Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bio Protoc ; 11(17): e4146, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34604451

RESUMO

Cytoduction, and a related technique referred to as plasmiduction, have facilitated substantial advancements in the field of yeast prion biology by providing a streamlined method of transferring prions from one yeast strain to another. Prions are cytoplasmic elements consisting of aggregated misfolded proteins, and as such, they exhibit non-Mendelian patterns of inheritance. While prion transfer through mating and sporulation, or through protein transformation, is possible, these approaches yield non-isogenic strains or are technically complex, respectively. Cytoduction is a mating-based technique that takes advantage of a kar1 mutation with impaired nuclear fusion (karyogamy). It is a straightforward method for introducing a prion to any yeast strain (referred to as the recipient) by mating it with a donor strain containing the prion of interest. The only absolute requirement is that one of these two strains (donor or recipient) must carry the kar1-1 mutation to limit nuclear fusion. The resulting cytoductant contains the original nucleus of the recipient strain, but a cytoplasm reflecting a mix of all elements from the donor and the recipient. Modifications to the basic cytoduction strategy provide several options for successful cytoduction, including when working with slow growing or respiratory deficient strains. A significant advantage of the plasmiduction protocol presented is the ability to transfer a plasmid encoding a fluorescently tagged version of the prion protein, which allows for the direct verification of the prion state through visual protein aggregates. Graphic abstract: Transfer of Yeast Cytoplasmic Elements such as Prions using Cytoduction.

2.
Methods Mol Biol ; 1779: 313-339, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29886541

RESUMO

We detail some of the genetic, biochemical, and physical methods useful in studying amyloids in yeast, particularly the yeast prions. These methods include cytoduction (cytoplasmic mixing), infection of cells with prion amyloids, use of green fluorescent protein fusions with amyloid-forming proteins for cytology, protein purification and amyloid formation, and electron microscopy of filaments.


Assuntos
Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia Eletrônica de Transmissão , Mutação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Genetics ; 198(2): 605-16, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25081567

RESUMO

Sup35p of Saccharomyces cerevisiae can form the [PSI+] prion, an infectious amyloid in which the protein is largely inactive. The part of Sup35p that forms the amyloid is the region normally involved in control of mRNA turnover. The formation of [PSI+] by Sup35p's from other yeasts has been interpreted to imply that the prion-forming ability of Sup35p is conserved in evolution, and thus of survival/fitness/evolutionary value to these organisms. We surveyed a larger number of yeast and fungal species by the same criteria as used previously and find that the Sup35p from many species cannot form prions. [PSI+] could be formed by the Sup35p from Candida albicans, Candida maltosa, Debaromyces hansenii, and Kluyveromyces lactis, but orders of magnitude less often than the S. cerevisiae Sup35p converts to the prion form. The Sup35s from Schizosaccharomyces pombe and Ashbya gossypii clearly do not form [PSI+]. We were also unable to detect [PSI+] formation by the Sup35ps from Aspergillus nidulans, Aspergillus fumigatus, Magnaporthe grisea, Ustilago maydis, or Cryptococcus neoformans. Each of two C. albicans SUP35 alleles can form [PSI+], but transmission from one to the other is partially blocked. These results suggest that the prion-forming ability of Sup35p is not a conserved trait, but is an occasional deleterious side effect of a protein domain conserved for another function.


Assuntos
Proteínas Fúngicas/química , Fatores de Terminação de Peptídeos/química , Príons/química , Proteínas de Saccharomyces cerevisiae/química , Amiloide/química , Filogenia , Agregados Proteicos , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA