Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Int J Cosmet Sci ; 46(4): 516-525, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39113306

RESUMO

OBJECTIVE: Atopic dermatitis (AD) is characterized by compositional and structural changes to the skin at lesional sites. Alteration to the levels and organization of both protein and lipid components are associated with disease status and lead to impaired barrier and hydration. Corneodesmosin (CDSN) and the arrangement and length of the intercellular lipid lamellae (ICLL) are altered in disrupted skin states. The aim of this research was to profile the distribution of CDSN and the ICLL in the stratum corneum (SC) at lesional and non-lesional sites in AD-prone skin and to investigate the impact of an eczema calming lotion containing petroleum jelly, fatty acids, and colloidal oatmeal. METHODS: An IRB-approved study was conducted with participants with active AD. From a small subset of participants, tape strips were collected from lesional and non-lesional sites on the arm, prior to and after twice daily application, over 4 weeks of an eczema calming lotion containing petroleum jelly, fatty acids, and colloidal oatmeal. Fluorescent antibody staining was used to investigate the distribution of CDSN. Transmission electron microscopy (TEM) was used to characterize the ICLL. RESULTS: The distribution/coverage of CDSN was similar between lesional and non-lesional sites at baseline; application of the lotion resulted in a more defined honeycomb/peripheral distribution. Normalized ICLL (nICLL) was lower in baseline samples from lesional sites relative to non-lesional sites. Application of the lotion increased this parameter by the end of the study at all sites. CONCLUSION: The eczema calming lotion containing petroleum jelly, fatty acids and colloidal oatmeal provided changes in corneodesmosomal proteins distribution and ICLL, consistent with improvements in corneocyte maturation and improved barrier function in the skin of individuals with atopic dermatitis.


OBJECTIF: La dermatite atopique (DA) est caractérisée par des modifications de la composition et de la structure de la peau au niveau des sites lésionnels. L'altération des taux et de l'organisation des composants protéiques et lipidiques est associée au statut de la maladie, et entraîne une altération de la barrière et de l'hydratation. La cornéodesmosine (CDSN), et la disposition et la longueur des lamelles lipidiques intercellulaires (LLIC) sont altérées dans les états cutanés perturbés. L'objectif de cette étude était d'établir le profil de la distribution de la CDSN et des LLIC dans la couche cornée (CC) au niveau des sites lésionnels et non lésionnels dans la peau sujette à la DA, et d'étudier l'impact d'une lotion apaisante contre l'eczéma contenant de la vaseline, des acides gras et de l'avoine colloïdale. MÉTHODES: Une étude approuvée par un CPP a été menée auprès de participants atteints de DA active. Dans un petit sous­ensemble de participants, des bandes adhésives ont été prélevées sur des sites lésionnels et non lésionnels du bras, avant et après l'application deux fois par jour pendant 4 semaines d'une lotion apaisante contre l'eczéma contenant de la vaseline, des acides gras et de l'avoine colloïdale. Une coloration par anticorps fluorescents a été utilisée pour étudier la distribution de la CDSN. La microscopie électronique en transmission (MET) a été utilisée pour caractériser les LLIC. RÉSULTATS: La distribution/couverture de la CDSN était similaire entre les sites lésionnels et non lésionnels à l'entrée dans l'étude; l'application de la lotion a entraîné une distribution en nid d'abeille/périphérique plus définie. Le taux normalisé de LLIC (LLICn) était plus faible dans les échantillons prélevés à l'entrée dans l'étude au niveau des sites lésionnels par rapport aux sites non lésionnels. L'application de la lotion a augmenté ce paramètre à la fin de l'étude pour tous les sites. CONCLUSIONS: La lotion apaisante contre l'eczéma contenant de la vaseline, des acides gras et de l'avoine colloïdale a entraîné des changements dans la distribution des protéines cornéodesmosomales et des LLIC, ce qui correspond à des améliorations de la maturation des cornéocytes et de la fonction de barrière de la peau des personnes atteintes de dermatite atopique.


Assuntos
Dermatite Atópica , Humanos , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , Dermatite Atópica/patologia , Adulto , Masculino , Feminino , Glicoproteínas/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lipídeos/química , Eczema/tratamento farmacológico , Eczema/patologia , Eczema/metabolismo , Creme para a Pele , Adulto Jovem , Epiderme/metabolismo , Epiderme/efeitos dos fármacos , Epiderme/patologia , Pessoa de Meia-Idade
2.
Microbiology (Reading) ; 169(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37326621

RESUMO

Adhesive interactions between Staphylococcus aureus and the host rely on cell-wall-anchored proteins such as fibronectin-binding protein B (FnBPB). Recently we showed that the FnBPB protein expressed by clonal complex (CC) 1 isolates of S. aureus mediates bacterial adhesion to corneodesmosin. The proposed ligand-binding region of CC1-type FnBPB shares just 60 % amino acid identity with the archetypal FnBPB protein from CC8. Here we investigated ligand binding and biofilm formation by CC1-type FnBPB. We found that the A domain of FnBPB binds to fibrinogen and corneodesmosin and identified residues within the hydrophobic ligand trench in the A domain that are essential for the binding of CC1-type FnBPB to ligands and during biofilm formation. We further investigated the interplay between different ligands and the influence of ligand binding on biofilm formation. Overall, our study provides new insights into the requirements for CC1-type FnBPB-mediated adhesion to host proteins and FnBPB-mediated biofilm formation in S. aureus.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Ligantes , Adesinas Bacterianas/genética , Adesinas Bacterianas/química , Adesinas Bacterianas/metabolismo , Aderência Bacteriana , Proteínas de Transporte/metabolismo , Ligação Proteica , Infecções Estafilocócicas/microbiologia , Fibronectinas/metabolismo , Biofilmes , Proteínas de Bactérias/metabolismo
3.
Pediatr Dermatol ; 39(2): 268-272, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35178752

RESUMO

Generalized inflammatory peeling skin syndrome (PSS) is a rare autosomal recessive genodermatosis caused by loss-of-function disease-causing variants of the corneodesmosin gene (CDSN), resulting in excessive shedding of the superficial layers of the epidermis. We describe a case of generalized inflammatory PSS in an infant, presenting at day two of life with ichthyosiform erythroderma and superficial peeling of the skin. Hair microscopy showed trichorrhexis invaginata. Normal amounts of skin LEKT1, a product of SPINK5 on immunohistochemical staining excluded a diagnosis of Netherton syndrome. Genetic analysis revealed a homozygous novel complete CDSN deletion, estimated 4.6 kb in size, supporting the diagnosis of generalized inflammatory PSS.


Assuntos
Dermatite Esfoliativa , Eosinofilia , Doenças do Cabelo , Síndrome de Netherton , Dermatopatias Genéticas , Dermatite Esfoliativa/diagnóstico , Dermatite Esfoliativa/genética , Dermatite Esfoliativa/patologia , Humanos , Lactente , Peptídeos e Proteínas de Sinalização Intercelular , Síndrome de Netherton/diagnóstico , Síndrome de Netherton/genética , Dermatopatias Genéticas/diagnóstico , Dermatopatias Genéticas/genética
4.
JID Innov ; 2(1): 100065, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35024686

RESUMO

Cornification involves cytoskeletal cross-linkages in corneocytes (the brick) and the secretion of lipids/adhesion structures to the interstitial space (the mortar). Because the assembly of lipid envelopes precedes corneocyte maturation, loricrin is supposed to be dispensable for the protection against desiccation. Although the phenotypes of Lor knockout (LKO) mice are obscure, the antioxidative response on the KEAP1/NRF2 signaling pathway compensates for the structural defect in utero. In this study, we asked how the compensatory response is evoked after the defects are repaired. To this end, the postnatal phenotypes of LKO mice were analyzed with particular attention to the permeability barrier function primarily maintained by the mortar. Ultrastructural analysis revealed substantially thinner cornified cell envelopes and increased numbers of lamellar granules in LKO mice. Superficial epidermal damages triggered the adaptive repairing responses that evoke the NRF2-dependent upregulation of genes associated with lamellar granule secretion in LKO mice. We also found that corneodesmosomes are less degraded in LKO mice. The observation suggests that loricrin and NRF2 are important effectors of cornification, in which proteins need to be secreted, cross-linked, and degraded in a coordinated manner.

5.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613524

RESUMO

Ceramide (Cer) plays an important role in skin barrier functions in the stratum corneum (SC). The ingestion of food-derived glucosylceramides (GlcCer) attenuates transepidermal water loss (TEWL). However, the moisturizing effects of single molecules of GlcCer and Cer remain unclear. Therefore, we herein purified 13 GlcCer and 6 Cer, including elasticamide, which has the same structure as human Cer[AP], from rice and compared their epidermal moisturizing effects in a reconstructed human epidermal keratinization model. The results obtained showed that 10 µM of 5 GlcCer[d18:2] with a 4E,8Z sphingadienine and C18 to C26 fatty acids and 10 µg/mL of 3 Cer with C23 or C24 fatty acids significantly reduced TEWL. The moisturizing effects of these GlcCer were dependent on the length of fatty acids. Furthermore, 10 µg/mL of elasticamide increased the SC Cer contents by promoting the expression of GlcCer synthase. Electron microscopic observations revealed that 1 µM of GlcCer[d18:2(4E,8Z)/26:0] increased the number of keratohyalin granules and desmosomes. Immunostaining and Western blotting indicated that 1 µM of GlcCer[d18:2(4E,8Z)/26:0] up-regulated the expression of filaggrin and corneodesmosin, which contribute to epidermal hydration. This comparative study on epidermal moisturization by GlcCer and Cer isolated from rice revealed differences in their hydration mechanisms.


Assuntos
Ceramidas , Oryza , Humanos , Ceramidas/metabolismo , Glucosilceramidas/metabolismo , Oryza/metabolismo , Epiderme/metabolismo
6.
Exp Dermatol ; 29(8): 742-748, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32618001

RESUMO

Autosomal recessive congenital ichthyosis (ARCI) manifests with generalized scaling often associated with generalized erythema. Mutations in at least 13 different genes have been reported to cause ARCI. Acral peeling skin syndrome (APSS) is a rare autosomal recessive disorder manifesting with peeling over the distal limbs and dorsal surfaces of hands and feet. APSS is mostly due to mutations in TGM5, encoding transglutaminase 5. Both ARCI and APSS are fully penetrant genetic traits. Here, we describe a consanguineous family in which one patient with mild ARCI was found to carry a homozygous mutation in ALOXE3 (c.1238G > A; p.Gly413Asp). The patient was also found to carry a known pathogenic homozygous mutation in TGM5 (c.1335G > C; p.Lys445Asn) but did not display acral peeling skin. Her uncle carried the same homozygous mutation in TGM5 but carried the ALOXE3 mutation in a heterozygous state and showed clinical features typical of APSS. Taken collectively, these observations suggested that the ALOXE3 mutation suppresses the clinical expression of the TGM5 variant. We hypothesized that ALOXE3 deficiency may affect the expression of a protein capable of compensating for the lack of TGM5 expression. Downregulation of ALOXE3 in primary human keratinocytes resulted in increased levels of corneodesmosin, which plays a critical role in the maintenance of cell-cell adhesion in the upper epidermal layers. Accordingly, ectopic corneodesmosin expression rescued the cell-cell adhesion defect caused by TGM5 deficiency in keratinocytes as ascertained by the dispase dissociation assay. The present data thus provide evidence for phenotypic suppression in a human hereditary skin disorder.


Assuntos
Adesão Celular/genética , Dermatite Esfoliativa/genética , Ictiose Lamelar/genética , Lipoxigenase/genética , Dermatopatias Genéticas/genética , Transglutaminases/genética , Células Cultivadas , Criança , Análise Mutacional de DNA , Dermatite Esfoliativa/complicações , Células Epidérmicas/fisiologia , Feminino , Dermatoses do Pé/genética , Dermatoses da Mão/genética , Heterozigoto , Homozigoto , Humanos , Ictiose Lamelar/complicações , Masculino , Linhagem , Fenótipo , Cultura Primária de Células , Dermatopatias Genéticas/complicações , Sequenciamento do Exoma
7.
Matrix Biol Plus ; 6-7: 100019, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-33543017

RESUMO

As the outermost layer of the skin, the epidermis is playing a major role in organism homeostasis providing the first barrier against external aggressions. Although considered as an extracellular matrix (ECM)-poor subtissue, the epidermal microenvironment is a key regulator of skin homeostasis and functionality. Among the proteins essential for upholding the epidermal microenvironment are the members of the kallikrein (KLK) family composed of 15 secreted serine proteases. Most of the members of these epithelial-specific proteins are present in skin and regulate skin desquamation and inflammation. However, although epidermal products, the consequences of KLK activities are not confined to the epidermis but widespread in the skin. In this review starting with the location and proteolytic activation cascade of KLKs, we present KLKs involvement in skin homeostasis, regeneration and pathology. KLKs have a large variety of substrates including ECM proteins, and evidence suggests that they are involved in the different steps of skin wound healing as discussed here. KLKs are also used as prognosis/diagnosis markers for many cancer types and we are focusing later on KLKs in cutaneous cancers, although their pathogenicity remains to be fully elucidated. Dysregulation of the KLK cascade is directly responsible for skin diseases with heavy inflammatory aspects, highlighting their involvement in skin immune homeostasis. Future studies will be needed to support the therapeutic potential of adjusting KLK activities for treatment of inflammatory skin diseases and wound healing pathologies.

8.
J Dermatol ; 47(1): 3-7, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31663161

RESUMO

Peeling skin disease is a rare genodermatosis characterized by superficial exfoliation or peeling of the skin. Peeling skin disease is caused by biallelic mutations in CDSN as an autosomal recessive trait. Monoallelic mutations in CDSN have also been described in an autosomal dominant inherited genodermatosis: hypotrichosis simplex of the scalp. This disease is characterized by progressive hair loss of the scalp with onset after early childhood. Clinical data were obtained from a patient with lifelong generalized skin peeling and both his parents. The patient's parents did not suffer from skin peeling, but the mother had a history of thin scalp hair since early childhood. Mutation analysis in the patient showed compound heterozygous mutations in exon 2 of CDSN, a nonsense mutation c.598C>T (p.[Gln200*]), previously associated with hypotrichosis simplex of the scalp, and a frame-shift mutation c.164_167dup (p.[Thr57Profs*6]), previously described in peeling skin disease. The p.(Gln200*) mutation was also found in the mother of the proband. Our study strengthens the previously established link between mutations in CDSN to peeling skin disease and hypotrichosis simplex of the scalp.


Assuntos
Dermatite Esfoliativa/genética , Hipotricose/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Códon sem Sentido , Análise Mutacional de DNA , Dermatite Esfoliativa/diagnóstico , Humanos , Hipotricose/diagnóstico , Masculino , Linhagem , Fenótipo , Adulto Jovem
9.
Forensic Sci Int ; 303: 109940, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31550598

RESUMO

The determination of cell type in biological casework samples would be helpful to identify the type of body fluids and interpret the DNA source in forensic laboratories. Exfoliated epidermal cells are considered to be a reasonable source of touch DNA; therefore, we developed and assessed an immunohistochemistry (IHC) procedure for identifying exfoliated epidermal cells as a screening test of touch DNA samples. Among five candidate protein markers investigated in this study, keratin 10 and kallikrein-related peptidase 5 were strongly expressed in the stratum corneum layer of the skin; however, their specificity was insufficient to identify epidermal cells. In contrast, IHC for corneodesmosin (CDSN), desmocollin 1 (DSC1), and filaggrin (FLG) was considered to be applicable because of their detectability and specificity on skin swab samples. Actually, CDSN and DSC1 could be good markers for exfoliated epidermal cells on touched contact traces that were contaminated with many unidentified impurities. Besides, positivity for FLG on mock casework samples appeared to be lower than for the other markers, which might be caused by its instability. Finally, the relationship between positivity for IHC and DNA yield was analyzed using skin swab samples. Although it was difficult to determine these correlations quantitatively because of the heterogeneous distribution of cells and the presence of cell-free DNA, the DNA-quantifiable samples analyzed in this study contained at least some of IHC-positive epidermal cells. In conclusion, IHC detection of skin-enriched proteins, especially CDSN and DSC1, could be useful for screening samples that have been handled or touched by someone before DNA analysis.


Assuntos
Desmocolinas/metabolismo , Células Epidérmicas/citologia , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pele/metabolismo , Tato , Biomarcadores/metabolismo , Análise Química do Sangue , Muco do Colo Uterino/química , DNA/análise , Proteínas Filagrinas , Ciências Forenses , Humanos , Proteínas de Filamentos Intermediários/metabolismo , Calicreínas/metabolismo , Queratina-10/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Saliva/química , Sêmen/química , Coloração e Rotulagem
10.
J Dermatol ; 45(4): 385-389, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29349851

RESUMO

Desmosomes provide the main intercellular adhesive properties between epidermal keratinocytes. Their distribution becomes uneven in severe dermatitis, multiple allergies and metabolic wasting syndrome due to desmoglein 1 deficiency and the loss of intercellular adhesion or acantholysis. When keratinocytes differentiate from granular cells into cornified cells, desmosomes are transformed into corneodesmosomes and can provide stronger intercellular adhesion. Degradation of corneodesmosomes is a tightly regulated process involving a number of proteases and their inhibitors. Peripheral corneodesmosomes are protected from proteolytic degradation by the tight junction-related structures around them, and this construction provides the basis for the normal basket weave-like structure of the stratum corneum. In Netherton syndrome, which is caused by an absence of the protease inhibitor lymphoepithelial Kazal-type-related inhibitor, premature degradation of corneodesmosomes occurs due to the overactivation of proteases involved in corneodesmosome degradation. Inflammatory peeling skin disease is caused by the absence of corneodesmosin, a unique component of corneodesmosomes. In this disease, corneodesmosomes are structurally abnormal, and their adhesiveness is compromised, which leads to intercellular splitting between the stratum corneum and stratum granulosum. The better we understand desmosome and corneodesmosome ultrastructure in normal and diseased skin, the clearer the physiological and pathological mechanisms of epidermal integrity become.


Assuntos
Desmossomos/patologia , Epiderme/patologia , Queratinócitos/patologia , Dermatopatias Genéticas/patologia , Caderinas de Desmossomos/genética , Caderinas de Desmossomos/metabolismo , Desmossomos/ultraestrutura , Células Epidérmicas , Epiderme/ultraestrutura , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Queratinócitos/citologia , Queratinócitos/ultraestrutura , Mutação , Inibidor de Serinopeptidase do Tipo Kazal 5/genética , Inibidor de Serinopeptidase do Tipo Kazal 5/metabolismo , Dermatopatias Genéticas/genética , Junções Íntimas/patologia , Junções Íntimas/ultraestrutura
11.
Exp Dermatol ; 26(4): 352-358, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27943452

RESUMO

PSORS1C2 is a gene located between coiled-coil alpha-helical rod protein 1 (CCHCR1) and corneodesmosin (CDSN) within the psoriasis susceptibility locus 1 (PSORS1). Here, we performed a comparative genomics analysis of the as-yet incompletely characterized PSORS1C2 gene and determined its expression pattern in human tissues. In contrast to CCHCR1, which is common to all vertebrates investigated, PSORS1C2 and CDSN are present exclusively in mammals, indicating that the latter genes have originated after the evolutionary divergence of mammals and reptiles. CDSN is conserved in aquatic mammals, whereas PSORS1C2 orthologs contain gene-inactivating frame shift mutations in whales and dolphins, in which the epidermal differentiation programme has degenerated. Reverse-transcription PCR screening demonstrated that, in human tissues, PSORS1C2 is expressed principally in the epidermis and weakly in the thymus. PSORS1C2 mRNA was strongly upregulated during terminal differentiation of human keratinocytes in vitro. Immunohistochemistry revealed exclusive expression of PSORS1C2 in the granular layer of the epidermis and in cornifying epithelial cells of Hassall's corpuscles of the thymus. In summary, our results identify PSORS1C2 as a keratinocyte cornification-associated protein that has originated in evolutionarily basal mammals and has undergone gene inactivation in association with the loss of the skin barrier function in aquatic mammals.


Assuntos
Diferenciação Celular/genética , Expressão Gênica , Queratinócitos/fisiologia , Mamíferos/genética , RNA Mensageiro/metabolismo , Animais , Golfinho Nariz-de-Garrafa/genética , Bovinos/genética , Bases de Dados Genéticas , Epiderme/metabolismo , Células Epiteliais/metabolismo , Genômica , Glicoproteínas/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Marsupiais/genética , Proteínas de Membrana/genética , Gambás/genética , Filogenia , Proteínas , Cachalote/genética , Timo/metabolismo , Regulação para Cima , Orca/genética
12.
J Allergy Clin Immunol ; 138(1): 150-161.e13, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26993035

RESUMO

BACKGROUND: Epidermal barrier dysfunction has been recognized as a critical factor in the initiation and exacerbation of skin inflammation, particularly in patients with atopic dermatitis (AD) and AD-like congenital disorders, including peeling skin syndrome type B. However, inflammatory responses developed in barrier-defective skin, as well as the underlying mechanisms, remained incompletely understood. OBJECTIVE: We aimed to decipher inflammatory axes and the cytokine network in mouse skin on breakdown of epidermal stratum corneum barrier. METHODS: We generated Cdsn(iep-/-) mice with corneodesmosin ablation in keratinocytes selectively in an inducible manner. We characterized inflammatory responses and cytokine expression by using histology, immunohistochemistry, ELISA, and quantitative PCR. We combined mouse genetic tools, antibody-mediated neutralization, signal-blocking reagents, and topical antibiotic treatment to explore the inflammatory axes. RESULTS: We show that on breakdown of the epidermal stratum corneum barrier, type 2 and type 17 inflammatory responses are developed simultaneously, driven by thymic stromal lymphopoietin (TSLP) and IL-23, respectively. Importantly, we reveal a counterregulation between these 2 inflammatory axes. Furthermore, we show that protease-activated receptor 2 signaling is involved in mediating the TSLP/type 2 axis, whereas skin bacteria are engaged in induction of the IL-23/type 17 axis. Moreover, we find that IL-1ß is induced in skin of Cdsn(iep-/-) mice and that blockade of IL-1 signaling suppresses both TSLP and IL-23 expression and ameliorates skin inflammation. CONCLUSION: The inflammatory phenotype in barrier-defective skin is shaped by counterregulation between the TSLP/type 2 and IL-23/type 17 axes. Targeting IL-1 signaling could be a promising therapeutic option for controlling skin inflammation in patients with peeling skin syndrome type B and other diseases related to epidermal barrier dysfunction, including AD.


Assuntos
Citocinas/metabolismo , Dermatite/imunologia , Dermatite/metabolismo , Epiderme/imunologia , Epiderme/metabolismo , Imunomodulação , Interleucina-23/metabolismo , Animais , Biomarcadores , Citocinas/genética , Dermatite/patologia , Modelos Animais de Doenças , Epiderme/patologia , Glicoproteínas/deficiência , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Queratinócitos/metabolismo , Camundongos , Camundongos Knockout , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfopoietina do Estroma do Timo
14.
J Allergy Clin Immunol ; 134(4): 808-15, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25282561

RESUMO

The epidermis forms during the course of a complex differentiation process known as cornification, which culminates with the formation of the epidermal barrier. The epidermal barrier serves as a vital line of defense against the environment and mainly consists of 3 elements: intracellular keratin filaments, intercellular lipids, and the cornified cell envelope. Adequate epidermal barrier function is also critically dependent on normal shedding of terminally differentiated keratinocytes, a process termed desquamation, which requires the dissolution of cell-cell junctions in the upper granular layers. Although much has been learned about epidermal differentiation through the deciphering of the molecular basis of various cornification disorders, less is currently known about the mechanisms regulating epidermal desquamation and disorders resulting from disruption of this process. Netherton syndrome, peeling skin syndrome type B, and skin dermatitis--multiple severe allergies--metabolic wasting syndrome are 3 autosomal recessive conditions resulting from aberrant regulation of epidermal desquamation. The deciphering of their pathogenesis has not only broadened our understanding of this process but has also shed new light on clinical and mechanistic links between allergic reactions and abnormal desquamation, substantiating the notion that allergic manifestations might, under some circumstances, be the sole consequence of a primary epidermal defect.


Assuntos
Transtornos Cromossômicos/genética , Dermatite Atópica/genética , Células Epidérmicas , Queratinócitos/citologia , Dermatopatias Genéticas/genética , Animais , Adesão Celular/genética , Diferenciação Celular/genética , Transtornos Cromossômicos/imunologia , Dermatite Atópica/imunologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Knockout
15.
Exp Dermatol ; 23(10): 769-71, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25078048

RESUMO

Deletion of two members of the late cornified envelope (LCE) family, LCE3B and LCE3C (LCE3C_LCE3B-del), has been identified as risk factor for psoriasis with a possible role in skin barrier function. Moreover, genetic interaction between LCE3C_LCE3B-del and HLA-C*06, located in the psoriasis susceptibility regions 4 and 1 (PSORS4 and 1), has been reported in several populations. Because of high linkage disequilibrium between the PSORS1 genes HLA-C*06 and corneodesmosin (CDSN), both genes are potentially involved in psoriasis. As corneodesmosin and LCE proteins are both constituents of the stratum corneum, we investigated potential direct protein-protein interactions between six LCE proteins and two corneodesmosin sequence variants. Partial colocalization of LCE2 and CDSN was observed in normal and psoriasis skin using immunofluorescence microscopy. Co-expression of eCFP-LCE and mRFP-CDSN proteins in COS-1 cells and human adult keratinocytes, and GST pull-down results did not provide evidence for direct interactions between LCE proteins and CDSN variants.


Assuntos
Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Glicoproteínas/metabolismo , Animais , Células COS , Chlorocebus aethiops , Proteínas Ricas em Prolina do Estrato Córneo/química , Proteínas Ricas em Prolina do Estrato Córneo/genética , Variação Genética , Glicoproteínas/química , Glicoproteínas/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Queratinócitos/metabolismo , Desequilíbrio de Ligação , Mapeamento de Interação de Proteínas , Psoríase/genética , Psoríase/metabolismo , Fatores de Risco , Pele/metabolismo
16.
Exp Dermatol ; 23(1): 60-3, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24372652

RESUMO

Peeling skin syndrome (PSS) type B is a rare recessive genodermatosis characterized by lifelong widespread, reddish peeling of the skin with pruritus. The disease is caused by small-scale mutations in the Corneodesmosin gene (CDSN) leading to premature termination codons. We report for the first time a Japanese case resulting from complete deletion of CDSN. Corneodesmosin was undetectable in the epidermis, and CDSN was unamplifiable by PCR. QMPSF analysis demonstrated deletion of CDSN exons inherited from each parent. Deletion mapping using microsatellite haplotyping, CGH array and PCR analysis established that the genomic deletion spanned 49-72 kb between HCG22 and TCF19, removing CDSN as well as five other genes within the psoriasis susceptibility region 1 (PSORS1) on 6p21.33. This observation widens the spectrum of molecular defects underlying PSS type B and shows that loss of these five genes from the PSORS1 region does not result in an additional cutaneous phenotype.


Assuntos
Dermatite Esfoliativa/genética , Glicoproteínas/genética , Dermatopatias Genéticas/genética , Adolescente , Povo Asiático/genética , Cromossomos Humanos Par 6/genética , Dermatite Esfoliativa/patologia , Feminino , Deleção de Genes , Haplótipos , Homozigoto , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Japão , Masculino , Linhagem , Dermatopatias Genéticas/patologia
17.
J Allergy Clin Immunol ; 132(5): 1111-1120.e4, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24060273

RESUMO

BACKGROUND: Flaky tail (ma/ma Flg(ft/ft)) mice have a frameshift mutation in the filaggrin (Flg(ft)) gene and are widely used as a model of human atopic dermatitis associated with FLG mutations. These mice possess another recessive hair mutation, matted (ma), and develop spontaneous dermatitis under specific pathogen-free conditions, whereas genetically engineered Flg(-/-) mice do not. OBJECTIVE: We identified and characterized the gene responsible for the matted hair and dermatitis phenotype in flaky tail mice. METHODS: We narrowed down the responsible region by backcrossing ma/ma mice with wild-type mice and identified the mutation using next-generation DNA sequencing. We attempted to rescue the matted phenotype by introducing the wild-type matted transgene. We characterized the responsible gene product by using whole-mount immunostaining of epidermal sheets. RESULTS: We demonstrated that ma, but not Flg(ft), was responsible for the dermatitis phenotype and corresponded to a Tmem79 gene nonsense mutation (c.840C>G, p.Y280*), which encoded a 5-transmembrane protein. Exogenous Tmem79 expression rescued the matted hair and dermatitis phenotype of Tmem79(ma/ma) mice. Tmem79 was mainly expressed in the trans-Golgi network in stratum granulosum cells in the epidermis in both mice and humans. The Tmem79(ma/ma) mutation impaired the lamellar granule secretory system, which resulted in altered stratum corneum formation and a subsequent spontaneous dermatitis phenotype. CONCLUSIONS: The Tmem79(ma/ma) mutation is responsible for the spontaneous dermatitis phenotype in matted mice, probably as a result of impaired lamellar granule secretory system and altered stratum corneum barrier function.


Assuntos
Códon sem Sentido , Dermatite Atópica/genética , Eczema/genética , Homozigoto , Proteínas de Membrana/genética , Animais , Dermatite Atópica/metabolismo , Modelos Animais de Doenças , Eczema/metabolismo , Epitélio/metabolismo , Proteínas Filagrinas , Expressão Gênica , Ordem dos Genes , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Fenótipo , Transporte Proteico , Pele/metabolismo , Pele/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA