Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Neuropharmacology ; 258: 110066, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986806

RESUMO

Patients with post-traumatic stress disorder (PTSD) exhibit sex differences in symptomology, with women more likely to report higher rates of intrusive and avoidance symptoms than men, underscoring the need for sex-informed approaches to research and treatment. Our study delved into the sex-specific aspects of stress-induced visual impairments using the single prolonged stress (SPS) model, a partially validated rodent model for PTSD. Male SPS mice exhibit heightened optimal spatial frequency (SF) of primary visual cortex (V1) neurons, while female counterparts exhibit decreased optimal temporal frequency (TF) of V1 neurons. This phenomenon persisted until the 29th day after SPS modeling, and it may be the physiological basis for the observed increase in visual acuity in male SPS mice in visual water task. Furthermore, our study found that corticotropin-releasing factor receptor 1 regulated optimal TF and optimal SF of V1 in mice, but did not exhibit sex differences. These findings indicated that severe stress induces sex-specific effects on visual function.

2.
eNeuro ; 10(7)2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37414553

RESUMO

In 2021, 131 million adult Americans reported drinking alcohol in the last month, despite the well-known consequences of alcohol consumption. While alcohol use disorders (AUDs) are associated with both mood and chronic pain disorders, the relationship between alcohol drinking and affective and nociceptive behaviors remains unclear. Corticotropin releasing factor receptor-1 (CRF1) has been implicated in alcohol drinking, affective states, and pain sensitivity, often in a sex-dependent manner. In order to probe the effects of alcohol drinking on activity of CRF1+ cells and to also test the hypothesis that alcohol drinking is associated with both basal and subsequent affective and nociceptive readouts, we put male and female CRF1:cre:tdTomato rats through a battery of behavioral tests before and after intermittent access to alcohol. Following baseline testing, rats began alcohol (or water) drinking. Females consumed more alcohol in the first week, but there was no effect of sex on overall alcohol intake. Following three to four weeks of drinking, behavioral tests were repeated. Alcohol drinking decreased mechanical sensitivity, but no other effects of alcohol drinking were observed between experimental groups. Individual alcohol intake correlated with affective behavior in both sexes but only correlated with thermal sensitivity in males. There were no main effects of alcohol drinking or sex on CRF1+ neuronal activity in the medial prefrontal cortex (PFC) but final session alcohol intake correlated with activity in CRF1+ neurons in the infralimbic (IL) subregion. Together, our results suggest complex interplay between affective state, alcohol drinking, and the role of prefrontal CRF1+ neurons in mediating these behaviors.


Assuntos
Alcoolismo , Receptores de Hormônio Liberador da Corticotropina , Ratos , Masculino , Feminino , Animais , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Ratos Transgênicos , Consumo de Bebidas Alcoólicas , Córtex Pré-Frontal/fisiologia , Etanol/farmacologia , Proteína Vermelha Fluorescente
3.
Pharmacol Biochem Behav ; 227-228: 173587, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37308040

RESUMO

Patterns of drug ingestion may have a dissimilar impact on the brain, and therefore also the development of drug addiction. One pattern is binge intoxication that refers to the ingestion of a high amount of drug on a single occasion followed by an abstinence period of variable duration. In this study, our goal was to contrast the effect of continuous low amounts with intermittent higher amounts of Arachidonyl-chloro-ethylamide (ACEA), a CB1R agonist, on amphetamine seeking and ingestion, and describe the effects on the expression of CB1R and CRFR1 in the central nucleus of the amygdala (CeA) and in the nucleus accumbens shell (NAcS). Adult male Wistar rats were treated with a daily administration of vehicle or 20 µg of ACEA, or four days of vehicle followed by 100 µg of ACEA on the fifth day, for a total of 30 days. Upon completion of this treatment, the CB1R and CRFR1 expression in the CeA and NAcS was evaluated by immunofluorescence. Additional groups of rats were evaluated for their anxiety levels (elevated plus maze, EPM), amphetamine (AMPH) self-administration (ASA) and breakpoint (A-BP), as well as AMPH-induced conditioned place preference (A-CPP). Results indicated that ACEA induced changes in the CB1R and CRFR1 expression in both the NAcS and CeA. An increase in anxiety-like behavior, ASA, A-BP and A-CPP was also observed. Since the intermittent administration of 100 µg of ACEA induced the most evident changes in most of the parameters studied, we concluded that binge-like ingestion of drugs induces changes in the brain that may make the subject more vulnerable to developing drug addiction.


Assuntos
Anfetamina , Núcleo Accumbens , Ratos , Masculino , Animais , Núcleo Accumbens/metabolismo , Anfetamina/farmacologia , Ratos Wistar , Tonsila do Cerebelo , Condicionamento Clássico
4.
Brain Res Bull ; 198: 3-14, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37076049

RESUMO

Depression is a leading cause of disability worldwide and the psychiatric diagnosis most commonly associated with suicide. 4-Butyl-alpha-agarofuran (AF-5), a derivative of agarwood furan, is currently in phase III clinical trials for generalized anxiety disorder. Herein, we explored the antidepressant effect and its possible neurobiological mechanisms in animal models. In present study, AF-5 administration markedly decreased the immobility time in mouse forced swim test and tail suspension test. In the sub-chronic reserpine-induced depressive rats, AF-5 treatment markedly increased the rectal temperature and decreased the immobility time of model rats. In addition, chronic AF-5 treatment markedly reversed the depressive-like behaviors in chronic unpredictable mild stress (CUMS) rats by reducing immobility time of forced swim test. Single treatment with AF-5 also potentiated the mouse head-twitch response induced by 5-hydroxytryptophan (5-HTP, a metabolic precursor to serotonin), and antagonized the ptosis and motor ability triggered by reserpine. However, AF-5 had no effect on yohimbine toxicity in mice. These results indicated that acute treatment with AF-5 produced serotonergic, but not noradrenergic activation. Furthermore, AF-5 reduced adrenocorticotropic hormone (ACTH) level in serum and normalized the neurotransmitter changes, including the decreased serotonin (5-HT) in hippocampus of CUMS rats. Moreover, AF-5 affected the expressions of CRFR1 and 5-HT2C receptor in CUMS rats. These findings confirm the antidepressant effect of AF-5 in animal models, which may be primarily related to CRFR1 and 5-HT2C receptor. AF-5 appears to be promising as a novel dual target drug for depression treatment.


Assuntos
Depressão , Serotonina , Ratos , Camundongos , Animais , Serotonina/metabolismo , Depressão/psicologia , Reserpina/farmacologia , Sistema Hipotálamo-Hipofisário/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Antidepressivos/uso terapêutico , Hipocampo/metabolismo , Estresse Psicológico/metabolismo , Modelos Animais de Doenças
5.
Biochem Biophys Res Commun ; 637: 181-188, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36403481

RESUMO

The Chikungunya virus (CHIKV), an enveloped RNA virus that has been identified in over 40 countries and is considered a growing threat to public health worldwide. However, there is no preventive vaccine or specific therapeutic drug for CHIKV infection. To identify a new inhibitor against CHIKV infection, this study constructed a subgenomic RNA replicon expressing the secretory Gaussia luciferase (Gluc) based on the CHIKV SL11131 strain. Transfection of in vitro-transcribed replicon RNA to BHK-21 cells revealed that Gluc activity in culture supernatants was correlated with the intracellular replication of the replicon genome. Through a chemical compound library screen using the Gluc reporter CHIKV replicon, we identified several compounds that suppressed CHIKV infection in Vero cells. Among the hits identified, CP-154,526, a non-peptide antagonist of the corticotropin-releasing factor receptor type-1 (CRF-R1), showed the strongest anti-CHIKV activity and inhibited CHIKV infection in Huh-7 cells. Interestingly, other CRF-R1 antagonists, R121919 and NGD 98-2, also exhibited inhibitory effects on CHIKV infection. Time-of-drug addition and virus entry assays indicated that CP-154,526 suppressed a post-entry step of infection, suggesting that CRF-R1 antagonists acted on a target in the intracellular replication process of CHIKV. Therefore, the Gluc reporter replicon system established in this study would greatly facilitate the development of antiviral drugs against CHIKV infection.


Assuntos
Arecaceae , Febre de Chikungunya , Vírus Chikungunya , Copépodes , Chlorocebus aethiops , Animais , Vírus Chikungunya/genética , Febre de Chikungunya/tratamento farmacológico , Células Vero , Hormônio Liberador da Corticotropina , Replicon/genética , Luciferases/genética , Replicação Viral
6.
Psychoneuroendocrinology ; 145: 105918, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36116320

RESUMO

Oxytocin (OT) is essential for successful reproduction, particularly during parturition and lactation. During the postpartum period, OT also influences maternal behavior to promote bonding between mothers and their newborns, and increases stress resilience. However, the mechanism by which stress influences OT neuron activity and OT release has remained unclear. Here, we provide evidence that a subpopulation of OT neurons initiate expression of the receptor for the stress neuropeptide Corticotropin Releasing Factor (CRF), CRFR1, in reproductive females. OT neuron expression of CRFR1 begins at the first parturition and increases during the postpartum period until weaning. The percentage of OT neurons that express CRFR1 increases with successive breeding cycles until it reaches a plateau of 20-25% of OT neurons. OT neuron expression of CRFR1 in reproductive females is maintained after they are no longer actively breeding. CRFR1 expression leads to activation of OT neurons when animals are stressed. We propose a model in which direct CRF signaling to OT neurons selectively in reproductive females potentiates OT release to promote stress resilience in mothers.


Assuntos
Hormônio Liberador da Corticotropina , Ocitocina , Animais , Hormônio Liberador da Corticotropina/metabolismo , Feminino , Neurônios/metabolismo , Ocitocina/metabolismo , Parto , Gravidez , Receptores de Hormônio Liberador da Corticotropina/genética , Receptores de Hormônio Liberador da Corticotropina/metabolismo
7.
Biochem Biophys Res Commun ; 607: 54-59, 2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35366544

RESUMO

Corticotropin-releasing factor (CRF), a representative stress-related neuropeptide, in the central nervous system reportedly both facilitates and suppresses the micturition, therefore, roles of central CRF in regulation of the micturition are still controversial. In this study, we investigated (1) effects of intracerebroventricularly (icv)-administered CRF on the micturition, and (2) brain CRF receptor subtypes (CRFR1/CRFR2) and glutamatergic receptors (NMDA/AMPA subtypes) involved in the CRF-induced effects in male Wistar rats under urethane anesthesia. Intercontraction intervals (ICI), and maximal voiding pressure (MVP), were evaluated by continuous cystometry 45 min before CRF administration or intracerebroventricular pretreatment with other drugs as follows and 3 h after CRF administration. Single-voided volume (Vv), post-voiding residual volume (Rv), bladder capacity (BC), and voiding efficiency (VE) were evaluated by single cystometry 60 min before CRF administration and 60-120 min after the administration. Icv-administered CRF reduced ICI, Vv, and BC without changing MVP, Rv, or VE. The CRF-induced ICI reduction was attenuated by icv-pretreated CP154526 (CRFR1 antagonist), MK-801 (NMDA receptor antagonist), and DNQX (AMPA receptor antagonist), but not by K41498 (CRFR2 antagonist). These results indicate that stimulation of brain CRFR1 can be involved in facilitation of the rat micturition via brain NMDA/AMPA receptors.


Assuntos
Receptores de Hormônio Liberador da Corticotropina , Micção , Animais , Encéfalo , Hormônio Liberador da Corticotropina/farmacologia , Masculino , N-Metilaspartato/farmacologia , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato
8.
Diabetologia ; 65(6): 1018-1031, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35325259

RESUMO

AIM/HYPOTHESIS: Urocortin-3 (UCN3) is a glucoregulatory peptide produced in the gut and pancreatic islets. The aim of this study was to clarify the acute effects of UCN3 on glucose regulation following an oral glucose challenge and to investigate the mechanisms involved. METHODS: We studied the effect of UCN3 on blood glucose, gastric emptying, glucose absorption and secretion of gut and pancreatic hormones in male rats. To supplement these physiological studies, we mapped the expression of UCN3 and the UCN3-sensitive receptor, type 2 corticotropin-releasing factor receptor (CRHR2), by means of fluorescence in situ hybridisation and by gene expression analysis. RESULTS: In rats, s.c. administration of UCN3 strongly inhibited gastric emptying and glucose absorption after oral administration of glucose. Direct inhibition of gastrointestinal motility may be responsible because UCN3's cognate receptor, CRHR2, was detected in gastric submucosal plexus and in interstitial cells of Cajal. Despite inhibited glucose absorption, post-challenge blood glucose levels matched those of rats given vehicle in the low-dose UCN3 group, because UCN3 concomitantly inhibited insulin secretion. Higher UCN3 doses did not further inhibit gastric emptying, but the insulin inhibition progressed resulting in elevated post-challenge glucose and lipolysis. Incretin hormones and somatostatin (SST) secretion from isolated perfused rat small intestine was unaffected by UCN3 infusion; however, UCN3 infusion stimulated secretion of somatostatin from delta cells in the isolated perfused rat pancreas which, unlike alpha cells and beta cells, expressed Crhr2. Conversely, acute antagonism of CRHR2 signalling increased insulin secretion by reducing SST signalling. Consistent with these observations, acute drug-induced inhibition of CRHR2 signalling improved glucose tolerance in rats to a similar degree as administration of glucagon-like peptide-1. UCN3 also powerfully inhibited glucagon secretion from isolated perfused rat pancreas (perfused with 3.5 mmol/l glucose) in a SST-dependent manner, suggesting that UCN3 may be involved in glucose-induced inhibition of glucagon secretion. CONCLUSIONS/INTERPRETATION: Our combined data indicate that UCN3 is an important glucoregulatory hormone that acts through regulation of gastrointestinal and pancreatic functions.


Assuntos
Ilhotas Pancreáticas , Urocortinas , Animais , Glicemia/metabolismo , Glucagon/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Masculino , Ratos , Somatostatina/metabolismo , Urocortinas/metabolismo
9.
Peptides ; 147: 170705, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34822913

RESUMO

Corticotropin-releasing factor (CRF) is a 41-amino acid polypeptide that coordinates the endocrine system, autonomic nervous system, immune system, and physiological behavior. CRF is a signaling regulator in the neuro-endocrine-immune (NEI) network that mediates visceral hypersensitivity. Rodent models to simulate changes in intestinal motility similar to those reported in the irritable bowel syndrome (IBS), demonstrate that the CRF receptor 1 (CRF-R1) mediates intestinal hypersensitivity under many conditions. However, the translation of preclinical studies into clinical trials has not been successful possibly due to the lack of sufficient understanding of the multiple variants of CRF-R1 and CRF-R1 antagonists. Investigating the sites of action of central and peripheral CRF is critical for accelerating the translation from preclinical to clinical studies.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Síndrome do Intestino Irritável/tratamento farmacológico , Síndrome do Intestino Irritável/etiologia , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Animais , Encéfalo/metabolismo , Motilidade Gastrointestinal/fisiologia , Humanos , Síndrome do Intestino Irritável/psicologia , Receptores de Hormônio Liberador da Corticotropina/metabolismo
10.
Eur J Pharm Sci ; 169: 106084, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34856350

RESUMO

Corticotropin-releasing factor (CRF) is a 41-amino-acid neuropeptide secreted from the hypothalamus and is the main regulator of the hypothalamus-pituitary-adrenocortical (HPA) axis. CRF is the master hormone which modulates physiological and behavioral responses to stress. Many disorders including anxiety, depression, addictive disorders and others are related to over activation of the CRF system. This suggests that new molecules which can interfere with CRF binding to its receptors may be potential candidates for neuropsychiatric drugs to treat stress-related disorders. Previously, three series of pyrimidine and fused pyrimidine CRF1 receptor antagonists were synthesized by our group and specific binding assays, competitive binding studies and determination of the ability to antagonize the agonist-stimulated accumulation of cAMP (the second messenger for CRF receptors) were reported. In continuation of our efforts in this direction, in the current manuscript, we report the synthesis & biological evaluation of a new series of CRF1 receptor antagonists. Seven compounds showed promising binding affinity with the best two compounds (compounds 6 & 43) displaying a superior binding affinity to all of our previous compounds. Compounds 6 & 43 have only 4 times and 2 times less binding affinity than the standard CRF antagonist antalarmin, respectively. Thus, our two best lead compounds (compound 6 & 43) can be considered potent CRF receptor antagonists with binding affinity of 41.0 & 19.2 nM versus 9.7 nM for antalarmin.


Assuntos
Hormônio Liberador da Corticotropina , Receptores de Hormônio Liberador da Corticotropina , Pirimidinas/farmacologia
11.
Front Syst Neurosci ; 15: 698240, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539356

RESUMO

BACKGROUND: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex multi-symptom disease with widespread evidence of disrupted systems. The authors hypothesize that it is caused by the upregulation of the corticotropin-releasing factor receptor type 2 (CRFR2) in the raphé nuclei and limbic system, which impairs the ability to maintain homeostasis. The authors propose utilizing agonist-mediated receptor endocytosis to downregulate CRFR2. MATERIALS AND METHODS: This open-label trial tested the safety, tolerability and efficacy of an acute dose of CT38s (a short-lived, CRFR2-selective agonist, with no known off-target activity) in 14 ME/CFS patients. CT38s was subcutaneously-infused at one of four dose-levels (i.e., infusion rates of 0.01, 0.03, 0.06, and 0.20 µg/kg/h), for a maximum of 10.5 h. Effect was measured as the pre-/post-treatment change in the mean 28-day total daily symptom score (TDSS), which aggregated 13 individual patient-reported symptoms. RESULTS: ME/CFS patients were significantly more sensitive to the transient hemodynamic effects of CRFR2 stimulation than healthy subjects in a prior trial, supporting the hypothesized CRFR2 upregulation. Adverse events were generally mild, resolved without intervention, and difficult to distinguish from ME/CFS symptoms, supporting a CRFR2 role in the disease. The acute dose of CT38s was associated with an improvement in mean TDSS that was sustained (over at least 28 days post-treatment) and correlated with both total exposure and pre-treatment symptom severity. At an infusion rate of 0.03 µg/kg/h, mean TDSS improved by -7.5 ± 1.9 (or -25.7%, p = 0.009), with all monitored symptoms improving. CONCLUSION: The trial supports the hypothesis that CRFR2 is upregulated in ME/CFS, and that acute CRFR2 agonism may be a viable treatment approach warranting further study. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov, identifier NCT03613129.

12.
Horm Behav ; 135: 105044, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34507241

RESUMO

Corticotropin-releasing factor (CRF) signaling through CRF receptor 1 (CRFR1) regulates autonomic, endocrine, and behavioral responses to stress, as well as behavioral changes during the maternal period. Previous work in our lab reported higher levels of CRFR1 in female, compared to male, mice within the rostral anteroventral periventricular nucleus (AVPV/PeN), a brain region involved in maternal behaviors. In this study, we used CRFR1-GFP reporter mice to investigate whether the reproductive status (postpartum vs. nulliparous) of acutely stressed females affects levels of CRFR1 in the AVPV/PeN and other regions involved in maternal functions. Compared to nulliparous, postpartum day 14 females showed increased AVPV/PeN CRFR1-GFP immunoreactivity and an elevated number of restraint stress-activated AVPV/PeN CRFR1 cells as assessed by immunohistochemical co-localization of CRFR1-GFP and phosphorylated CREB (pCREB). The medial preoptic area (MPOA) and paraventricular hypothalamus (PVN) of postpartum mice showed modest decreases in CRFR1-GFP immunoreactivity, while increased CRFR1-GFP/pCREB co-expressing cells were found in the PVN following restraint stress relative to nulliparous mice. Tyrosine hydroxylase (TH) and CRFR1-GFP co-localization was also assessed in the AVPV/PeN and other regions and revealed a decrease in co-localized neurons in the AVPV/PeN and ventral tegmental area of postpartum mice. Corticosterone analysis of restrained mice revealed blunted peak, but elevated recovery, levels in postpartum compared to nulliparous mice. Finally, we investigated projection patterns of AVPV/PeN CRFR1 neurons using female CRFR1-Cre mice and revealed dense efferent projections to several preoptic, hypothalamic, and hindbrain regions known to control stress-associated and maternal functions. Together, these findings contribute to our understanding of the neurobiology that might underlie changes in stress-related functions during the postpartum period.


Assuntos
Hormônio Liberador da Corticotropina , Receptores de Hormônio Liberador da Corticotropina , Animais , Hormônio Liberador da Corticotropina/metabolismo , Feminino , Humanos , Hipotálamo/metabolismo , Masculino , Camundongos , Período Pós-Parto , Área Pré-Óptica/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo
13.
Cell Mol Gastroenterol Hepatol ; 12(2): 427-441, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33895424

RESUMO

Differences in pancreatic anatomy, size, and function exist in men and women. The anatomical differences could contribute to the increase in complications associated with pancreatic surgery in women. Although diagnostic criteria for pancreatitis are the same in men and women, major sex differences in etiology are reported. Alcohol and tobacco predominate in men, whereas idiopathic and obstructive etiologies predominate in women. Circulating levels of estrogens, progesterone, and androgens contribute significantly to overall health outcomes; premenopausal women have lower prevalence of cardiovascular and pancreatic diseases suggesting protective effects of estrogens, whereas androgens promote growth of normal and cancerous cells. Sex chromosomes and gonadal and nongonadal hormones together determine an individual's sex, which is distinct from gender or gender identity. Human pancreatic disease etiology, outcomes, and sex-specific mechanisms are largely unknown. In rodents of both sexes, glucocorticoids and estrogens from the adrenal glands influence pancreatic secretion and acinar cell zymogen granule numbers. Lack of corticotropin-releasing factor receptor 2 function, a G protein-coupled receptor whose expression is regulated by both estrogens and glucocorticoids, causes sex-specific changes in pancreatic histopathology, zymogen granule numbers, and endoplasmic reticulum ultrastructure changes in acute pancreatitis model. Here, we review existing literature on sex differences in the normal exocrine pancreas and mechanisms that operate at homeostasis and diseased states in both sexes. Finally, we review pregnancy-related pancreatic diseases and discuss the effects of sex differences on proposed treatments in pancreatic disease.


Assuntos
Pâncreas Exócrino/patologia , Pancreatopatias/patologia , Caracteres Sexuais , COVID-19/patologia , Feminino , Hormônios/metabolismo , Humanos , Masculino , Gravidez
14.
ACS Chem Neurosci ; 12(9): 1674-1687, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33860667

RESUMO

The corticotropin-releasing factor receptor type 1 (CRF1R), a member of class B G-protein-coupled receptors (GPCRs), is a good drug target for treating depression, anxiety, and other stress-related neurodisorders. However, there is no approved drug targeting the CRF1R to date, partly due to inadequate structural information and its elusive activation mechanism. Here, by use of the crystal structures of its transmembrane domain (TMD) and the N-terminal extracellular domain (ECD) as a template, a full-length homology model of CRF1R was built and its complexes with peptide agonist urocortin 1 or small molecule antagonist CP-376395 were subjected to all-atom molecular dynamics simulations. We observed well preserved helical contents in the TMD through simulations, while the transmembrane (TM) helices showed clear rearrangements. The TM rearrangement is especially pronounced for the TM6 in the agonist-bound CRF1R system. The observed conformational changes are likely due to breakage of interhelical/inter-regional hydrogen bonds in the TMD. Dynamical network analysis identifies communities with high connections to TM6. Simulations reveal three key residues, Y3566.53, Q3847.49, and L3957.60, which corroborate experimental mutagenesis data, implying the important roles in the receptor activation. The observed large-scale conformational changes are related to CRF1R activation by agonist binding, providing guidance for ligand design.


Assuntos
Hormônio Adrenocorticotrópico , Simulação de Dinâmica Molecular , Sítios de Ligação , Ligação de Hidrogênio , Ligantes , Domínios Proteicos
15.
Behav Brain Res ; 399: 113015, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33212086

RESUMO

Post-traumatic stress disorder (PTSD) is a psychological disorder affecting many around the world. Growing evidence suggests that orexin-A is involved in the pathophysiology of depression and panic anxiety disorder. However, the role of orexin-A in PTSD remains unclear. Therefore, pharmacological manipulation of orexin-A can be a potential approach for the treatment of PTSD. Male Wistar rats were subjected to stress re-stress (SRS) by restraining them for 2 h followed by foot shock (FS) and halothane exposure on day-2 (D-2). Then the rats were weekly exposed to FS as re-stress cue . Suvorexant, an orexin antagonist (10, 20 and 30 mg/kg p.o.) and paroxetine (10 mg/kg p.o.) were administered from D-8 to D-32. Plasma and cerebrospinal fluid (CSF) were collected for corticosterone and orexin-A measurement. The analysis of serotonin and corticotropin-releasing factor receptor-1 (CRF-R1) were performed in the amygdalar tissue. SRS-induced PTSD-like symptoms like fear response, anxiety-like behaviour and hypocorticosteronism were attenuated by suvorexant and paroxetine. Interestingly, SRS exposed rats showed activation of orexin-A and serotonergic systems, which were also attenuated by suvorexant. Additionally, suvorexant ameliorated the extrahypothalamic induced upregulation of CRH-R1 in SRS-exposed rats. Therefore, orexin-A may be considered as a neurochemical-marker for PTSD and suvorexant alleviated PTSD-like symptoms through modulating orexinergic, serotonergic and neuroendocrine systems.


Assuntos
Tonsila do Cerebelo , Azepinas/farmacologia , Corticosterona , Antagonistas dos Receptores de Orexina/farmacologia , Orexinas , Receptores de Hormônio Liberador da Corticotropina , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Serotonina , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Triazóis/farmacologia , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Animais , Azepinas/administração & dosagem , Corticosterona/sangue , Corticosterona/líquido cefalorraquidiano , Modelos Animais de Doenças , Masculino , Antagonistas dos Receptores de Orexina/administração & dosagem , Orexinas/sangue , Orexinas/líquido cefalorraquidiano , Orexinas/efeitos dos fármacos , Paroxetina/farmacologia , Ratos , Ratos Wistar , Receptores de Hormônio Liberador da Corticotropina/efeitos dos fármacos , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Transtornos de Estresse Pós-Traumáticos/etiologia , Triazóis/administração & dosagem
16.
Biochem Biophys Res Commun ; 529(2): 328-334, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32703431

RESUMO

Activation of corticotropin-releasing factor receptor 2ß (CRFR2ß) results in increased skeletal muscle mass and the prevention of muscle atrophy. Using a luciferase reporter assay, we screened 357 functional food factors that activate CRFR2ß and, subsequently, confirmed that nobiletin (NBT) increases CRFR2ß activity. Additionally, we found that NBT augments the activity of the endogenous peptide ligand urocortin 2 (Ucn2) in a concentration-dependent manner. Computational simulation of CRFR2ß confirmed that transmembrane domains (TMs) 1 and 2 are important for the synergistic activity of NBT and also identified important amino acids in these domains. Finally, we demonstrated that a co-administration of Ucn2 and NBT increases the hypertrophic signal in mouse skeletal muscle. These observations demonstrate that NBT can activate CRFR2ß and amplify the agonistic activity of Ucn2 and that such food-derived molecules have the potential to enhance endogenous G protein-coupled receptor ligand activities and contribute to the maintenance of skeletal muscle mass and function.


Assuntos
Flavonas/farmacologia , Músculo Esquelético/efeitos dos fármacos , Receptores de Hormônio Liberador da Corticotropina/agonistas , Regulação Alostérica/efeitos dos fármacos , Animais , Linhagem Celular , Flavonas/análise , Alimento Funcional/análise , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Dinâmica Molecular , Músculo Esquelético/metabolismo , Domínios Proteicos/efeitos dos fármacos , Receptores de Hormônio Liberador da Corticotropina/química , Receptores de Hormônio Liberador da Corticotropina/metabolismo
17.
Mol Genet Genomic Med ; 7(12): e974, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31637879

RESUMO

BACKGROUND: The study sought to determine the effects of earthquake on the working memory of adults who experienced earthquake either as infants or fetuses and also investigates whether earthquake exposure and corticotropin-releasing factor receptor 1 (CRHR1) variants rs242924 and rs7209436 interacted with each other in modulating working memory. METHODS: We enrolled subjects who experienced the Tangshan Earthquake as fetuses (group I) or infants (group II), as well as those who did not experience the earthquake (group III). Their working memory was measured using Brief Visuospatial Memory Test-Revised (BVMT-R) and Hopkins Verbal Learning Test-Revised (HVLT-R). Two single-nucleotide polymorphisms (SNPs) of CRHR1 rs242924 and rs7209436 were analyzed by fluorescence quantitative polymerase chain reaction (PCR). RESULTS: The study enrolled 535 subjects, including 172 subjects in group I, 176 subjects group II, and 187 subjects in group III. Both group I and II had significantly lower BVMT-R scores than group III (p < .05). Moreover, no difference was observed in HVLT-R scores among the three groups (p > .05). The allele frequency was 84.7% for AA, 82.8% for TT, 13.6% for AC, and 15.9% for TC. C gene carriers in group II (t = -4.231, p < .01) and group I (t = -3.201, p < .05) had significantly lower visual spatial memory scores than group III. Furthermore, AT gene carriers had significantly lower visual spatial memory scores than C gene carriers in group III (t = 2.215, p < .05). Moreover, there was significant interaction between earthquake exposure and CRHR1 genotype in their effects on visual spatial memory (F = 4.028, p < .05). CONCLUSIONS: Our cross-sectional study has demonstrated that infant or fetus exposure to earthquake impairs visual spatial memory during adulthood and CRHR1 polymorphisms and earthquake exposure may interact with each other to accentuate this impairment.


Assuntos
Transtornos da Memória/diagnóstico , Polimorfismo de Nucleotídeo Único , Receptores de Hormônio Liberador da Corticotropina/genética , Memória Espacial/fisiologia , Adulto , Adultos Sobreviventes de Eventos Adversos na Infância/estatística & dados numéricos , Estudos de Casos e Controles , Estudos Transversais , Terremotos , Feminino , Frequência do Gene , Genótipo , Humanos , Exposição Materna/estatística & dados numéricos , Transtornos da Memória/etiologia , Transtornos da Memória/genética , Testes Neuropsicológicos
18.
Brain Struct Funct ; 224(4): 1429-1446, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30767070

RESUMO

Stress-related psychiatric diseases are nearly twice as prevalent in women compared to men. We recently showed in male rats that the resident-intruder model of social stress differentially engages stress-related circuitry that regulates norepinephrine-containing neurons of the locus coeruleus (LC) depending on coping strategy as determined by the latency to assume a defeat posture. Here, we determined whether this social stress had similar effects in female rats. LC afferents were retrogradely labeled with Fluorogold (FG) and rats had one or five daily exposures to an aggressive resident. Sections through the nucleus paragigantocellularis (PGi), a source of enkephalin (ENK) afferents to the LC, and central nucleus of the amygdala (CeA), a source of corticotropin-releasing factor (CRF) afferents to the LC, were processed for immunocytochemical detection of c-fos, a marker of neuronal activity, FG and ENK or CRF. Like male rats, female rats defeated with a relatively short latency (SL) in response to a single resident-intruder exposure and showed significant c-fos activation of LC neurons, PGi-ENK LC afferents, and CeA-CRF-LC afferents. With repeated exposure, some rats exhibited a long latency to defeat (LL). LC neurons and CeA-CRF-LC afferents were activated in SL rats compared to control and LL, whereas PGi-ENK LC afferents were not. Conversely, in LL rats, PGi-ENK LC and CeA-CRF-LC afferents were activated compared to controls but not LC neurons. CRF type 1 receptor (CRF1) and µ-opioid receptor (MOR) expression levels in LC were decreased in LL rats. Finally, electron microscopy showed a relative increase in MOR on the plasma membrane of LL rats and a relative increase in CRF1 on the plasma membrane of SL rats. Together, these results suggest that as is the case for males, social stress engages divergent circuitry to regulate the LC in female rats depending on coping strategy, with a bias towards CRF influence in more subordinate rats and opioid influence in less subordinate rats.


Assuntos
Adaptação Psicológica/fisiologia , Locus Cerúleo/metabolismo , Comportamento Social , Estresse Psicológico/metabolismo , Animais , Núcleo Central da Amígdala/metabolismo , Feminino , Locus Cerúleo/ultraestrutura , Bulbo/metabolismo , Vias Neurais/metabolismo , Ratos Sprague-Dawley , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Receptores Opioides mu/metabolismo
19.
Int J Toxicol ; 38(2): 110-120, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30760067

RESUMO

Pexacerfont is a corticotropin-releasing factor subtype 1 receptor antagonist that was developed for the treatment of anxiety- and stress-related disorders. This report describes the results of repeat-dose oral toxicity studies in rats (3 and 6 months) and dogs (3 months and 1 year). Pexacerfont was well tolerated in all of these studies at exposures equal to or greater than areas under the curve in humans (clinical dose of 100 mg). Microscopic changes in the liver (hepatocellular hypertrophy), thyroid glands (hypertrophy/hyperplasia and adenomas of follicular cells), and pituitary (hypertrophy/hyperplasia and vacuolation of thyrotrophs) were only observed in rats and were considered adaptive changes in response to hepatic enzyme induction and subsequent alterations in serum thyroid hormone levels. Evidence for hepatic enzyme induction in dogs was limited to increased liver weights and reduced thyroxine (T4) levels. Mammary gland hyperplasia and altered female estrous cycling were only observed in rats, whereas adverse testicular effects (consistent with minimal to moderate degeneration of the germinal epithelium) were only noted following chronic dosing in dogs. The testicular effects were reversible changes with exposure margins of 8× at the no observed adverse effect level. It is not clear whether the changes in mammary gland, estrous cycling, and testes represent secondary hormonal changes due to perturbation of the hypothalamic-pituitary-adrenal axis or are off-target effects. In conclusion, the results of chronic toxicity studies in rats and dogs show that pexacerfont has an acceptable safety profile to support further clinical testing.


Assuntos
Pirazóis/toxicidade , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Triazinas/toxicidade , Administração Oral , Animais , Cães , Feminino , Masculino , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/patologia , Pirazóis/farmacocinética , Ratos Sprague-Dawley , Testículo/efeitos dos fármacos , Testículo/patologia , Testes de Toxicidade Crônica , Testes de Toxicidade Subcrônica , Triazinas/farmacocinética
20.
J Comp Neurol ; 527(6): 1056-1069, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30499109

RESUMO

Corticotropin-releasing factor binds with high affinity to CRF receptor 1 (CRFR1) and is implicated in stress-related mood disorders such as anxiety and depression. Using a validated CRFR1-green fluorescent protein (GFP) reporter mouse, our laboratory recently discovered a nucleus of CRFR1 expressing cells that is prominent in the female rostral anteroventral periventricular nucleus (AVPV/PeN), but largely absent in males. This sex difference is present in the early postnatal period and remains dimorphic into adulthood. The present investigation sought to characterize the chemical composition and gonadal hormone regulation of these sexually dimorphic CRFR1 cells using immunohistochemical procedures. We report that CRFR1-GFP-ir cells within the female AVPV/PeN are largely distinct from other dimorphic cell populations (kisspeptin, tyrosine hydroxylase). However, CRFR1-GFP-ir cells within the AVPV/PeN highly co-express estrogen receptor alpha as well as glucocorticoid receptor. A single injection of testosterone propionate or estradiol benzoate on the day of birth completely eliminates the AVPV/PeN sex difference, whereas adult gonadectomy has no effect on CRFR1-GFP cell number. These results indicate that the AVPV/PeN CRFR1 is regulated by perinatal but not adult gonadal hormones. Finally, female AVPV/PeN CRFR1-GFP-ir cells are activated following an acute 30-min restraint stress, as assessed by co-localization of CRFR1-GFP cells with phosphorylated (p) CREB. CRFR1-GFP/pCREB cells were largely absent in the male AVPV/PeN. Together, these data indicate a stress and gonadal hormone responsive nucleus that is unique to females and may contribute to sex-specific stress responses.


Assuntos
Hipotálamo Anterior/citologia , Neurônios/citologia , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Caracteres Sexuais , Animais , Feminino , Hormônios Gonadais/fisiologia , Hipotálamo Anterior/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA