64.9% over 20 test cycles to nearly 100% compared to the interfacial evaporator. This work provides an effective pathway for exploring efficient and stable suspension evaporators, offering essential directions for the future development and application of solar-driven evaporation technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA