Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 294
Filtrar
1.
Luminescence ; 39(8): e4857, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39129422

RESUMO

Copper (Cu2+) is a metal chemical element closely related to human life and is widely used in many fields. However, with the discharge of copper wastewater, the water quality will be seriously affected, leading to excessive intake of Cu2+ and a variety of diseases. Hence, there is a pressing need for an effective detection method for Cu2+ in aqueous environments. Leveraging the remarkable attributes of GFP chromophores and indenone derivatives, we have created a novel colorimetric fluorescent probe P-Cu2+, tailored for efficient copper ion detection. The addition of Cu2+ causes the solution to visibly change from colorless to a pronounced yellow, enabling naked-eye detection and offering promise for real sample analysis.


Assuntos
Colorimetria , Cobre , Corantes Fluorescentes , Cobre/química , Cobre/análise , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Estrutura Molecular , Poluentes Químicos da Água/análise , Água/química , Indanos/química , Indanos/análise , Íons/análise , Íons/química , Espectrometria de Fluorescência
2.
Biomed Pharmacother ; 178: 117182, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39053428

RESUMO

Cuproptosis is a novel form of regulated cell death, which plays an important role in the physiological and pathological processes of the human body. Despite the increasing research on cuproptosis-related genes (CRGs) and their correlation with diseases, the pathogenesis of cuproptosis-related diseases remains unclear. Furthermore, there is a lack of reviews on the emerging technologies for regulating cuproptosis in disease treatment. This study delves into the copper-induced cell death mechanism, distinguishing cuproptosis from mechanisms like oxidative stress, glutathione synthesis inhibition, and ubiquitin-proteasome system inhibition. Several long-standing mysteries of diseases such as Wilson's disease and Menkes disease may be attributed to the occurrence of cuproptosis. In addition, we also review the detection indicators related to cuproptosis, providing targets for the diagnosis of cuproptosis-related diseases, and summarize the application value of cuproptosis in tumor therapy to better elucidate the impact of copper in cell death and diseases, and thus to promote the application prospects and possible strategies of cuproptosis-related substances, such as copper ion chelators, copper ion carriers, and copper nanomaterials, in disease therapy.

3.
Bull Environ Contam Toxicol ; 113(2): 13, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012472

RESUMO

Tetracycline and copper ion are common pollutants in wastewater, and the effects of mixed pollutants on microorganisms in wastewater biological treatment have been less studied. In order to reveal the effects of mixed pollutants of tetracycline and copper ion on the microorganisms during the biological phosphorus removal, three ratios of tetracycline and copper ions were designed by the direct equipartition ray method. The relative abundance and diversity of microbial community were investigated, and the microbial interactions were revealed through microbiological methods. The results demonstrated that, for three different ratios, the inhibitory effect of specific phosphorus uptake rate became more significant with the increase of the tetracycline-copper ions concentration and the reaction time. The microbial community decreased with the increase of the proportion of tetracycline in different ratios. The relative abundance of Acinetobacter decreased with the increase of the proportion of tetracycline, while the relative abundance of Ca.Competibacter was higher under the conditions of low mixtures concentrations. Positive interactions and symbiotic relationships among microorganisms were predominant for three different ratios. However, as the proportion of tetracycline increased, the community structure of microorganisms shifted from phosphate-accumulating organisms to glycogen accumulating organisms and denitrifying bacteria. This study can provide a reference for the effect of mixed pollutants on microorganisms and the mechanism of wastewater treatment.


Assuntos
Cobre , Fósforo , Tetraciclina , Águas Residuárias , Poluentes Químicos da Água , Tetraciclina/farmacologia , Cobre/toxicidade , Águas Residuárias/química , Águas Residuárias/microbiologia , Eliminação de Resíduos Líquidos/métodos , Bactérias/efeitos dos fármacos , Bactérias/metabolismo
4.
J Fluoresc ; 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066915

RESUMO

A 1,8-naphthalimide-based tripodal fluorescent ligand (L3) was synthesized through the copper (I) catalyzed Huisgen azide-alkyne cycloaddition reaction of 2-(2-azidoethyl)-6-morpholino-1 H-benzo[de]isoquinoline-1,3(2 H)-dione with triproparagylamine. Naphthalimide acts as the fluorophore while the triazole and amine nitrogens chelate the metal ion. L3 showed a selective fluorescence turn-off for Cu(II) over other metal ions in aqueous acetonitrile solution. A Job's plot, Benesi-Hildbrand plot and high-resolution mass spectrometry data confirm a 1:1 binding stoichiometry with a binding constant of 7.8 х105 M- 1 while addition of disodium EDTA demonstrates its reversibility. The structure and stability of the complex was supported by theoretical calculations. The limit of detection for Cu(II) was calculated to be 0.3 µM which is considerably lower than WHO recommended Cu(II) limit in drinking water.

5.
J Hazard Mater ; 477: 135216, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39047560

RESUMO

Heavy metal Cu2+ emitted in industry and residues of glyphosate pesticides are pervasive in ecosystems, accumulated in water bodies and organisms' overtime, constituting hazard to human and ecological balance. The development of rapid, highly selective, reversibility and sensitive biosensor in vivo detection for Cu2+ and glyphosate was imminent. A novel dual-recognition fluorescence biosensor MPH was successfully synthesized based on triphenylamine, which demonstrated remarkable ratiometric fluorescence quenching toward Cu2+, while MPH-Cu2+ (1:1) ensemble exhibited ratiometric fluorescence restoration for glyphosate, both with observable color changes in daylight and UV lamp. The biosensor exhibited rapid, outstanding selectivity, anti-interference, and multiple cycles reversibility through "turn-off-on" fluorescence towards Cu2+ and glyphosate, respectively. Surprisingly, the clearly binding mechanisms of MPH to Cu2+ and MPH-Cu2+ ensemble to glyphosate were determined, respectively, based on the Job's plot, FT-IR, ESI-HRMS, 1H NMR titration and theoretical calculations of dynamics and thermodynamics. In addition, biosensor MPH demonstrated successful detection of Cu2+ and glyphosate across diverse environmental samples including tap water, extraction solutions of traditional Chinese medicine honeysuckle and soil samples. In the meantime, fluorescence imaging of Cu2+ and glyphosate at both micro and macro scales in various living organisms, such as rice roots, MCF-7 cells, zebrafish, and mice, were successfully achieved. Overall, this work was expected to become a promising and versatile fluorescence biosensor for rapid and reversible detection of Cu2+ and glyphosate both in vitro and vivo.


Assuntos
Técnicas Biossensoriais , Cobre , Glicina , Glifosato , Herbicidas , Peixe-Zebra , Cobre/análise , Cobre/química , Glicina/análogos & derivados , Glicina/análise , Glicina/química , Técnicas Biossensoriais/métodos , Animais , Herbicidas/análise , Herbicidas/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Humanos , Fluorescência , Camundongos , Corantes Fluorescentes/química
6.
J Fluoresc ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39009905

RESUMO

In this study, a fluorescent probe (GMP-Tb-SSA) utilizing lanthanide coordination polymer nanoparticles, GMP-Tb, as a sensing platform, and 5-sulfosalicylic acid (SSA) as a cofactor ligand was proposed for the detection of copper ions (Cu2+). GMP-Tb was synthesized by the self-assembly of guanine monophosphate (GMP) and terbium ion (Tb3+), and SSA was introduced as a sensitizer into the GMP-Tb network. Cu2+ could efficiently inhibit the electron transfer from the ligand GMP to the central ion, Tb3+, leading to a significant quench of fluorescence of Tb3+. The method is highly selective with a linear range of 0 to 21 µM and a detection limit of 300 nM. It is not interfered by metal ions, amino acids, and other species, and can be successfully applied to the detection of Cu2+ in real water samples.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124824, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39029203

RESUMO

In this study, we have reported a novel 4-bromo-salicylaldehyde-diphenyl-azine (B-1), a new member of salicylaldehyde-diphenyl-azine (SDPA) family known for its excellent sensing properties. In contrast to the previously reported AIEgens, we found that the bromo-substitution at the 4th position of the salicylaldehyde moiety blue-shifted the emission by 10 and 15 nm as compared to the unsubstituted (Tong et.al 2017) and Bromo at the 5th position (Jain et.al 2023) respectively. Moreover, B-1 crystallizes instantly as the cooling process starts, which was not observed in the previously reported scaffolds. The sensing investigation again demonstrated the precise and ultrasensitive behavior of B-1 for copper ions. B-1 has a very low LOD value i.e. 29.2 x 10-8 M with a high association constant and binds with copper ion in 2:1 mode. This time we also analyzed the practical applicability in the solid phase using cotton swabs and performed the real-time estimation of copper ions in water and biological samples like urine and blood serum. The excellent percentage recovery and the RSD value suggest the precision of the experiments. Further, we also perform the sensing in living cancer HeLa cells. Altogether, we found that the SDPA skeleton is precise and ultrasensitive for copper ions and versatile which can be used variously to detect copper ions in the real world. This research will surely help in developing new specific skeleton-based AIEgens with desirable emission properties and precise applications in the future.

8.
ChemistryOpen ; : e202400107, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837681

RESUMO

Oxidative stress caused by pregnancy-induced hypertension syndrome significantly affects the health of pregnant women. Hydrogen sulfide is a typical gaseous signal molecule against oxidative stress, and it is of profound significance to develop a detection method. In this study, a stimuli-responsive hydrogel was constructed based on the coordination and bonding principle of metal ions and chitosan (CS) to realize the quantitative detection of hydrogen sulfide (H2S). The chain of CS contains a large number of amino groups and hydroxyl groups, which can form the coordination structure with Cu2+, triggering CS to form a stable hydrogel. The hydrogel can be formed within about 5 s, which has the characteristics of rapid preparation. In the presence of target H2S, the cross-linking agent Cu2+ in the hydrogel can compete out, resulting in the collapse of the hydrogel and the release of the electrochemical probe. By detecting the concentration of the released electrochemical probe, the quantitative detection of H2S can be achieved. The prepared hydrogel has a good linear relationship with the concentration of H2S from 1 µM to 60 µm. At the same time, the hydrogel has good specificity and stability, and it can be applied to the detection of H2S in serum samples.

9.
Environ Sci Technol ; 58(24): 10852-10862, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38843408

RESUMO

The Cu(II)/H2O2 system is recognized for its potential to degrade recalcitrant organic contaminants and inactivate microorganisms in wastewater. We investigated its unique dual oxidation strategy involving the selective oxidation of copper-complexing ligands and enhanced oxidation of nonchelated organic compounds. L-Histidine (His) and benzoic acid (BA) served as model compounds for basic biomolecular ligands and recalcitrant organic contaminants, respectively. In the presence of both His and BA, the Cu(II)/H2O2 system rapidly degraded His complexed with copper ions within 30 s; however, BA degraded gradually with a 2.3-fold efficiency compared with that in the absence of His. The primary oxidant responsible was the trivalent copper ion [Cu(III)], not hydroxyl radical (•OH), as evidenced by •OH scavenging, hydroxylated BA isomer comparison with UV/H2O2 (a •OH generating system), electron paramagnetic resonance, and colorimetric Cu(III) detection via periodate complexation. Cu(III) selectively oxidized His owing to its strong chelation with copper ions, even in the presence of excess tert-butyl alcohol. This selectivity extended to other copper-complexing ligands, including L-asparagine and L-aspartic acid. The presence of His facilitated H2O2-mediated Cu(II) reduction and increased Cu(III) production, thereby enhancing the degradation of BA and pharmaceuticals. Thus, the Cu(II)/H2O2 system is a promising option for dual-target oxidation in diverse applications.


Assuntos
Cobre , Histidina , Peróxido de Hidrogênio , Oxirredução , Cobre/química , Histidina/química , Peróxido de Hidrogênio/química , Catálise , Ferro/química , Radical Hidroxila/química , Ácido Benzoico/química
10.
Int J Biol Macromol ; 274(Pt 1): 133281, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38906358

RESUMO

In this study, a novel adsorbent, A-PEI/CS-Cu2+, was developed by crosslinking polyethyleneimine/chitosan hydrogel with acrolein and loading it with copper ions. The adsorption process of A-PEI/CS-Cu2+ on the anionic dye acid yellow 36 (AY36) was investigated by kinetic, isothermal and thermodynamic modeling. It was noteworthy that A-PEI/CS-Cu2+ exhibited rapid adsorption with a 90 % removal rate achieved within just 5 min, which was much faster than the adsorption rate of A-PEI/CS without load of copper ions and showed its potential for rapid adsorption applications. The maximum adsorption capacity for AY36 could reach up to 3114 mg g-1. In addition, the high concentration of saline wastewater was found to have almost no effect on the adsorption reaction in the salt effect test experiment. In five desorption-regeneration cycle experiments, the sample exhibited good recyclability and regeneration performance. The driving force of the adsorption process mainly originated from the electrostatic interaction, hydrogen bonding, and intermolecular interaction, in which the addition of copper ions led to the enhancement of the electrostatic interaction and chelation between A-PEI/CS-Cu2+ and AY36. Overall, the findings suggest the excellent potential of A-PEI/CS-Cu2+ for rapid and efficient adsorption, as well as its suitability for practical applications in wastewater treatment.


Assuntos
Acroleína , Quitosana , Cobre , Hidrogéis , Polietilenoimina , Poluentes Químicos da Água , Quitosana/química , Cobre/química , Polietilenoimina/química , Adsorção , Hidrogéis/química , Poluentes Químicos da Água/química , Cinética , Acroleína/química , Compostos Azo/química , Termodinâmica , Ânions/química , Purificação da Água/métodos , Corantes/química , Águas Residuárias/química , Íons/química , Concentração de Íons de Hidrogênio
11.
Molecules ; 29(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38731524

RESUMO

Using the aldehyde amine condensation procedure and the triphenylamine group as the skeleton structure, the new triphenylamine-aromatic aldehyde-succinylhydrazone probe molecule DHBYMH was created. A newly created acylhydrazone probe was structurally characterized by mass spectrometry (MS), NMR, and infrared spectroscopy (FTIR). Fluorescence and UV spectroscopy were used to examine DHBYMH's sensing capabilities for metal ions. Notably, DHBYMH achieved a detection limit of 1.62 × 10-7 M by demonstrating exceptional selectivity and sensitivity towards Cu2+ ions in an optimum sample solvent system (DMSO/H2O, (v/v = 7/3); pH = 7.0; cysteine (Cys) concentration: 1 × 10-4 M). NMR titration, high-resolution mass spectrometry analysis, and DFT computation were used to clarify the response mechanism. Ultimately, predicated on DHBYMH's reversible identification of Cu2+ ions in the presence of EDTA, a molecular logic gate was successfully designed.

12.
Gels ; 10(5)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38786241

RESUMO

Metal-coordinated hydrogels are becoming increasingly popular in the biomedical field due to their unique properties. However, the mechanism behind gel forming involving metal ions is not yet fully understood. In this work, terahertz spectroscopy was used to investigate the role of interfacial water in the gelation process of copper ion-coordinated poly(vinyl alcohol) hydrogels. The results showed that the binding of copper ions could alter the interfacial hydration dynamics of the poly(vinyl alcohol) polymers. Combined with the results of differential scanning calorimetry (DSC), we propose a possible hydration layer-mediated mechanism for the formation of cooper ion-coordinated hydrogel during the freeze-thaw cycle. These results highlight the value of terahertz spectroscopy as a sensor for studying the hydration process in hydrogels and provide an important clue for understanding the mechanism of hydrogelation in ion-coordinated hydrogels.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124516, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38796893

RESUMO

Carbon dots (CDs) with blue emission were synthesized by solvothermal method using hydroquinone and 5-aminoisphthalic acid as precursors. The strong oxidation of ClO- caused the fluorescence quenching of CDs at 405 nm, and synchronously generated a new emission peak at 500 nm. Furthermore, upon the addition of Cu2+ to CDs-ClO- system, the green fluorescence at 500 nm was quenched, while the blue emission at 405 nm remained unchanged, due to the complexation between Cu2+ and the amino group on the CDs surface. Meanwhile, the fluorescence color of system changed from blue to bright green and then to dark blue by sequentially increasing the concentrations of ClO- and Cu2+. The fluorescence signal of F500/F405 exhibited a linear relationship with the concentration of ClO- and Cu2+ in a certain range, respectively. Thus, a ratiometric fluorescence sensor based on the obtained CDs were developed to sequentially detect ClO- and Cu2+ with detection limits of 0.40 µM and 0.31 µM, respectively. Additionally, the CDs were mixed with polyvinyl alcohol hydrogel to form test strips, which were successfully used for visual detection of ClO- and Cu2+. Satisfactory results were also obtained in the analysis of ClO- and Cu2+ in actual water samples.

14.
ACS Sens ; 9(5): 2317-2324, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38752502

RESUMO

Cu2+ accelerates the viral-like propagation of α-synuclein fibrils and plays a key role in the pathogenesis of Parkinson's disease (PD). Therefore, the accurate detection of Cu2+ is essential for the diagnosis of PD and other neurological diseases. The Cu2+ detection process is impeded by substances that have similar electrochemical properties. In this study, graphdiyne (GDY), a new kind of carbon allotrope with strong electron-donating ability, was utilized for the highly selective detection of Cu2+ by taking advantage of its outstanding adsorption capacity for Cu2+. Density functional theory (DFT) calculations show that Cu atoms are adsorbed in the cavity of GDY, and the absorption energy between Cu and C atoms is higher than that of graphene (GR), indicating that the cavity of GDY is favorable for the adsorption of Cu atoms and electrochemical sensing. The GDY-based electrochemical sensor can effectively avoid the interference of amino acids, metal ions and neurotransmitters and has a high sensitivity of 9.77 µA·µM-1·cm-2, with a minimum detectable concentration of 200 nM. During the investigating pathogenesis and therapeutic process of PD with α-synuclein as the diagnostic standard, the concentration of Cu2+ in cells before and after L-DOPA and GSH treatments were examined, and it was found that Cu2+ exhibits high potential as a biomarker for PD. This study not only harnesses the favorable adsorption of the GDY and Cu2+ to improve the specificity of ion detection but also provide clues for deeper understanding of the role of Cu2+ in neurobiology and neurological diseases.


Assuntos
Cobre , Técnicas Eletroquímicas , Grafite , Doença de Parkinson , alfa-Sinucleína , Cobre/química , Doença de Parkinson/diagnóstico , Grafite/química , Humanos , Técnicas Eletroquímicas/métodos , alfa-Sinucleína/análise , alfa-Sinucleína/química , Teoria da Densidade Funcional , Levodopa/química , Limite de Detecção , Glutationa/química
15.
Talanta ; 276: 126274, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38788379

RESUMO

A novel electrochemical biosensor was developed for the detection of epinephrine (EP) by immobilizing double-strand DNA (dsDNA) bound with copper ions on a gold electrode (Cu2+/dsDNA/MCH/AuE). The electrochemical behavior of EP at Cu2+/dsDNA/MCH/AuE was examined, and the results demonstrated a significant enhancement in the electrocatalytic oxidation peak current of EP due to the formation of a stable G-Cu(II)-G sandwich structure between Cu2+ and guanine at the modified electrode. The modification process of the electrode was characterized by scanning electron microscopy, infrared spectroscopy, electrochemical impedance spectroscopy, and differential pulse voltammetry. A study on the effect of pH in phosphate buffer solution on the electrochemical oxidation of EP indicated that the catalytic oxidation process was pH-dependent. A plot of catalytic current versus EP concentration exhibited a dual-linear relationship within two ranges: 1.0-12.5 µM and 12.5-1000.0 µM, with correlation coefficients of 0.995 and 0.997, respectively. The limit of detection was determined to be 47 nM (S/N = 3). According to the calculated Hill coefficient (0.99), it can be concluded that the electrocatalytic process followed the Michaelis-Menten kinetic mechanism. The maximum catalytic current Im was 25 µA, while the apparent Michaelis-Menten constant Km was 1.425 mM. These findings indicated excellent electrocatalytic activity of the modified electrode towards oxidation of EP. The developed biosensor successfully detected EP in spiked mouse serum as well as epinephrine hydrochloride injection with high selectivity, sensitivity, stability, and accuracy.


Assuntos
Técnicas Biossensoriais , Cobre , DNA , Técnicas Eletroquímicas , Eletrodos , Epinefrina , Ouro , Epinefrina/análise , Epinefrina/sangue , Cobre/química , Técnicas Biossensoriais/métodos , DNA/química , Técnicas Eletroquímicas/métodos , Ouro/química , Limite de Detecção , Animais , Oxirredução , Concentração de Íons de Hidrogênio
16.
Environ Sci Pollut Res Int ; 31(27): 39497-39513, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822180

RESUMO

Three-dimensional (3D) graphene oxide (GO)-based aerogels, GO and 4-methyl-5-thiazoleethanol (MTZE) composites, were prepared by a facile hydrothermal method. Due to the hydrogen bonding and π-π stacking interactions, the produced 3D GO-MTZE composites possessed large cylindrical structures. The morphologies, composition, and chemical states of 3D GO-MTZE3:1 composite were characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and N2 adsorption-desorption isotherms based on the Brunauer-Emmett-Teller (BET) method. The existence of nitrogen (N)-containing heterocyclic system and oxygen (O)-containing branched chain of MTZE contributed to the formation of 3D structures, while the complexation effect of heterocyclic sulfur (S)- and N-containing functional groups of MTZE for metal cations dominated the adsorption performance of 3D GO-MTZE3:1 composite, which could selectively adsorb copper ions (Cu2+). In addition, the better hydrophobic property of 3D GO-MTZE3:1 composite facilitates its facile recycling from aqueous solution after adsorption. The adsorption data of 3D GO-MTZE3:1 composite toward Cu2+ fitted well (R2 = 0.9996) with the linear pseudo-second-order kinetic model, giving an equilibrium rate constant (k2) of 0.0187 g mg-1 min-1. The linear Langmuir isothermal model could more accurately describe the experimental data, indicating the adsorption process is mainly dominated by the complexation interactions between MTZE and Cu2+. The thermodynamic parameters of ΔG° (< 0), ΔH° (> 0), and ΔS° (> 0) further indicate that the adsorption is a spontaneous and endothermic, confirming that the complexation between Cu2+ and 3D GO-MTZE3:1 composite occurs. Due to its high selectivity for Cu2+, good hydrophobicity, and excellent stability, the developed 3D GO-MTZE3:1 composite possesses might be promisingly used in the aqueous selective enrichment/removal of Cu2+.


Assuntos
Cobre , Grafite , Adsorção , Cobre/química , Grafite/química , Poluentes Químicos da Água/química , Espectroscopia de Infravermelho com Transformada de Fourier
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124175, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38565051

RESUMO

Copper is an essential trace element in the human body, and its level is directly related to many diseases. While the source of copper in human body is mainly intake from food, then the detection of copper ions (Cu2+) in food becomes crucial. Here, we synthesized a novel probe (E)-3-hydroxy-2-styryl-4H-benzo[h]chromen-4-one (NSHF) and explored the binding ability of NSHF for Cu2+ using nuclear magnetic resonance hydrogen spectroscopy (1H NMR), high-resolution mass spectrometry (HRMS), Job's plot method and density functional theory (DFT). NSHF shows the advantages of fast response time, good selectivity and high sensitivity for Cu2+. The fluorescence intensity ratio (F/F0) of NSHF shows a good linear relationship with the concentration of Cu2+ and the detection limit is 0.061 µM. NSHF was successfully applied to the detection of Cu2+ in real samples. In addition, a simple and convenient Cu2+ detection platform was constructed by combining NSHF with a smartphone and a UV lamp, which can realize the rapid detection of Cu2+. This work provides an effective tool for the real-time detection of Cu2+.


Assuntos
Cobre , Corantes Fluorescentes , Humanos , Cobre/análise , Corantes Fluorescentes/química , Espectrometria de Fluorescência , Íons/análise , Alimentos
18.
Talanta ; 274: 125943, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38564823

RESUMO

Fenton chemistry has aroused widespread concern due to its application in the green oxidation and mineralization of organic wastes. Inorganic pyrophosphatase (PPase) catalyzes the hydrolysis of pyrophosphate ions (PPi) and provides a thermodynamic driving force for many biosynthetic reactions. Fluoride (F-) is widely applied to fight against tooth decay and reduce cavities. The electrochemical determination of PPase activity and F- was realized based on Fenton chemistry in this work. Glassy carbon electrode modified with poly (azure A) and acetylene black (GCE/PAA-AB) was fabricated. Hydroxyl radicals (∙OH) that were generated from a Cu2+-catalyzed Fenton-type reaction could oxidize PAA in the near-neutral medium, leading to a great increase of the cathodic peak current (Ipc). A coordination reaction between PPi and Cu2+ exerted a negative effect on Fenton reaction and hindered the Ipc enhancement. Cu2+-PPi complex was decomposed due to the hydrolysis of PPi induced by PPase, which caused the reappearance of the notably increased current response. F- could effectively inhibit PPase activity. As a result, the stable Cu2+-PPi complex remained and the high Ipc suffered from the decline again. The Ipc difference was used for the highly sensitive determination of PPase activity in the content range of 0.001-20 mU mL-1 with a detection of limit (LOD) at 0.6 µU mL-1 and that of F- in the concentration range of 0.01-100 µM with a LOD at 7 nM. The proposed PPase and F- sensor displayed a good selectivity, stability and reproducibility, and a high accuracy.


Assuntos
Técnicas Eletroquímicas , Fluoretos , Ferro , Fluoretos/química , Ferro/química , Técnicas Eletroquímicas/métodos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Cobre/química , Eletrodos , Pirofosfatases/metabolismo , Pirofosfatases/análise , Pirofosfatase Inorgânica/metabolismo , Pirofosfatase Inorgânica/química , Limite de Detecção , Ensaios Enzimáticos/métodos
19.
Colloids Surf B Biointerfaces ; 238: 113887, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581835

RESUMO

Alzheimer's disease (AD) is complex and multifactorial, and its pathogenesis involves multiple factors and processes. This study pioneered the in situ growth of cerium oxide nanoparticles on macrophage membranes (Ce-RAW). Further, carbon quantum dots (CQD) were biomimetically modified by Ce-RAW, leading to the synthesis of a multifunctional nanocomposite (CQD-Ce-RAW). Within the framework of this research, CQD-Ce-RAW was strategically combined with photothermal therapy (PTT), aiming to achieve a more significant therapeutic effect. The macrophage membrane confers the system with anti-phagocytic and anti-inflammatory biological functions. More importantly, the ultra-small size of cerium oxide grown on the membrane acts as a reactive oxygen species (ROS) scavenger and alleviates the degree of oxidative stress. Meanwhile, CQD as a photosensitizer helps dissociate amyloid-ß (Aß) aggregates and chelates excess copper ions, thus further inhibiting Aß aggregation. Cell experiments showed that CQD-Ce-RAW combined with PTT could effectively degrade and inhibit the aggregation of Aß, remove ROS, and improve cell survival rate. The results of in vivo photothermal experiments demonstrated that near-infrared light enhanced the efficiency of drug penetration through the blood-brain barrier and facilitated its accumulation in brain tissue. This comprehensive therapeutic approach can intervene in the disease progression from multiple pathways, providing a new prospect for treating AD.


Assuntos
Doença de Alzheimer , Biofilmes , Cério , Nanopartículas , Terapia Fototérmica , Espécies Reativas de Oxigênio , Cério/química , Cério/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/terapia , Doença de Alzheimer/patologia , Animais , Camundongos , Nanopartículas/química , Biofilmes/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Pontos Quânticos/química , Peptídeos beta-Amiloides/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Tamanho da Partícula , Células RAW 264.7 , Humanos , Propriedades de Superfície , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos
20.
Anal Sci ; 40(7): 1279-1287, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38573453

RESUMO

Copper ions (Cu2+) and sulfide (S2-) play essential roles in many physiologies and pathologic processes. Herein, a new "on-off-on" tryptanthrin-based probe TR-1 (TR-1) has been designed and synthesized in a facile and economical way. TR-1 exhibited highly selective and sensitive response to Cu2+ without any interference over 14 competitive metal ions and the detection limit downs to 24 nM, which is far below the Chinese standard of fishery water quality (157 nM). The 'in situ' prepared complex TR-1 + Cu2+ could also be applied to detect S2- with the detection limit of 62 nM. Further, TR-1 was potentially applied for the analysis of copper ions in water samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA