Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
J Colloid Interface Sci ; 677(Pt B): 647-656, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39159519

RESUMO

Metal-doping is a common strategy for establishing active sites on photocatalyst, but appropriately exposing them for maximized atomic utilization remains a great challenge in photocatalytic research. Herein, we propose a metal organic framework (MOF)-assisted approach to synthesis copper-modified titania (Cu-TiO2/Cu) photocatalyst with homogenously distributed and highly accessible active sites in its matrix. Significantly, an MOF precursor, namely NH2-MIL-125, with co-chelation of titania (Ti) and copper (Cu) was subjected to mild calcination, subsequently results in Cu-modified TiO2 with highly accessible channels to its inner surface. These channels provide not only a large reactive surface (>400 m2 g-1); they also enable facile modifying route for the pre-deposited Cu in prior to photoreaction. Specifically, NH3 treatment was applied to partially reduce deposited Cu ions (Cu+ and Cu2+) into Cu nanoparticles, where their interplays realize improved optical properties and charge separation during photoreactions. Furthermore, the NH3-induced Cu nanoparticles could also serve as the adsorptive site for H+, thereby enabling 5629 µmol h-1 g-1 H2 generation over the optimum photocatalyst of Cu20/TiO2/Cu500. Such performance is associated to 35.44 and 1.71-fold improvements compared to pure TiO2 (Cu0/TiO2) and untreated Cu-ion modified TiO2 (Cu20/TiO2), respectively. This work offers a new synthetic strategy for obtaining photocatalyst with evenly distributed and highly accessible active sites, thus improving the commensurability of photocatalytic H2 generation from the industrial perspective.

2.
Anal Chim Acta ; 1329: 343189, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39396279

RESUMO

BACKGROUND: While significant progress has been made to clarify the effects of Au and Ag nanoparticle size on SERS enhancement, research on the size effects of copper nanoparticles and copper-related nanoalloys on SERS enhancement remain scarce. Nanoscale copper (Cu) is important because of its unique sensing and catalytic properties; however, research on its size and compositional effects remains a significant challenge because of the intricate fabrication process and difficulty in preventing oxidation. RESULTS: Our study elucidated the size-dependent, surface-enhanced Raman scattering (SERS) of Cu NPs, particularly the sensing capabilities of both electromagnetic (EM) SERS at 1.5 × 103 and chemical enhancement (CE) SERS at 3.6 × 104 of approximately 58 nm Cu NPs. Additionally, a solution aging examination revealed preservation of the metal-related core structure, surface plasmon resonance, and SERS features of the PSMA/ONPG-coated Cu NPs for up to 7 days. With the introduction of galvanic replacement reactions and laser ablation syntheses, the incorporation of Au atoms enabled the fabrication of 7-75 nm AuxCuy nanoparticles by using the remaining Cu core after aging in water, which offered precise control over the Cu/Au ratio from 5/95 to 29/71. SERS measurements of the large AuxCuy nanoparticles amplified up to 1.4 × 104 of the EM-mediated vibrational signals from the adsorbed molecules. The strong Au-S chemical bonds of the Au-rich AuxCuy nanocrystals increased the CE SERS to 5.5 × 104, whereas the Au3Cu1 crystals at the AuxCuy interface decreased the CE SERS but improved the electron transfer for catalysis via SERS detection. SIGNIFICANCE: Our research provides further insight into the structural and size effects of Cu and AuCu alloys used as SERS enhancers and offers avenues for designing cutting-edge SERS catalytic sensors tailored to Cu-related catalytic reactive structures. For the first time, we also manipulated the Cu atomic structure and surface composition to understand the significance of surface effects on SERS substrates of the Cu series from a nanoscale analytical perspective.

3.
Adv Mater ; : e2412570, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39400389

RESUMO

Cu nanoparticles (NPs) have attracted widespread attention in electronics, energy, and catalysis. However, conventionally synthesized Cu NPs face some challenges such as surface passivation and agglomeration in applications, which impairs their functionalities in the physicochemical properties. Here, the issues above by engineering an embedded interface of stably bare Cu NPs on the cation-vacancy CuWO4 support is addressed, which induces the strong metal-support interactions and reverse electron transfer. Various atomic-scale analyses directly demonstrate the unique electronic structure of the embedded Cu NPs with negative charge and anion oxygen protective layer, which mitigates the typical degradation pathways such as oxidation in ambient air, high-temperature agglomeration, and CO poisoning adsorption. Kinetics and in situ spectroscopic studies unveil that the embedded electron-enriched Cu NPs follow the typical Eley-Rideal mechanism in CO oxidation, contrasting the Langmuir-Hinshelwood mechanism on the traditional Cu NPs. This mechanistic shift is driven by the Coulombic repulsion in anion oxygen layer, enabling its direct reaction with gaseous CO to form the easily desorbed monodentate carbonate.

4.
Bioengineering (Basel) ; 11(10)2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39451384

RESUMO

Copper nanoparticles (CuNPs) are tiny materials with special features such as high electric conductivity, catalytic activity, antimicrobial activity, and optical activity. Published reports demonstrate their utilization in various fields, including biomedical, agricultural, environmental, wastewater treatment, and sensor fields. CuNPs can be produced utilizing traditional procedures; nevertheless, such procedures have restrictions like excessive consumption of energy, low production yields, and the utilization of detrimental substances. Thus, the adoption of environmentally approachable "green" approaches for copper nanoparticle synthesis is gaining popularity. These approaches involve employing plants, bacteria, and fungi. Nonetheless, there is a scarcity of data regarding the application of microbial bioflocculants in the synthesis of copper NPs. Therefore, this review emphasizes copper NP production using microbial flocculants, which offer economic benefits and are sustainable and harmless. The review also provides a characterization of the synthesized copper nanoparticles, employing numerous analytical tools to determine their compositional, morphological, and topographical features. It focuses on scientific advances from January 2015 to December 2023 and emphasizes the use of synthesized copper NPs in wastewater treatment.

5.
Biol Trace Elem Res ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354180

RESUMO

The current study aims to assess the impact of different doses of feed supplementation of copper nanoparticles on broiler growth performance and carcass traits. The copper nanoparticles were synthesized by chemical reduction, and X-ray diffraction was used to characterize them. Iso-caloric and iso-nitrogenous starter and finisher basal diets were prepared and further supplemented with 0, 4, 8, and 12 mg/kg Cu nanoparticles for formulating T1, T2, T3 and T4 diets, respectively. A nearby hatchery provided 160-day-old broiler chicks, which were subsequently divided into 4 groups at random. There were 4 repetitions of each treatment, with 10 birds in each replication. Results revealed that average weight and FCR were improved in birds fed feed containing 12 mg nano Cu when compared to other groups. Feed intake, carcass characteristics, and dry matter and crude protein metabolizability were not influenced by different levels of Cu nanoparticles, while the metabolizability of crude fat was significantly higher (P < 0.05) in T4 compared among all treatment groups. Catalase concentration was higher (p < 0.05) in T3 and T4 compared to other treatments, while the concentration of superoxide dismutase was high in T2 and T4. The water-holding capacity of meat was significantly higher (P < 0.05) in T4. The findings of the present study concluded that dietary supplementation of Cu nanoparticles at 12 mg/kg feed can be practiced to get better broiler performance. According to the current study's findings, broiler performance can be improved by supplementing the food with 12 mg/kg of Cu nanoparticles.

6.
Anal Chim Acta ; 1319: 342969, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39122279

RESUMO

BACKGROUND: Ethanol gas sensors are widely used in driving safety, security, and clinical respiratory monitoring applications. However, most ethanol sensors are large and exhibit poor stability owing to their integrated controller and high-temperature operation. Moreover, the development of wireless controller-free room-temperature ethanol sensors with long-term reliability is challenging. RESULTS: In this study, a wireless room-temperature ethanol gas antenna sensor was developed by combining a Cu radiation electrode with vertical graphene (VG) embedded with CuO@Cu nanoparticles and a polydimethylsiloxane (PDMS) dielectric substrate filled with cysteine (Cys). In the patch-antenna sensor, changes in the ethanol gas concentration resulted in frequency shift differences in the generation and transmission processes of the synchronized sensing signal. The VG-Cu/Cys-PDMS ethanol gas sensor had a detection range of 50-2100 ppm and a low limit of detection (LOD) of 0.112 ppm, with a response/recovery time of only 20/21 s for 1200 ppm ethanol, thus demonstrating superior long-term stability and satisfactory humidity tolerance. Therefore, the synergistic sensitization mechanism between the VG sensing/radiation layer and Cys-PDMS substrate was investigated. SIGNIFICANCE: This approach effectively addresses the issues of low-temperature operation, miniaturization, and long-term reliability. The proposed patch-antenna gas sensor is suitable for large-scale production owing to its use of industrial chemical vapor deposition technology and could be used to develop Internet-of-Things gas sensor nodes owing to its wireless propagation of electromagnetic waves with sensing information.

7.
Food Chem ; 460(Pt 1): 140395, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39047486

RESUMO

Precise monitoring of nitrite from real samples has gained significant attention due to its detrimental impact on human health. Herein, we have fabricated poly(3,4-ethylenedioxythiophene) functionalized carbon matrix suspended Cu nanoparticles (PEDOT-C@Cu-NPs) through a facile green synthesis approach. Additionally, we have used machine learning (ML) to optimize experimental parameters such as pH, drying time, and concentrations to predict current of the designed electrochemical sensor. The ML optimized concentration of fabricated C@Cu-NPs was further functionalized by PEDOT (π-electron mediator). The designed PEDOT functionalized C@Cu-NPs (PEDOT-C@Cu-NPs) electrode has shown excellent electro-oxidation capability towards NO2- ions due to highly exposed Cu facets, defects rich graphitic C and high π-electron density. Additionally, the designed material has shown low detection limit (3.91 µM), high sensitivity (0.6372 µA/µM/cm2), and wide linear range (5-580 µM). Additionally, the designed electrode has shown higher electrochemical sensing efficacy against real time monitoring from pickled vegetables extract.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Cobre , Aprendizado de Máquina , Nanopartículas Metálicas , Nitritos , Polímeros , Verduras , Polímeros/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Verduras/química , Nitritos/análise , Nitritos/química , Cobre/química , Nanopartículas Metálicas/química , Técnicas Eletroquímicas , Carbono/química , Contaminação de Alimentos/análise , Limite de Detecção
8.
Sci Rep ; 14(1): 14254, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902296

RESUMO

Drought stress (DS) is a significant abiotic stress that limits agricultural productivity worldwide. In semi-arid climates, one potential solution to alleviate the deleterious effects of drought is the use of soil amendments such as nanoparticles. The current research was conducted out to probe the sway of drought at critical growth stages (CGS) of wheat crop (D0: Control, D1: Drought at tillering stage, and D2: Drought at anthesis stage) and the application of Cu-nanoparticles (T0: 0 mg L-1, T1: 300 mg L-1, T2: 700 mg L-1, and T3: 950 mg L-1) in order to improve drought resilience. Results of the study revealed that DS considerably decreased the wheat growth and yield during CGS. However, Cu-nanoparticles application alleviated the detrimental backlash of DS and led to improvements in various aspects of wheat growth and yield, including plant height, spike length, 1000 grain weight, stomatal conductance, leaf chlorophyll content, water use efficiency, leaf turgor potential, relative water content, and ultimately the grain yield. The use of principal component analysis allowed us to integrate and interpret the diverse findings of our study, elucidating the impact of Cu-nanoparticle treatment on wheat growth and yield under drought. Overall, the study concluded that DS during the anthesis stage had the most significant negative impact on crop yield. However, applying Cu-nanoparticles at the rate of 300 mg L-1 proved to be an effective strategy for improving crop productivity by reducing the harmful effects of drought.


Assuntos
Cobre , Secas , Triticum , Triticum/crescimento & desenvolvimento , Triticum/efeitos dos fármacos , Nanopartículas Metálicas/química , Estresse Fisiológico , Água/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos dos fármacos , Clorofila/metabolismo , Solo/química
9.
Heliyon ; 10(10): e30927, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38779003

RESUMO

The purpose of this study was to synthesize ecofriendly nano-composite in which agricultural waste (seeds of Tamarindus indica) was used to synthesize tamarind seed polysaccharides (TSP) and its composite with copper nanoparticles (Cu-NPs) for the purpose of green and clean environment as well as reduction of green-house gases. Confirmation of extracted TSP, synthesized nanocomposite was carried out using FTIR, SEM, PXRD and EDX techniques. In FTIR analysis TSP gives a strong broad peak at 3331 cm-1 due to -OH group and in case of composite its intensity is reduced which might be due to the interactions between -OH and Cu+2 ions. SEM analysis gives that TSP have irregular and rough surface while Cu-NPs exhibited spherical morphology and composite showed clustering of spherical shape to rough surface. EDX analysis quantitatively represented copper having atomic ratio 0.57 % which confirms the synthesis of composite. Furthermore, synthesized composite demonstrated excellent antibacterial activity against gram-positive (S.aureus) and gram-negative bacteria (E.coli) even greater than standard medicine (ciprofloxacin). From this study it was revealed that agriculture waste can be utilized to make environment green as well as synthesized composite from agricultural waste seed also displayed excellent antimicrobial activities which directs that they can be utilized in medical field. This study aims to assess the antimicrobial properties of the nanocomposite, aiming to contribute to the development of effective antimicrobial agents. Through these objectives, the research seeks to bridge the gap between green technology and antimicrobial efficacy, offering a promising avenue for both environmental conservation and healthcare advancements.

10.
Environ Res ; 252(Pt 1): 118859, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574986

RESUMO

Electrocatalytic hydrodechlorination (EHDC) is a promising approach to safely remove halogenated emerging contaminants (HECs) pollutants. However, sluggish production dynamics of adsorbed atomic H (H*ads) limit the applicability of this green process. In this study, bimetallic Pd-Cu@MXene catalysts were synthesized to achieve highly efficient removal of HECs. The alloy electrode (Pd-Cu@MX/CC) exhibited better EHDC performance in comparison to Pd@MX/CC electrode, resulting in diclofenac degradation efficiency of 93.3 ± 0.1%. The characterization analysis revealed that the Pd0/PdII ratio decreased by forming bimetallic Pd-Cu alloy. Density functional theory calculations further demonstrated the electronic configuration modulation of the Pd-Cu@MXene catalysts, optimizing binging energies for H* and thereby facilitating H*ads production and tuning the reduction capability of H*ads. Noteably, the amounts and reduction potential of H*ads for Pd-Cu@MXene catalysts were 1.5 times higher and 0.37 eV lower than those observed for the mono Pd electrode. Hence, the introduction of Cu into the Pd catalyst optimized the dynamics of H*ads production, thereby conferring significant advantages to EHDC reactions. This augmentation was underscored by the successful application of the alloy catalysts supported by MXene in EHDC experiments involving other HECs, which represented a new paradigm for EHDC for efficient recalcitrant pollutant removal by H*ads.


Assuntos
Cobre , Paládio , Catálise , Cobre/química , Paládio/química , Poluentes Químicos da Água/química , Adsorção , Halogenação , Técnicas Eletroquímicas/métodos , Eletrodos , Diclofenaco/química
11.
Environ Sci Pollut Res Int ; 31(20): 30256-30268, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38602639

RESUMO

There are many studies on the toxic effects of single nanoparticles on microalgae; however, many types of nanoparticles are present in the ocean, and more studies on the combined toxic effects of multiple nanoparticles on microalgae are needed. The single and combined toxic effects of nCu and nSiO2 on Dunaliella salina were investigated through changes in instantaneous fluorescence rate (Ft) and antioxidant parameters during 96-h growth inhibition tests. It was found that the toxic effect of nCu on D. salina was greater than that of nSiO2, and both showed time and were dose-dependent with the greatest growth inhibition at 96 h. A total of 0.5 mg/L nCu somewhat promoted the growth of microalgae, but 4.5 and 5.5 mg/L nCu showed negative growth effects on microalgae. The Ft of D. salina was also inhibited by increasing concentrations of nanoparticles and exposure time. nCu suppressed the synthesis of TP and elevated the MDA content of D. salina, which indicated the lipid peroxidation of algal cells. The activities of SOD and CAT showed a trend of increasing and then decreasing with the increase of nCu concentration, suggesting that the enzyme activity first increased and then decreased. The toxic effect of a high concentration of nCu was reduced after the addition of nSiO2. SEM and EDS images showed that nSiO2 could adsorb nCu in seawater. nSiO2 also adsorbed Cu2+ in the cultures, thus reducing the toxic effect of nCu on D. salina to a certain extent. TEM image was used to observe the morphology of algal cells exposed to nCu.


Assuntos
Microalgas , Microalgas/efeitos dos fármacos , Clorofíceas/efeitos dos fármacos , Nanopartículas/toxicidade
12.
Small ; 20(4): e2306165, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37715287

RESUMO

Electrocatalytic carbon-dioxide reduction reactions (ECO2 RR) are one of the most rational techniques to control one's carbon footprint. The desired product formation depends on deliberate reaction kinetics and a choice of electron-proton contribution. Herein the usage of novel CuS active centers decorated over stable 1T metallic N-WS2 /WO3 nanohybrids as an efficient selective formate conversion electrocatalyst with regard to ECO2 RR is reported. The preferred reaction pathway is identified as *OCHO, which is reduced (by gaining H+  + e- ) to HCOO- (HCOO- path) as the primary product. More significantly, at -1.3 V versus RHE yield of FEHCOO - is 55.6% ± 0.5 with a Jgeo of -125.05 mA cm-2 for CuS@1T-N-WS2 /WO3 nanohybrids. In addition, predominant catalytic activity, selectivity, and stability properties are observed; further post-mortem analysis demonstrates the choice of material importance. The present work describes an impressive approach to develop highly active electrocatalysts for selective ECO2 RR applications.

13.
Small ; 20(6): e2305199, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37775943

RESUMO

Due to the higher value of deeply-reduced products, electrocatalytic CO2 reduction reaction (CO2 RR) to multi-electron-transfer products has received more attention. One attractive strategy is to decouple individual steps within the complicated pathway via multi-component catalysts design in the concept of tandem catalysts. Here, a composite of Cu@BIF-144(Zn) (BIF = boron imidazolate framework) is synthesized by using an anion framework BIF-144(Zn) as host to impregnate Cu2+ ions that are further reduced to Cu nanoparticles (NPs) via in situ electrochemical transformation. Due to the microenvironment modulation by functional BH(im)3 - on the pore surfaces, the Cu@BIF-144(Zn) catalyst exhibits a perfect synergetic effect between the BIF-144(Zn) host and the Cu NP guest during CO2 RR. Electrochemistry results show that Cu@BIF-144(Zn) catalysts can effectively enhance the selectivity and activity for the CO2 reduction to multi-electron-transfer products, with the maximum FECH4 value of 41.8% at -1.6 V and FEC2H4 value of 12.9% at -1.5 V versus RHE. The Cu@BIF-144(Zn) tandem catalyst with CO-rich microenvironment generated by the Zn catalytic center in the BIF-144(Zn) skeleton enhanced deep reduction on the incorporated Cu NPs for the CO2 RR to multi-electron-transfer products.

14.
Food Chem ; 440: 138239, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38154278

RESUMO

Cu-nanoparticles-immobilized graphene (Cu@G) nanocomposite was fabricated in this study by reducing Cu(II) ions in the presence of graphene oxide using a simple chemical reduction step. Cu@G nanocomposite was applied as a sorbent for the SPE of four aflatoxins (AFs). A reusable syringe was filled with the fabricated nanocomposite and used as a sorbent for the micro-solid phase extraction of four AFs (AFB1, AFB2, AFG1, AFG2). The impact of different analytical factors was fully investigated and optimized. Excellent recoveries, ranging from 92.0 to 108.5 %, were detected when evaluating target AFs in samples of rice, maize, and pistachio. The LOD, LOQ, and linear ranges were attained under optimal circumstances in the ranges of 0.0062 µg kg-1, 0.0192 µg kg-1, and 0.0-20 µg kg-1, respectively. The discovered approach provided the dual benefits of a high enrichment capability of Cu-nanoparticles via AFs complexation and a huge porosity of graphene sheets.


Assuntos
Aflatoxinas , Grafite , Aflatoxinas/análise , Contaminação de Alimentos/análise , Cromatografia Líquida de Alta Pressão , Extração em Fase Sólida
15.
Mikrochim Acta ; 191(1): 7, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38052754

RESUMO

A novel, green, and facile approach has been developed to construct an ultrasensitive flexible enzyme-less electrochemical sensor on the basis of chitosan and graphene oxide composites decorated with Cu nanoparticles supported on nickel foam (Nif/Cs/GO@Cu), in which GO functions as the intermediate between Nif and Cu nanoparticles. The Nif/Cs/GO@Cu sensing platform was successfully fabricated by the drop casting method to load Cs/GO onto Nif followed by an additionally electrodeposition to support Cu nanoparticles on Nif/Cs/GO. Impressively, the Nif/Cs/GO@Cu exhibited much higher electrocatalytic activity for glucose and UA oxidation as compared to that of Nif or Nif@Cu. For glucose and UA at about 0.6 V and 0.1 V (vs. Ag/AgCl), linearity could be obtained in the concentration ranges 5 µM-4 mM and 5-345 µM; the sensitivities were 16 and 2.5 µA µM-1 cm-2, and the detection limits 83 nM and 0.3 µM, respectively. The improved performance of the composite electrode was ascribed to the synergistic effect of Cu nanoparticles, Nif and GO, in which GO provides high electron conductivity and large surface area to prevent the agglomeration of Cu nanoparticles; Cu nanoparticles and Nif offer abundant active sites towards analytes oxidation. Additionally, the method was applied to determine both analytes successfully in blood serum samples with excellent recovery and also opens up an attractive route to potential applications of the flexible nickel foam-based electrochemical sensor.

16.
Cureus ; 15(11): e48985, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38111453

RESUMO

BACKGROUND: Marine macroalgae is consumed by individuals in several regions, including Scandinavia, Great Britain, Ireland, China, and Japan; in Japan, it is commonly referred to as aosa. Copper nanoparticles are primarily composed of copper and exhibit a size distribution ranging from 1 to 100 nm. Copper nanoparticles can be synthesized using chemical or natural means, similar to other nanoparticle variants. The nanoparticles in question have garnered significant attention owing to their historical utilization as coloring agents, as well as their contemporary applicability in medicine and antibacterial treatments. OBJECTIVES: The objective of this study was to investigate the biosynthesis of copper nanoparticles derived from Ulva lactuca seaweed and explore their in vitro antioxidative potential. MATERIALS AND METHODS: Seaweed samples (10 g) were mixed with 50 ml of distilled water and placed in a shaker for two days. Copper sulfate (10 mM) was mixed with 100 ml of distilled water to obtain a copper (Cu) solution. Cu nanoparticles were then synthesized by adding the aqueous extract to 100 ml of the Cu solution and mixing it in an orbital shaker at 180 rpm for 24 hours. They were observed both visually and via ultraviolet (UV) spectrophotometry to confirm their nanoparticle synthesis. The initial reading was performed using a UV-visible spectrometer at 300-800 nm. The sample was centrifuged at approximately 8000 rpm for 15 minutes, the pellet was removed, and the pellet was dried in a hot-air oven. The synthesized Cu nanoparticles were then investigated using in vitro antioxidant assays. RESULT: The seaweed-derived copper nanoparticles exhibited a 1.2 peak absorbance at 580 nm. Various concentrations of copper nanoparticles (25, 50, 75, and 100 µg/ml) were tested for free radical scavenging. As the copper nanoparticle concentration increased, the scavenging ability on 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radicals assay showed that the free radical scavenging activity increased in a dose-dependent manner. Similar to the DPPH assay, the total antioxidant and hydrogen peroxide (H2O2)assays showed increased free radical scavenging with increasing concentration. CONCLUSION: The application of Cu nanoparticles in the synthesis process has the potential to enhance the antioxidant activity of Ulva lactuca as evidenced by the observed increase in antioxidant capacity and defense against reactive oxygen species.

17.
Micromachines (Basel) ; 14(11)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38004936

RESUMO

In this study, we present a facile method for preparing oxidation-resistant Cu nanoparticles through a liquid-phase reduction with imidazole compounds (imidazole, 2-methylimidazole, 2-phenylimidazole, and benzimidazole) that serve as protective and dispersing agents. Through a complexation reaction between Cu atoms, the imidazole compounds can form a protective film on the Cu nanoparticles to prevent the particles from rapidly oxidizing. We compared the effects of the four kinds of imidazole compounds on the oxidation resistance and sintering properties of Cu particles. The Cu particles prepared with benzimidazole could be stored in the air for 30 days without being oxidized. After sintering at 300 °C and 2 MPa, the joint of the particles could reach a shear strength of 32 MPa, which meets the requirements for microelectronic packaging.

18.
ACS Chem Neurosci ; 14(23): 4176-4184, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37939215

RESUMO

To simply and rapidly detect the highly phosphorylated tau protein at threonine 217 (p-tau217) as a precautionary measure against Alzheimer's disease and distinguish it from other neurodegenerative diseases, a novel immunosensor was prepared using luminol as the electrochemiluminescent (ECL) sensing probe reinforced by Au-Cu nanoparticles (Au-Cu NPs). The Au-Cu alloy NPs were prepared via a co-reduction reaction, exhibiting excellent conductivity and catalytic activity. These properties remarkably enhanced the ECL of luminol, providing a suitable background for the sensing response. After the Au-Cu NPs were decorated on the surface of indium tin oxide glass using 3-amino-propyl trimethoxysilane, the antibody of p-tau217 was immobilized via dominant Au-N bonding to enable the biological specificity of the immunosensor. When p-tau217 specifically interacted with an antibody to form an immune complex on the sensing interface, the ECL signal of the sensor was considerably inhibited by the resulting giant biomolecular complex. This complex prevented luminol diffusion to the electrode surface and electron transfer. The resulting immunosensor showed remarkable sensitivity to p-tau217, with a wide linear detection range from 5 to 600 pg/mL. A detection limit of 0.56 pg/mL was achieved, with recoveries in human serum ranging from 92.3 to 109%. This ECL immunosensor demonstrated high sensitivity and specificity toward p-tau217, along with good reproducibility and stability, providing a new approach for clinical research on Alzheimer's disease.


Assuntos
Doença de Alzheimer , Técnicas Biossensoriais , Nanopartículas Metálicas , Nanopartículas , Humanos , Luminol , Doença de Alzheimer/diagnóstico , Técnicas Biossensoriais/métodos , Reprodutibilidade dos Testes , Imunoensaio/métodos , Anticorpos , Medições Luminescentes/métodos , Ouro , Técnicas Eletroquímicas/métodos
19.
Nanomaterials (Basel) ; 13(17)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37686986

RESUMO

In this study, a Cu NPs-incorporated carbon-containing mesoporous SiO2 (Cu/C-SiO2) was successfully synthesized through a grinding-assisted self-infiltration method followed by an in situ reduction process. The obtained Cu/C-SiO2 was then employed as a Fenton-like catalyst to remove tetracycline (TC) from aqueous solutions. TEM, EDS, XRD, N2 adsorption-desorption, FTIR, and XPS methods were used to characterize the crystal structure, morphology, porosity, chemical composition, and surface chemical properties of the catalyst. The effects of initial TC concentration, catalyst dosage, H2O2 dosage, solution pH, HA addition, and water media on the TC degradation over Cu/C-SiO2 were investigated. Scavenging and electrochemical experiments were then carried out to analyze the TC degradation mechanism. The results show that the Cu/C-SiO2 can remove 99.9% of the concentrated TC solution (C0 = 500 mg·L-1), and it can be used in a wide pH range (R.E. = 94-99%, pH = 3.0-11.0). Moreover, hydroxyl radicals (•OH) were detected to be the dominant reactive species in this catalytic system. This study provides a simple and promising method for the synthesis of heteroatom-containing mesoporous catalysts for the decomposition of antibiotics in wastewater.

20.
ACS Appl Mater Interfaces ; 15(22): 26363-26372, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37232289

RESUMO

Nanozymes with high activity and stability have emerged as a potential alternative to natural enzymes in the past years, but the relationship between the electronic metal-support interactions (EMSI) and catalytic performance in nanozymes still remains unclear. Herein, a copper nanoparticle nanozyme supported on N-doped Ti3C2Tx (Cu NPs@N-Ti3C2Tx) is successfully synthesized and the modulation of EMSI is achieved by introducing N species. The stronger EMSI between Cu NPs and Ti3C2Tx, involving electronic transfer and an interface effect, is revealed by X-ray photoelectron spectroscopy, soft X-ray absorption spectroscopy, and hard X-ray absorption fine spectroscopy at the atomic level. Consequently, Cu NPs@N-Ti3C2Tx nanozyme exhibits remarkable peroxidase-like activity, surpassing its counterpart (Cu NPs, Ti3C2Tx, Cu NPs-Ti3C2Tx), suggesting that EMSI significantly enhances catalytic performance. Benefiting from the excellent performance, the colorimetric platform based on Cu NPs@N-Ti3C2Tx nanozyme for detecting astaxanthin is constructed and shows a wide linear detection range of 0.01-50 µM and a limit of detection of 0.015 µM in the sunscreens. Density functional theory is further conducted to reveal that the excellent performance is ascribed to the stronger EMSI. This work opens an avenue for studying the influence of EMSI toward catalytic performance of nanozyme.


Assuntos
Cobre , Nanopartículas , Cobre/química , Titânio , Nitrogênio , Nanopartículas/química , Antioxidantes , Peroxidases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA