Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
J Proteomics ; 273: 104796, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36538968

RESUMO

Diverse post-translational modifications (PTMs) regulate protein function and interaction to fine-tune biological processes. Reversible phosphorylation, cysteines (Cys) modifications, and N-linked glycosylation are all essentially involved in cellular signaling pathways, such as those initiated by the action of pro-inflammatory cytokines, which can induce pancreatic ß-cell death and diabetes. Here we have developed a novel strategy for the simultaneous and comprehensive characterization of the proteome and three PTMs including reversibly modified Cysteines (rmCys), phosphorylation, and sialylated N-linked glycosylation from low amount of sample material. This strategy, termed TiCPG, is based on a combination of chemical labeling and titanium dioxide (TiO2) chromatography. We applied the TiCPG strategy to study the proteome and the three PTMs changes in ß-cells subject to pro-inflammatory cytokines stimulation. It enabled quantitative analysis of 8346 rmCys sites, 10,321 phosphosites and 962 sialylated N-glycosites from 5496 proteins. Significant regulation was found on 100 proteins at the expression level, while 3020 PTM peptide isoforms from 1468 proteins were significantly regulated. The three PTMs were involved in cytokine mediated ß-cell apoptosis, such as the NFκB and the inducible NO synthase signaling pathways. Overall, the TiCPG strategy is a cheap, straightforward, and powerful tool for studies targeting the three PTMs described above. SIGNIFICANCE: The present study presents a fast and easy method for quantitative assessment of the proteome and three PTMs from minimal amount of sample material. This simple method provides comprehensive and significant knowledge on biological systems and cellular signaling with relatively low analysis time, suitable for younger researchers and researchers that do not have direct access to LC-MSMS in their laboratories. From sub-milligram amount of material, we were able to map known cellular signaling events of proinflammatory cytokine effect on beta-cells and to discover novel PTMs involved in several known signaling pathways.


Assuntos
Glicopeptídeos , Fosfopeptídeos , Fosfopeptídeos/análise , Glicopeptídeos/análise , Cisteína , Proteoma , Citocinas , Proteômica/métodos , Processamento de Proteína Pós-Traducional
3.
Biochem J ; 479(6): 731-750, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35344028

RESUMO

The interplay between innate immunity and coagulation after infection or injury, termed immunothrombosis, is the primary cause of disseminated intravascular coagulation (DIC), a condition that occurs in sepsis. Thrombosis associated with DIC is the leading cause of death worldwide. Interest in immunothrombosis has grown because of COVID-19, the respiratory disease caused by SARS-CoV-2, which has been termed a syndrome of dysregulated immunothrombosis. As the relatively new field of immunothrombosis expands at a rapid pace, the focus of academic and pharmacological research has shifted from generating treatments targeted at the traditional 'waterfall' model of coagulation to therapies better directed towards immune components that drive coagulopathies. Immunothrombosis can be initiated in macrophages by cleavage of the non-canonical inflammasome which contains caspase-11. This leads to release of tissue factor (TF), a membrane glycoprotein receptor that forms a high-affinity complex with coagulation factor VII/VIIa to proteolytically activate factors IX to IXa and X to Xa, generating thrombin and leading to fibrin formation and platelet activation. The mechanism involves the post-translational activation of TF, termed decryption, and release of decrypted TF via caspase-11-mediated pyroptosis. During aberrant immunothrombosis, decryption of TF leads to thromboinflammation, sepsis, and DIC. Therefore, developing therapies to target pyroptosis have emerged as an attractive concept to counteract dysregulated immunothrombosis. In this review, we detail the three mechanisms of TF control: concurrent induction of TF, caspase-11, and NLRP3 (signal 1); TF decryption, which increases its procoagulant activity (signal 2); and accelerated release of TF into the intravascular space via pyroptosis (signal 3). In this way, decryption of TF is analogous to the two signals of NLRP3 inflammasome activation, whereby induction of pro-IL-1ß and NLRP3 (signal 1) is followed by activation of NLRP3 (signal 2). We describe in detail TF decryption, which involves pathogen-induced alterations in the composition of the plasma membrane and modification of key cysteines on TF, particularly at the location of the critical, allosterically regulated disulfide bond of TF in its 219-residue extracellular domain. In addition, we speculate towards the importance of identifying new therapeutics to block immunothrombotic triggering of TF, which can involve inhibition of pyroptosis to limit TF release, or the direct targeting of TF decryption using cysteine-modifying therapeutics.


Assuntos
Tratamento Farmacológico da COVID-19 , Trombose , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêutico , Humanos , Inflamação/complicações , Piroptose , SARS-CoV-2 , Tromboinflamação , Tromboplastina/metabolismo
4.
Cells ; 11(5)2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269451

RESUMO

Cellular redox homeostasis is precisely balanced by generation and elimination of reactive oxygen species (ROS). ROS are not only capable of causing oxidation of proteins, lipids and DNA to damage cells but can also act as signaling molecules to modulate transcription factors and epigenetic pathways that determine cell survival and death. Hsp70 proteins are central hubs for proteostasis and are important factors to ameliorate damage from different kinds of stress including oxidative stress. Hsp70 members often participate in different cellular signaling pathways via their clients and cochaperones. ROS can directly cause oxidative cysteine modifications of Hsp70 members to alter their structure and chaperone activity, resulting in changes in the interactions between Hsp70 and their clients or cochaperones, which can then transfer redox signals to Hsp70-related signaling pathways. On the other hand, ROS also activate some redox-related signaling pathways to indirectly modulate Hsp70 activity and expression. Post-translational modifications including phosphorylation together with elevated Hsp70 expression can expand the capacity of Hsp70 to deal with ROS-damaged proteins and support antioxidant enzymes. Knowledge about the response and role of Hsp70 in redox homeostasis will facilitate our understanding of the cellular knock-on effects of inhibitors targeting Hsp70 and the mechanisms of redox-related diseases and aging.


Assuntos
Proteínas de Choque Térmico HSP70 , Estresse Oxidativo , Proteínas de Choque Térmico HSP70/metabolismo , Homeostase , Humanos , Oxirredução , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo
5.
Biol Chem ; 403(4): 377-390, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35032422

RESUMO

Mutation-selective drugs constitute a great advancement in personalized anticancer treatment with increased quality of life and overall survival in cancers. However, the high adaptability and evasiveness of cancers can lead to disease progression and the development of drug resistance, which cause recurrence and metastasis. A common characteristic in advanced neoplastic cancers is the epithelial-mesenchymal transition (EMT) which is strongly interconnected with H2O2 signaling, increased motility and invasiveness. H2O2 relays its signal through the installation of oxidative posttranslational modifications on cysteines. The increased H2O2 levels that are associated with an EMT confer a heightened sensitivity towards the induction of ferroptosis as a recently discovered vulnerability.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias , Progressão da Doença , Humanos , Peróxido de Hidrogênio , Neoplasias/patologia , Qualidade de Vida
6.
Front Cell Dev Biol ; 9: 617366, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732693

RESUMO

Thiol groups on cysteines can undergo multiple post-translational modifications (PTMs), acting as a molecular switch to maintain redox homeostasis and regulating a series of cell signaling transductions. Identification of sophistical protein cysteine modifications is crucial for dissecting its underlying regulatory mechanism. Instead of a time-consuming and labor-intensive experimental method, various computational methods have attracted intense research interest due to their convenience and low cost. Here, we developed the first comprehensive deep learning based tool pCysMod for multiple protein cysteine modification prediction, including S-nitrosylation, S-palmitoylation, S-sulfenylation, S-sulfhydration, and S-sulfinylation. Experimentally verified cysteine sites curated from literature and sites collected by other databases and predicting tools were integrated as benchmark dataset. Several protein sequence features were extracted and united into a deep learning model, and the hyperparameters were optimized by particle swarm optimization algorithms. Cross-validations indicated our model showed excellent robustness and outperformed existing tools, which was able to achieve an average AUC of 0.793, 0.807, 0.796, 0.793, and 0.876 for S-nitrosylation, S-palmitoylation, S-sulfenylation, S-sulfhydration, and S-sulfinylation, demonstrating pCysMod was stable and suitable for protein cysteine modification prediction. Besides, we constructed a comprehensive protein cysteine modification prediction web server based on this model to benefit the researches finding the potential modification sites of their interested proteins, which could be accessed at http://pcysmod.omicsbio.info. This work will undoubtedly greatly promote the study of protein cysteine modification and contribute to clarifying the biological regulation mechanisms of cysteine modification within and among the cells.

7.
Brief Bioinform ; 22(5)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33406221

RESUMO

As important post-translational modifications, protein cysteine modifications (PCMs) occurring at cysteine thiol group play critical roles in the regulation of various biological processes in eukaryotes. Due to the rapid advancement of high-throughput proteomics technologies, a large number of PCM events have been identified but remain to be curated. Thus, an integrated resource of eukaryotic PCMs will be useful for the research community. In this work, we developed an integrative database for protein cysteine modifications in eukaryotes (iCysMod), which curated and hosted 108 030 PCM events for 85 747 experimentally identified sites on 31 483 proteins from 48 eukaryotes for 8 types of PCMs, including oxidation, S-nitrosylation (-SNO), S-glutathionylation (-SSG), disulfide formation (-SSR), S-sulfhydration (-SSH), S-sulfenylation (-SOH), S-sulfinylation (-SO2H) and S-palmitoylation (-S-palm). Then, browse and search options were provided for accessing the dataset, while various detailed information about the PCM events was well organized for visualization. With human dataset in iCysMod, the sequence features around the cysteine modification sites for each PCM type were analyzed, and the results indicated that various types of PCMs presented distinct sequence recognition preferences. Moreover, different PCMs can crosstalk with each other to synergistically orchestrate specific biological processes, and 37 841 PCM events involved in 119 types of PCM co-occurrences at the same cysteine residues were finally obtained. Taken together, we anticipate that the database of iCysMod would provide a useful resource for eukaryotic PCMs to facilitate related researches, while the online service is freely available at http://icysmod.omicsbio.info.


Assuntos
Cisteína/metabolismo , Eucariotos/metabolismo , Processamento de Proteína Pós-Traducional , Software , Sequência de Aminoácidos , Conjuntos de Dados como Assunto , Dissulfetos/metabolismo , Eucariotos/genética , Humanos , Internet , Lipoilação , Compostos Nitrosos/metabolismo , Oxirredução , Ácidos Sulfênicos/metabolismo , Compostos de Sulfidrila/metabolismo
8.
Plant Signal Behav ; 16(1): 1831792, 2021 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-33300450

RESUMO

Plant resilience to oxidative stress possibly operates through the restoration of intracellular redox milieu and the activity of various posttranslationally modified proteins. Among various modes of redox regulation operative in plants cys oxPTMs are brought about by the activity of reactive oxygen species (ROS), reactive nitrogen species (RNS), and hydrogen peroxide. Cysteine oxPTMs are capable of transducing ROS-mediated long-distance hormone signaling (ABA, JA, SA) in plants. S-sulphenylation is an intermediary modification en route to other oxidative states of cysteine. In silico analysis have revealed evolutionary conservation of certain S-sulphenylated proteins across human and plants. Further analysis of protein sulphenylation in plants should be extended to the functional follow-up studies followed by site-specific characterization and case-by-case validation of protein activity. The repertoire of physiological methods (fluorescent conjugates (dimedone) and yeast AP-1 (YAP1)-based genetic probes) in the recent past has been successful in the detection of sulphenylated proteins and other cysteine-based modifications in plants. In view of a better understanding of the sulfur-based redoxome it is necessary to update our timely progress on the methodological advancements for the detection of cysteine-based oxPTM. This substantiative information can extend our investigations on plant-environment interaction thus improving crop manipulation strategies. The simulation-based computational approach has emerged as a new method to determine the directive mechanism of cysteine oxidation in plants. Thus, sulfenome analysis in various plant systems might reflect as a pinnacle of plant redox biology in the future.


Assuntos
Cisteína/metabolismo , Oxirredução , Estresse Oxidativo , Processamento de Proteína Pós-Traducional , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
9.
Proc Natl Acad Sci U S A ; 117(43): 26804-26811, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33055209

RESUMO

The p53 tumor suppressor protein is a transcription factor and master stress response mediator, and it is subject to reduction-oxidation (redox)-dependent regulation. The P47S variant of TP53, which exists primarily in African-descent populations, associates with an elevated abundance of low molecular weight (LMW) thiols, including glutathione (GSH) and coenzyme A (CoA). Here we show that S47 and P47 cells exhibit distinct metabolic profiles, controlled by their different redox states and expression of Activating Transcription Factor-4 (ATF4). We find that S47 cells exhibit decreased catabolic glycolysis but increased use of the pentose phosphate pathway (PPP), and an enhanced abundance of the antioxidant, NADPH. We identify ATF4 as differentially expressed in P47 and S47 cells and show that ATF4 can reverse the redox status and rescue metabolism of S47 cells, as well as increase sensitivity to ferroptosis. This adaptive metabolic switch is rapid, reversible, and accompanied by thiol-mediated changes in the structures and activities of key glycolytic signaling pathway proteins, including GAPDH and G6PD. The results presented here unveil the important functional interplay among pathways regulating thiol-redox status, metabolic adaptation, and cellular responses to oxidative stress.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Ferroptose , Genes p53 , Oxirredução , Compostos de Sulfidrila/metabolismo , Animais , Linhagem Celular , Coenzima A/metabolismo , Glutationa/metabolismo , Glicólise , Homeostase , Humanos , Masculino , Camundongos , Processamento de Proteína Pós-Traducional
10.
Mol Cell Proteomics ; 19(5): 852-870, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32132231

RESUMO

The redox-based modifications of cysteine residues in proteins regulate their function in many biological processes. The gas molecule H2S has been shown to persulfidate redox sensitive cysteine residues resulting in an H2S-modified proteome known as the sulfhydrome. Tandem Mass Tags (TMT) multiplexing strategies for large-scale proteomic analyses have become increasingly prevalent in detecting cysteine modifications. Here we developed a TMT-based proteomics approach for selectively trapping and tagging cysteine persulfides in the cellular proteomes. We revealed the natural protein sulfhydrome of two human cell lines, and identified insulin as a novel substrate in pancreatic beta cells. Moreover, we showed that under oxidative stress conditions, increased H2S can target enzymes involved in energy metabolism by switching specific cysteine modifications to persulfides. Specifically, we discovered a Redox Thiol Switch, from protein S-glutathioinylation to S-persulfidation (RTSGS). We propose that the RTSGS from S-glutathioinylation to S-persulfidation is a potential mechanism to fine tune cellular energy metabolism in response to different levels of oxidative stress.


Assuntos
Metabolismo Energético , Compostos de Sulfidrila/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Animais , Bioensaio , Biotina/metabolismo , Linhagem Celular , Cisteína/metabolismo , Dissulfetos/metabolismo , Glicólise , Hepatócitos/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , Células Secretoras de Insulina/metabolismo , Espectrometria de Massas , Análise do Fluxo Metabólico , Mitocôndrias/metabolismo , Oxirredução , Proteoma/metabolismo , Proteômica , Ratos , Sulfetos/metabolismo
11.
Trends Plant Sci ; 23(9): 769-782, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30149854

RESUMO

Oxygenic photosynthesis gave rise to a regulatory mechanism based on reversible redox-modifications of enzymes. In chloroplasts, such on-off switches separate metabolic pathways to avoid futile cycles. During illumination, the redox interconversions allow for rapidly and finely adjusting activation states of redox-regulated enzymes. Noncovalent effects by metabolites binding to these enzymes, here addressed as 'small molecules', affect the rates of reduction and oxidation. The chloroplast enzymes provide an example for a versatile regulatory principle where small molecules govern thiol switches to integrate redox state and metabolism for an appropriate response to environmental challenges. In general, this principle can be transferred to reactive thiols involved in redox signaling, oxidative stress responses, and in disease of all organisms.


Assuntos
Cloroplastos/metabolismo , Oxigênio/metabolismo , Transdução de Sinais , Compostos de Sulfidrila/metabolismo , Oxirredução , Estresse Oxidativo , Fotossíntese
12.
Adv Exp Med Biol ; 869: 1-4, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26381937

RESUMO

Ion channels are membrane-spanning proteins that control the flow of ions across biological membranes through an aqueous pathway. The opening or closing of this pore can be controlled by a myriad of physiological inputs (voltage, ligands, temperature, metabolites, pH), which in turn allow for the controlled flux of ions across membranes, resulting in the generation of minute electrical signals. The functional implications of ion channel function on physiological processes are vast. Electrical impulses, in the form of action potentials or diverse chemo-electrical signals, coordinate the syncytium of the heart beat, support a myriad of neuronal communication pathways, insulin secretion, and are central to the immune response, with more roles being discovered virtually everyday. Thus, ion channel function is a biophysical process that is central to biological life at many levels. And with over 500 channel-forming subunits known today in humans, this large class of proteins is also increasingly recognised as important drug targets, as inherited or acquired ion channel dysfunction are known causes of disease.


Assuntos
Ativação do Canal Iônico , Canais Iônicos/metabolismo , Animais , Humanos , Canais Iônicos/efeitos dos fármacos , Canais Iônicos/genética , Transporte de Íons , Processamento de Proteína Pós-Traducional , Transdução de Sinais
13.
Free Radic Biol Med ; 71: 49-60, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24657741

RESUMO

Lysophosphatidic acid (LPA) is a growth factor for many cells including prostate and ovarian cancer-derived cell lines. LPA stimulates H2O2 production which is required for growth. However, there are significant gaps in our understanding of the spatial and temporal regulation of H2O2-dependent signaling and the way in which signals are transmitted following receptor activation. Herein, we describe the use of two reagents, DCP-Bio1 and DCP-Rho1, to evaluate the localization of active protein oxidation after LPA stimulation by detection of nascent protein sulfenic acids. We found that LPA stimulation causes internalization of LPA receptors into early endosomes that contain NADPH oxidase components and are sites of H2O2 generation. DCP-Rho1 allowed visualization of sulfenic acid formation, indicative of active protein oxidation, which was stimulated by LPA and decreased by an LPA receptor antagonist. Protein oxidation sites colocalized with LPAR1 and the endosomal marker EEA1. Concurrent with the generation of these redox signaling-active endosomes (redoxosomes) is the H2O2- and NADPH oxidase-dependent oxidation of Akt2 and PTP1B detected using DCP-Bio1. These new approaches therefore enable detection of active, H2O2-dependent protein oxidation linked to cell signaling processes. DCP-Rho1 may be a particularly useful protein oxidation imaging agent enabling spatial resolution due to the transient nature of the sulfenic acid intermediate it detects.


Assuntos
Cisteína/análogos & derivados , Regulação da Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Lisofosfolipídeos/farmacologia , Benzamidas/química , Linhagem Celular Tumoral , Cisteína/análise , Cisteína/biossíntese , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Feminino , Humanos , Lisofosfolipídeos/metabolismo , Masculino , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Oxirredução , Fenilpropionatos/química , Transporte Proteico , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo , Transdução de Sinais , Ácidos Sulfênicos/análise , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA