Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Animals (Basel) ; 14(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38338158

RESUMO

When an organism detects decreases in their core body temperature, the hypothalamus, the main thermoregulatory center, triggers compensatory responses. These responses include vasomotor changes to prevent heat loss and physiological mechanisms (e.g., shivering and non-shivering thermogenesis) for heat production. Both types of changes require the participation of peripheral thermoreceptors, afferent signaling to the spinal cord and hypothalamus, and efferent pathways to motor and/or sympathetic neurons. The present review aims to analyze the scientific evidence of the hypothalamic control of hypothermia and the central and peripheral changes that are triggered in domestic animals.

2.
Eur J Appl Physiol ; 124(5): 1523-1534, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38150009

RESUMO

PURPOSE: Cold-induced vasodilation (CIVD) is an oscillatory rise in blood flow to glabrous skin that occurs in cold-exposed extremities. Dietary flavanols increase bioavailable nitric oxide, a proposed mediator of CIVD through active vasodilation and/or withdrawal of sympathetic vascular smooth muscle tone. However, no studies have examined the effects of flavanol intake on extremity skin perfusion during cold exposure. We tested the hypothesis that acute and 8-day flavanol supplementation would augment CIVD during single-digit cold water immersion (CWI). METHODS: Eleven healthy adults (24 ± 6 years; 10 M/1F) ingested cocoa flavanols (900 mg/day) or caffeine- and theobromine-matched placebo for 8 days in a double-blind, randomized, crossover design. On Days 1 and 8, CIVD was assessed 2 h post-treatment. Subjects immersed their 3rd finger in warm water (42 °C) for 15 min before CWI (4 °C) for 30 min, during which nail bed and finger pad skin temperature were measured. RESULTS: Flavanol ingestion had no effect on CIVD frequency (Day 1, Flavanol: 3 ± 2 vs. Placebo: 3 ± 2; Day 8, Flavanol: 3 ± 2 vs. Placebo: 3 ± 1) or amplitude (Day 1, Flavanol: 4.3 ± 1.7 vs. Placebo: 4.9 ± 2.6 °C; Day 8, Flavanol: 3.9 ± 1.9 vs. Placebo: 3.9 ± 2.0 °C) in the finger pad following acute or 8-day supplementation (P > 0.05). Furthermore, average, nadir, and apex finger pad temperatures during CWI were not different between treatments on Days 1 or 8 of supplementation (P > 0.05). Similarly, no differences in CIVD parameters were observed in the nail bed following supplementation (P > 0.05). CONCLUSION: These data suggest that cocoa flavanol ingestion does not alter finger CIVD. Clinical Trial Registration Clinicaltrials.gov Identifier: NCT04359082. April 24, 2020.


Assuntos
Temperatura Baixa , Suplementos Nutricionais , Vasodilatação , Humanos , Masculino , Feminino , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia , Adulto , Método Duplo-Cego , Adulto Jovem , Estudos Cross-Over , Temperatura Cutânea/efeitos dos fármacos , Temperatura Cutânea/fisiologia , Cacau , Flavonóis/farmacologia , Flavonóis/administração & dosagem , Pele/irrigação sanguínea , Pele/efeitos dos fármacos , Chocolate
3.
Am J Physiol Regul Integr Comp Physiol ; 324(3): R345-R352, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36693170

RESUMO

Control of cutaneous circulation is critically important to maintain thermoregulation, especially in individuals with cervical spinal cord injury (CSCI) who have no or less central thermoregulatory drive. However, the peripheral vasoconstrictor mechanism and capability have not been fully investigated after CSCI. Post- and presynaptic sensitivities of the cutaneous vasoconstrictor system were investigated in 8 CSCI and 7 sedentary able-bodied (AB) men using an intradermal microdialysis technique. Eight doses of norepinephrine (NE, 10-8 to 10-1 M) and five doses of tyramine (TY, 10-8, 10-5 to 10-2 M) were administered into the anterior right and left thigh, respectively. Endogenous catecholamines, noradrenaline, and dopamine, collected at the TY site, were determined by high-performance liquid chromatography with electrochemical detection. Regardless of vasoconstrictor agents, cutaneous vascular conductance decreased dose-dependently and responsiveness was similar between the groups (NE: Group P = 0.255, Dose P = 0.014; TY: Group P = 0.468, Dose P < 0.001), whereas the highest dose of each drug induced cutaneous vasodilation. Administration of TY promoted the release of noradrenaline and dopamine in both groups. Notably, the amount of noradrenaline released was similar between the groups (P = 0.819), although the concentration of dopamine was significantly greater in individuals with CSCI than in AB individuals (P = 0.004). These results suggest that both vasoconstrictor responsiveness and neural functions are maintained after CSCI, and dopamine in the skin is likely to induce cutaneous vasodilation.


Assuntos
Medula Cervical , Vasoconstritores , Masculino , Humanos , Vasoconstritores/farmacologia , Catecolaminas , Dopamina/farmacologia , Vasoconstrição , Pele/irrigação sanguínea , Norepinefrina/farmacologia , Terminações Nervosas , Neurotransmissores/farmacologia
4.
Exp Physiol ; 106(1): 350-358, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32602583

RESUMO

NEW FINDINGS: What is the topic of this review? The aim was to examine the influence of hypoxia on thermoregulatory and cardiovascular control in the cold. What advances does it highlight? Exposure to hypoxia seems to alter both thermoregulatory and cardiovascular control, but these conclusions are based on limited data, and this review highlights the need for future research in this area. ABSTRACT: Cold stress and hypoxia have been the subject of research for decades; however, humans often encounter these stressors together, such as in the alpine environment. Therefore, this review summarizes previous data with respect to the influence of hypoxia on thermoregulatory and cardiovascular control in the cold and presents new ideas for the future. Altogether, little to no evidence is available on the integrative and adaptive mechanisms by which the human body regulates heat conservation, oxygen delivery and maintenance of blood pressure.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Temperatura Corporal/fisiologia , Temperatura Baixa , Hipóxia/fisiopatologia , Sistema Cardiovascular/fisiopatologia , Temperatura Alta , Humanos
5.
J Therm Biol ; 94: 102781, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33292979

RESUMO

Thermoregulatory control of human body temperature is of paramount importance for normal bodily functions. Exposure of the upper and lower limbs to localized cold stress can cause cold-induced injuries and often lower limbs are more susceptible to damages from cold-induced injuries. In this study, we use infrared thermal imaging to probe localized cold stress induced cutaneous vasoconstriction of lower limbs in 33 healthy subjects. The cold stress is actuated by applying ice to the plantar surfaces of the lower limbs for 180 s and after removal of the cold stress, infrared thermography is utilized to non-invasively monitor the time-dependent variations in vein pixel temperatures on the dorsal surfaces of the stimulated and non-stimulated feet. It is observed that the vein pixel temperature of the stimulated foot showed a non-monotonic variation with time, consisting of an initial decrease and the presence of an inversion time, beyond which temperature is regained. The initial decrease in vein pixel temperature of the stimulated foot is attributed to the reduced blood flow caused by the cold stress induced severe vasoconstriction. Beyond the inversion time, the vein pixel temperature is found to increase due to rewarming of the surrounding skin. Experimental findings indicate that the inversion time linearly increased with the age of the subject, indicating a reduced thermoregulatory efficiency for the aged subjects. This study provides a thermal imaging-based insight into the skin temperature re-distribution during the early stages of blood perfusion in lower limbs, after an exposure to a localized acute cold stress. Statistical analyses reveal that subject height, weight, body-mass index and gender do not influence the inversion time significantly. The experimental findings are important towards rapid evaluation of personnel fitness for deployment in extreme cold environment, treatment of cold-induced injuries and probing of thermoregulatory impairments.


Assuntos
Envelhecimento/fisiologia , Regulação da Temperatura Corporal , Resposta ao Choque Frio/fisiologia , Extremidade Inferior/fisiologia , Adolescente , Adulto , Feminino , Humanos , Raios Infravermelhos , Masculino , Pessoa de Meia-Idade , Termografia , Adulto Jovem
6.
F1000Res ; 52016.
Artigo em Inglês | MEDLINE | ID: mdl-27239289

RESUMO

Central neural circuits orchestrate the behavioral and autonomic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response and behavioral states and in response to declining energy homeostasis. This review summarizes the central nervous system circuit mechanisms controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction regulating heat loss and shivering and brown adipose tissue for thermogenesis. The activation of these thermoeffectors is regulated by parallel but distinct efferent pathways within the central nervous system that share a common peripheral thermal sensory input. The model for the neural circuit mechanism underlying central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation, for elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation, and for the discovery of novel therapeutic approaches to modulating body temperature and energy homeostasis.

7.
Auton Neurosci ; 196: 14-24, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26924538

RESUMO

Central neural circuits orchestrate the homeostatic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response. This review summarizes the experimental underpinnings of our current model of the CNS pathways controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction controlling heat loss, and shivering and brown adipose tissue for thermogenesis. The activation of these effectors is regulated by parallel but distinct, effector-specific, core efferent pathways within the CNS that share a common peripheral thermal sensory input. Via the lateral parabrachial nucleus, skin thermal afferent input reaches the hypothalamic preoptic area to inhibit warm-sensitive, inhibitory output neurons which control heat production by inhibiting thermogenesis-promoting neurons in the dorsomedial hypothalamus that project to thermogenesis-controlling premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, that descend to provide the excitation of spinal circuits necessary to drive thermogenic thermal effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus sympathetic premotor neurons controlling cutaneous vasoconstriction. The model proposed for central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation and elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation.


Assuntos
Tecido Adiposo Marrom/metabolismo , Regulação da Temperatura Corporal/fisiologia , Temperatura Corporal/fisiologia , Vias Neurais/fisiologia , Sistema Nervoso Simpático/fisiologia , Termogênese/fisiologia , Tecido Adiposo Marrom/fisiologia , Animais , Humanos
8.
Temperature (Austin) ; 3(3): 465-475, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28349086

RESUMO

Recent reports of the use of transgenic mice targeting orexin neurons show that the ablation of orexin neurons in the hypothalamus causes hypothermia during cold exposure. This suggests the importance of orexin neurons for cold-induced autonomic and physiological defense responses, including brown adipose tissue (BAT) thermogenesis and vasoconstriction in thermoregulatory cutaneous vascular bed. The present study investigated whether the ablation of orexin neurons attenuated cold-elicited BAT thermogenesis and cutaneous vasoconstriction. The study took advantage of our established conscious rat experimental model of direct measurement of BAT and body temperature and tail cutaneous blood flow. The study used transgenic orexin neurons-ablated (ORX-AB) rats and wild type (WT) rats. BAT temperature and tail artery blood flow with pre-implanted probes were measured, as well as behavioral locomotor activity under conscious free-moving condition. Gradually, the ambient temperature was decreased to below 5°C. ORX-AB rats showed an attenuated cold-induced BAT thermogenesis and behavioral activity, and delayed tail vasoconstriction. An ambient temperature that initiated BAT thermogenesis and established full cutaneous vasoconstriction was 14.1 ± 1.9 °C, which was significantly lower than 20.5 ± 1.9 °C, the corresponding value in WT rats (n = 10, P < 0.01). The results from this study suggest that the integrity of orexin-synthesising neurons in thermoregulatory networks is important for full expression of the cold defense responses.

9.
Temperature (Austin) ; 2(3): 392-405, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27227053

RESUMO

Hairless skin acts as a heat exchanger between body and environment, and thus greatly contributes to body temperature regulation by changing blood flow to the skin (cutaneous) vascular bed during physiological responses such as cold- or warm-defense and fever. Cutaneous blood flow is also affected by alerting state; we 'go pale with fright'. The rabbit ear pinna and the rat tail have hairless skin, and thus provide animal models for investigating central pathway regulating blood flow to cutaneous vascular beds. Cutaneous blood flow is controlled by the centrally regulated sympathetic nervous system. Sympathetic premotor neurons in the medullary raphé in the lower brain stem are labeled at early stage after injection of trans-synaptic viral tracer into skin wall of the rat tail. Inactivation of these neurons abolishes cutaneous vasomotor changes evoked as part of thermoregulatory, febrile or psychological responses, indicating that the medullary raphé is a common final pathway to cutaneous sympathetic outflow, receiving neural inputs from upstream nuclei such as the preoptic area, hypothalamic nuclei and the midbrain. Summarizing evidences from rats and rabbits studies in the last 2 decades, we will review our current understanding of the central pathways mediating cutaneous vasomotor control.

10.
Physiol Rep ; 2(10)2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25344478

RESUMO

Voluntary apnea activates the central and peripheral chemoreceptors, leading to a rise in sympathetic nerve activity and limb vasoconstriction (i.e., brachial blood flow velocity and forearm cutaneous vascular conductance decrease to a similar extent). Whether peripheral and/or central chemoreceptors contribute to the cutaneous vasoconstrictor response remains unknown. We performed three separate experiments in healthy young men to test the following three hypotheses. First, inhibition of peripheral chemoreceptors with brief hyperoxia inhalation (100% O2) would attenuate the cutaneous vasoconstrictor response to voluntary apnea. Second, activation of the peripheral chemoreceptors with 5 min of hypoxia (10% O2, 90% N2) would augment the cutaneous vasoconstrictor response to voluntary apnea. Third, activation of the central chemoreceptors with 5 min of hypercapnia (7% CO2, 30% O2, 63% N2) would have no influence on cutaneous responses to voluntary apnea. Studies were performed in the supine posture with skin temperature maintained at thermoneutral levels. Beat-by-beat blood pressure, heart rate, brachial blood flow velocity, and cutaneous vascular conductance were measured and changes from baseline were compared between treatments. Relative to room air, hyperoxia attenuated the vasoconstrictor response to voluntary apnea in both muscle (-16 ± 10 vs. -40 ± 12%, P = 0.023) and skin (-14 ± 6 vs. -24 ± 5%, P = 0.033). Neither hypoxia nor hypercapnia had significant effects on cutaneous responses to apnea. These data indicate that skin blood flow is controlled by the peripheral chemoreceptors but not the central chemoreceptors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA