Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38683453

RESUMO

Runt domain transcription factor 3 (RUNX3) suppresses many different cancer types and is disabled by mutations, epigenetic repression, or cytoplasmic mislocalization. In this study, we investigated whether oxidative stress is associated with RUNX3 accumulation from the nucleus to the cytoplasm in terms of histone modification. Oxidative stress elevated histone deacetylase (HDAC) level and lowered that of histone acetyltransferase. In addition, oxidative stress decreased the expression of mixed lineage leukemia (MLL), a histone methyltransferase, but increased the expression of euchromatic histone-lysine N-methyltransferase 2 (EHMT2/G9a), which is also a histone methyltransferase. Moreover, oxidative stress-induced RUNX3 phosphorylation, Src activation, and Jun activation domain-binding protein 1 (JAB1) expression were inhibited by knockdown of HDAC and G9a, restoring the nuclear localization of RUNX3 under oxidative stress. Cytoplasmic RUNX3 localization was followed by oxidative stress-induced histone modification, activated Src along with RUNX3 phosphorylation, and induction of JAB1, resulting in RUNX3 inactivation.

2.
Mol Cancer ; 22(1): 179, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932766

RESUMO

BACKGROUND: Noncoding RNAs such as circular RNAs (circRNAs) are abundant in the human body and influence the occurrence and development of various diseases. Non-small cell lung cancer (NSCLC) is one of the most common malignant cancers. Information on the functions and mechanism of circRNAs in lung cancer is limited; thus, the topic needs more exploration. The purpose of this study was to identify aberrantly expressed circRNAs in lung cancer, unravel their roles in NSCLC progression, and provide new targets for lung cancer diagnosis and therapy. METHODS: High-throughput sequencing was used to analyze differential circRNA expression in patients with lung cancer. qRT‒PCR was used to determine the level of circHERC1 in lung cancer tissues and plasma samples. Gain- and loss-of-function experiments were implemented to observe the impacts of circHERC1 on the growth, invasion, and metastasis of lung cancer cells in vitro and in vivo. Mechanistically, dual luciferase reporter assays, fluorescence in situ hybridization (FISH), RNA immunoprecipitation (RIP) and RNA pull-down experiments were performed to confirm the underlying mechanisms of circHERC1. Nucleocytoplasmic localization of FOXO1 was determined by nucleocytoplasmic isolation and immunofluorescence. The interaction of circHERC1 with FOXO1 was verified by RNA pull-down, RNA immunoprecipitation (RIP) and western blot assays. The proliferation and migration of circHERC1 in vivo were verified by subcutaneous and tail vein injection in nude mice. RESULTS: CircHERC1 was significantly upregulated in lung cancer tissues and cells, ectopic expression of circHERC1 strikingly facilitated the proliferation, invasion and metastasis, and inhibited the apoptosis of lung cancer cells in vitro and in vivo. However, knockdown of circHERC1 exerted the opposite effects. CircHERC1 was mainly distributed in the cytoplasm. Further mechanistic research indicated that circHERC1 acted as a competing endogenous RNA of miR-142-3p to relieve the repressive effect of miR-142-3p on its target HMGB1, activating the MAPK/ERK and NF-κB pathways and promoting cell migration and invasion. More importantly, we found that circHERC1 could bind FOXO1 and sequester it in the cytoplasm, adjusting the feedback AKT pathway. The accumulation of FOXO1 in the cytosol and nuclear exclusion promoted cell proliferation and inhibited apoptosis. CircHERC1 is a new circRNA that promotes tumor function in NSCLC and may serve as a potential prognostic biomarker and therapeutic target for NSCLC. CONCLUSIONS: CircHERC1 is a new circRNA that promotes tumor function in NSCLC and may serve as a potential diagnosis biomarker and therapeutic target for NSCLC. Our findings indicate that circHERC1 facilitates the invasion and metastasis of NSCLC cells by regulating the miR-142-3p/HMGB1 axis and activating the MAPK/ERK and NF-κB pathways. In addition, circHERC1 can promote cell proliferation and inhibit apoptosis by sequestering FOXO1 in the cytoplasm to regulate AKT activity and BIM transcription.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proteína Forkhead Box O1 , Proteína HMGB1 , Neoplasias Pulmonares , MicroRNAs , RNA Circular , Animais , Humanos , Camundongos , Biomarcadores , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Citoplasma/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteína HMGB1/metabolismo , Hibridização in Situ Fluorescente , Neoplasias Pulmonares/genética , Camundongos Nus , MicroRNAs/genética , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Circular/genética , Proteína Forkhead Box O1/metabolismo , Ubiquitina-Proteína Ligases/genética
3.
Biochem Biophys Res Commun ; 649: 16-24, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36739695

RESUMO

Bone morphogenetic protein 2 (BMP2)-inducible kinase (BMP2K) is induced by the cytokine BMP2, which is also implicated in the production of bone differentiation. In addition to regulating bone differentiation, BMP2K is implicated in a variety of cancers. Therefore, understanding the variables that determine where in the cell this kinase functions may help in understanding malignancies linked to BMP2K. However, the mechanisms regulating the subcellular localization of BMP2K are mainly unknown. By liquid-liquid phase separation (LLPS), BMP2K forms droplets in the cytoplasm, but how the droplets are regulated remains unclear. The reason why BMP2K localizes to the cytoplasm irrespective of having a nuclear localization signal (NLS) is also unknown. Here we show the element that controls BMP2K's LLPS and cytoplasmic localization. A glutamine-rich area is necessary for BMP2K phase separation, and droplet formation is controlled by hyperosmolarity. Cytoplasmic localization of BMP2K is managed by inhibition of NLS function through phosphorylation of Ser-1010 and by a newly found cytoplasmic localization region that antagonizes the NLS. These results will provide an important biochemical foundation for the advancement of BMP2K-related cell biology, structural biology, and pathophysiology.


Assuntos
Proteína Morfogenética Óssea 2 , Sinais de Localização Nuclear , Transporte Ativo do Núcleo Celular , Proteína Morfogenética Óssea 2/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Sinais de Localização Nuclear/metabolismo , Fosforilação , Espaço Intracelular/metabolismo
4.
Cell Physiol Biochem ; 55(2): 141-159, 2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33770425

RESUMO

BACKGROUND/AIMS: Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that binds to the antioxidant response element(s) (ARE) in target gene promoters, enabling oxidatively stressed cells to respond in order to restore redox homeostasis. Post-translational modifications (PTMs) that mediate activation of Nrf2, in the cytosol and its release from Keap1, have been extensively studied but PTMs that impact its biology after activation are beginning to emerge. In this regard, PTMs like acetylation, phosphorylation, ubiquitination and sumoylation contribute towards the Nrf2 subcellular localization, and its transactivation function. We previously demonstrated that Nrf2 traffics to the promyelocytic leukemia-nuclear bodies (PML-NB), where it is a target for modification by small ubiquitin-like modifier (SUMO) proteins (sumoylation), but the site(s) for SUMO conjugation have not been determined. In this study, we aim to identify SUMO-2 conjugation site(s) and explore the impact, sumoylation of the site(s) have on Nrf2 stability, nuclear localization and transcriptional activation of its target gene expression upon oxidative stress. METHODS: The putative SUMO-binding sites in Nrf2 for human isoform1 (NP_006155.2) and mouse homolog (NP_035032.1) were identified using a computer-based SUMO-predictive software (SUMOplot™). Site-directed mutagenesis, immunoblot analysis, and ARE-mediated reporter gene assays were used to assess the impact of sumoylation on these site(s) in vitro. Effect of mutation of these sumoylation sites of Nrf2 on expression of Heme Oxygenase1 (HO-1) was determined in HEK293T cell. RESULTS: Eight putative sumoylation sites were identified by SUMOplot™ analysis. Out of the eight predicted sites only one 532LKDE535 of human (h) and its homologous 524LKDE527 of mouse (m) Nrf2, exactly matches the SUMO-binding consensus motif. The other high probability SUMO-acceptor site identified was residue K110, in the motifs 109PKSD112 and 109PKQD112 of human and mouse Nrf2, respectively. Mutational analysis of putative sumoylation sites (human (h)/mouse (m)K110, hK533 and mK525) showed that these residues are needed for SUMO-2 conjugation, nuclear localization and ARE driven transcription of reporter genes and the endogenous HO-1 expression by Nrf2. These residues also stabilized Nrf2, as evident from shorter half-lives of the mutant protein compared to wild-type Nrf2. CONCLUSION: Our findings indicate that SUMO-2mediated sumoylation of K110 and K533 in human Nrf2 regulates in part its transcriptional activity by enhancing its stabilization and nuclear localization.


Assuntos
Fator 2 Relacionado a NF-E2/metabolismo , Transporte Ativo do Núcleo Celular/genética , Transporte Ativo do Núcleo Celular/fisiologia , Sítios de Ligação , Imunofluorescência , Células HEK293 , Humanos , Fator 2 Relacionado a NF-E2/genética , Estabilidade Proteica , Sumoilação
5.
Mol Carcinog ; 58(9): 1631-1639, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31062427

RESUMO

Aberrant subcellular localization of signaling proteins can provide cancer cells with advantages such as resistance to apoptotic cell death, increased invasiveness and more rapid proliferation. Nuclear to cytoplasmic shifts in tumor-promoting proteins can lead to worse patient outcomes, providing opportunities to target cancer-specific processes. Herein, we review the significance of dysregulated protein localization with a focus on skin cancer. Altered localization of signaling proteins controlling cell cycle progression or cell death is a common feature of cancer. In some instances, aberrant subcellular localization results in an acquired prosurvival function. Taking advantage of this knowledge reveals novel targets useful in the development of cancer therapeutics.


Assuntos
Transdução de Sinais/fisiologia , Neoplasias Cutâneas/metabolismo , Animais , Apoptose/fisiologia , Ciclo Celular/fisiologia , Núcleo Celular/metabolismo , Proliferação de Células/fisiologia , Citoplasma/metabolismo , Humanos
6.
Mol Cells ; 42(2): 135-142, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30622231

RESUMO

OCT4, also known as POU5F1 (POU domain class 5 transcription factor 1), is a transcription factor that acts as a master regulator of pluripotency in embryonic stem cells and is one of the reprogramming factors required for generating induced pluripotent stem cells. The human OCT4 encodes three isoforms, OCT4A, OCT4B, and OCT4B1, which are generated by alternative splicing. Currently, the functions and expression patterns of OCT4B remain largely unknown in malignancies, especially in human glioblastomas. Here, we demonstrated the function of OCT4B in human glioblastomas. Among the isoform of OCT4B, OCT4B-190 (OCT4B19kDa) was highly expressed in human glioblastoma stem cells and glioblastoma cells and was mainly detected in the cytoplasm rather than the nucleus. Overexpression of OCT4B19kDa promoted colony formation of glioblastoma cells when grown in soft agar culture conditions. Clinical data analysis revealed that patients with gliomas that expressed OCT4B at high levels had a poorer prognosis than patients with gliomas that expressed OCT4B at low levels. Thus, OCT4B19kDa may play a crucial role in regulating cancer cell survival and adaption in a rigid environment.


Assuntos
Glioblastoma/metabolismo , Glioblastoma/patologia , Fator 3 de Transcrição de Octâmero/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Humanos , Fator 3 de Transcrição de Octâmero/química , Fator 3 de Transcrição de Octâmero/genética , Prognóstico , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estresse Fisiológico , Ensaio Tumoral de Célula-Tronco
7.
Brain Res ; 1708: 207-219, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30578769

RESUMO

piRNAs, small non-coding RNAs, were considered to be restricted to germline cells. Although they have recently been detected in somatic cells including neurons, it remains unclear how piRNA biogenesis is involved in neuronal diseases. We herein examined the possible roles of Aubergine (Aub), a Piwi-family protein (PIWI) responsible for piRNA biogenesis, in the neuronal disorders, using the Cabeza (Caz) knockdown Drosophila. Caz is a Drosophila homologue of FUS, which is one of the genes causing amyotrophic lateral sclerosis (ALS). Aub overexpression enhanced the mobility defects accompanied by anatomical defects in motoneurons at neuromuscular junctions induced by the neuron-specific knockdown of Caz. In order to elucidate the underlying mechanisms, we examined pre-piRNA and mature-size piRNA levels under these conditions. qRT-PCR and RNA-seq analyses revealed that the Caz knockdown increased pre-piRNA levels, but reduced mature-size piRNA levels in the central nervous system (CNS), suggesting a role in the pre-piRNAs production. Aub overexpression did not increase mature-size piRNA levels. These results suggest that the accumulated pre-piRNAs are abnormal abortive pre-piRNAs that cannot be further processed by slicers, including Aub. We also demonstrated a relationship between Caz and pre-piRNAs in the CNS by RNA immunoprecipitation. Aub overexpression induced the abnormal cytoplasmic localization of Caz. Based on these results, we propose a model in which Caz knockdown-induced abnormal pre-piRNAs associate with Caz, then translocate and accumulate in the cytoplasm, a process that may be mediated by Aub. The novel roles for Caz and Aub demonstrated herein using the Caz-knockdown fly will contribute to a deeper understanding of the pathogenesis of ALS.


Assuntos
Proteínas de Drosophila/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , RNA Interferente Pequeno/biossíntese , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Drosophila melanogaster/metabolismo , Masculino , Neurônios Motores/metabolismo , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Processamento Pós-Transcricional do RNA , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/metabolismo , Fator de Transcrição TFIID/metabolismo
8.
Biomark Res ; 6: 30, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30450209

RESUMO

BACKGROUND: In most women with ovarian cancer, the diagnosis occurs after dissemination of tumor cells beyond ovaries. Several molecular perturbations occur ahead of tumor initiation including loss of lamin A/C. Our hypothesis was that the loss of nuclear structural proteins A type lamins (lamin A/C) transcribed from LMNA gene and substrate for active caspase-6 maybe one of the molecular perturbations. Our objective is to investigate the association between the loss of lamin A/C and the overexpression of caspase-6 in ovarian cancer cells. METHOD: Western blotting and immunofluorescence were used to analyze the expression of lamin A/C and active caspase-6 in normal human ovarian surface epithelial (HOSE) cells, immortalized human ovarian surface epithelial cells and a set of seven ovarian cancer cell lines (including OVCAR3, OVCAR5, and A2780). The activity of caspase-6 was measured by densitometry, fluorescence and flow cytometry. Immunohistochemistry was used to evaluate the expression of caspase-6 in set of ovarian cancer tissues previously reported to have lost lamin A/C. RESULTS: The results showed that HOSE cells expressed lamin A/C and no or low level of active caspase-6 while cancer cells highly expressed caspase-6 and no or low level of lamin A/C. The inhibition of caspase-6 activity in OVCAR3 cells increased lamin A but has no effect on lamin C; active caspase-6 was localized in the cytoplasm associated with the loss of lamin A. CONCLUSION: Overexpression and cytoplasmic localization of caspase-6 in ovarian cancer cells may be involved in lamin A degradation and deficiency observed in some ovarian cancer cells.

9.
J Biol Chem ; 291(41): 21761-21770, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27551043

RESUMO

The transcriptional co-activator Yki (Yorkie), a member of the Hippo pathway, regulates cell proliferation or apoptosis, depending on its nuclear or cytoplasmic location. However, the upstream factors regulating the subcellular localization of Yki are unclear. We found that the steroid hormone 20-hydroxyecdysone (20E) induces phosphorylation of Yki, causing it to remain in the cytoplasm, where it promotes apoptosis in the midgut of the lepidopteran insect Helicoverpa armigera Yki is expressed in various tissues, with an increase in the epidermis and midgut during early metamorphic molting. Yki is localized mainly in the nucleus of feeding larval midgut cells but is mainly localized in the cytoplasm of metamorphic molting larval midgut cells. The knockdown of Yki in the feeding larvae promotes larval-pupal transition, midgut programmed cell death, and repressed IAP1 (inhibitor of apoptosis 1) expression. Knockdown of Yki in the epidermal cell line (HaEpi) induced increased activation of Caspase3/7. Overexpressed Yki in HaEpi cells was mainly localized in the nucleus and induced cell proliferation. 20E promotes the cytoplasmic localization of Yki, reducing the expression of the IAP1, resulting in apoptosis. 20E promotes cytoplasmic retention of Yki by increasing Yki phosphorylation levels and promoting the interaction between Yki and the adaptor protein 14-3-3-ϵ. This regulation of Yki suppresses cell proliferation and induces cell apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citoplasma/metabolismo , Ecdisterona/farmacologia , Proteínas de Insetos/metabolismo , Mariposas/metabolismo , Transativadores/metabolismo , Animais , Citoplasma/genética , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas de Insetos/genética , Mucosa Intestinal/metabolismo , Intestinos/citologia , Larva/genética , Larva/metabolismo , Muda/efeitos dos fármacos , Mariposas/genética , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Transativadores/genética
10.
Front Plant Sci ; 6: 702, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26442018

RESUMO

The cactus OpsDHN1 dehydrin belongs to a large family of disordered and highly hydrophilic proteins known as Late Embryogenesis Abundant (LEA) proteins, which accumulate during the late stages of embryogenesis and in response to abiotic stresses. Herein, we present the in vivo OpsDHN1 subcellular localization by N-terminal GFP translational fusion; our results revealed a cytoplasmic and nuclear localization of the GFP::OpsDHN1 protein in Nicotiana benthamiana epidermal cells. In addition, dimer assembly of OpsDHN1 in planta using a Bimolecular Fluorescence Complementation (BiFC) approach was demonstrated. In order to understand the in vivo role of the histidine-rich motif, the OpsDHN1-ΔHis version was produced and assayed for its subcellular localization and dimer capability by GFP fusion and BiFC assays, respectively. We found that deletion of the OpsDHN1 histidine-rich motif restricted its localization to cytoplasm, but did not affect dimer formation. In addition, the deletion of the S-segment in the OpsDHN1 protein affected its nuclear localization. Our data suggest that the deletion of histidine-rich motif and S-segment show similar effects, preventing OpsDHN1 from getting into the nucleus. Based on these results, the histidine-rich motif is proposed as a targeting element for OpsDHN1 nuclear localization.

11.
Fish Shellfish Immunol ; 39(2): 168-77, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24825429

RESUMO

Human viperin is known as an interferon (IFN)-inducible antiviral protein and localizes to endoplasmic reticulum (ER) via its N-terminal amphipathic α-helix. Little is known about subcellular localization of fish viperin. Herein, we characterized subcellular localization of a fish viperin from crucian carp Carassius auratus. Crucian carp viperin is nearly identical to the other viperin proteins in sequence, with the exception of the first N-terminal 70 amino acids that are defined as N-terminal variable domain including an amphipathic α-helix. In addition to N-terminal variable domain, crucian carp viperin protein harbors a conserved middle radical SAM domain and a conserved C-terminal domain. Subcellular localization analyses indicate that crucian carp viperin is a cytoplasmic protein associated with ER. Sequence analyses reveal that amino acids 1-74 forms an amphipathic α-helix domain that drives ER-localization of crucian carp viperin. In addition, Coimmunoprecipitation assays show that crucian carp viperin proteins are able to self-associate. These results together indicate that similar to mammalian homologs, fish viperins likely play important roles in IFN response.


Assuntos
Carpas/genética , Proteínas de Peixes/genética , Animais , Sequência de Bases , Sequência Conservada/genética , Retículo Endoplasmático/metabolismo , Imunoprecipitação , Dados de Sequência Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Estrutura Terciária de Proteína , Proteínas/genética , Análise de Sequência de DNA , Especificidade da Espécie
12.
Proc Natl Acad Sci U S A ; 110(29): E2741-7, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23818636

RESUMO

We developed a robust computational statistical framework to identify RNA editing events from RNA-Seq data with high specificity. Our approach handles several outstanding challenges of genome-wide editing analyses, including the effect of editing on read alignment and the utilization of redundant reads. By applying this framework, we characterized the nuclear and cytosolic editomes of seven human cell lines. We found that 93.8-99.2% of the editing events are A-to-G (or A-to-I). Nuclear transcriptomes contain many more editing events than cytosolic transcriptomes. Most of the sites exhibiting nucleus-specific editing are in introns or novel intergenic transcripts that are preferentially localized in the nucleus regardless of their editing status, arguing against the role of editing in nuclear retention. In contrast, many sites that exhibit cytosol-specific editing show comparable nuclear and cytosolic expression, suggesting the differential subcellular compartmentalization of the edited and the unedited alleles. We found that RNA editing is globally associated with the modification of microRNA regulation in 3' untranslated regions, whereas editing events in coding regions are rare and tend to be synonymous. Interestingly, A-to-G editing at derived alleles in the human lineage tends to result in reversion back to the ancestral forms at the RNA level. This suggests that editing can mediate RNA memory on evolutionary time-scales to maintain ancestral genetic information.


Assuntos
Algoritmos , Biologia Computacional/métodos , Evolução Molecular , MicroRNAs/genética , Modelos Genéticos , Edição de RNA/genética , Sequência de Bases/genética , Linhagem Celular , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Dados de Sequência Molecular
13.
FEBS J ; 280(14): 3451-66, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23680022

RESUMO

Sirtuins belong to a class of NAD-dependent deacetylases, and include seven distinct isoforms, of which SIRT7 is the least studied member. In the present study, the subcellular expression of SIRT7 in primary fibroblasts undergoing senescence was evaluated by immunocytochemistry and immunoblot assay. Expression of nucleolar SIRT7 in young fibroblast was very prominent, decreased in pre-senescent cells, and became undetectable in the senescent cells. Interestingly, we observed previously unreported staining for cytoplasmic SIRT7 in fibroblasts, and report the existence of a steady-state level of SIRT7 in cytoplasm. Selective localization of the high-molecular-mass (47.5 kDa) SIRT7 in the cytoplasmic fraction and the low-molecular-mass (45 kDa) SIRT7 in the nuclear fraction was observed in the immunoblot analysis of various cell types. The specificity of the N-terminal antibodies for detection of cytoplasmic SIRT7 was confirmed by RNAi and peptide competition assays. The two forms of SIRT7 showed reciprocal expression following serum starvation, nocodazole and okadaic acid treatments, and also during senescence. Using a combination of deletion constructs and site-directed mutagenesis, we defined the role of two distinct SIRT7 sequences in the N-terminal region (amino acids 61-76, LQGRSRRREGLKRRQE) and the C-terminal region (amino acids 392-400, KRTKRKKVT) for nuclear and nucleolar import, respectively. In conclusion, we report for the first time the existence of a cytoplasmic pool of SIRT7 in addition to its well-known nucleolar form, identify distinct localization signals for its nuclear/nucleolar targeting, and describe an association between loss of nucleolar SIRT7 and replicative senescence.


Assuntos
Sinais de Localização Nuclear , Sirtuínas/metabolismo , Sequência de Aminoácidos , Fracionamento Celular , Nucléolo Celular/metabolismo , Células Cultivadas , Senescência Celular , Citoplasma/metabolismo , Fibroblastos/metabolismo , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Dados de Sequência Molecular , Mapeamento de Peptídeos , Cultura Primária de Células , Transporte Proteico , RNA Interferente Pequeno/genética , Sirtuínas/química , Sirtuínas/genética
14.
J Biol Chem ; 288(24): 17253-60, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23640892

RESUMO

APOBEC3A (A3A) is a myeloid lineage-specific DNA cytosine deaminase with a role in innate immunity to foreign DNA. Previous studies have shown that heterologously expressed A3A is genotoxic, suggesting that monocytes may have a mechanism to regulate this enzyme. Indeed, we observed no significant cytotoxicity when interferon was used to induce the expression of endogenous A3A in CD14(+)-enriched primary cells or the monocytic cell line THP-1. In contrast, doxycycline-induced A3A in HEK293 cells caused major cytotoxicity at protein levels lower than those observed when CD14(+) cells were stimulated with interferon. Immunofluorescent microscopy of interferon-stimulated CD14(+) and THP-1 cells revealed that endogenous A3A is cytoplasmic, in stark contrast to stably or transiently transfected A3A, which has a cell-wide localization. A3A constructs engineered to be cytoplasmic are also nontoxic in HEK293 cells. These data combine to suggest that monocytic cells use a cytoplasmic retention mechanism to control A3A and avert genotoxicity during innate immune responses.


Assuntos
Citidina Desaminase/fisiologia , Citoplasma/enzimologia , Dano ao DNA , Proteínas/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Sobrevivência Celular , Expressão Gênica , Células HEK293 , Histonas/metabolismo , Humanos , Imunidade Inata , Receptores de Lipopolissacarídeos/metabolismo , Monócitos/enzimologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
15.
Cell Cycle ; 12(2): 278-88, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23255126

RESUMO

The p53 gene has been implicated in many cancers due to its frequent mutations as well as mutations in other genes whose proteins directly affect p53's functions. In addition, high expression of p53 [wild-type (WT) or mutant] has been found in the cytoplasm of many tumor cells, and studies have associated these observations with more aggressive tumors and poor prognosis. Cytoplasmic mis-localization of p53 subsequently reduced its transcriptional activity and this loss-of-function (LOF) was used to explain the lack of response to chemotherapeutic agents. However, this hypothesis seemed inadequate in explaining the apparent selection for tumor cells with high levels of p53 protein, a phenomenon that suggests a gain-of-function (GOF) of these mis-localized p53 proteins. In this study, we explored whether the direct involvement of p53 in the apoptotic response is via regulation of the caspase pathway in the cytoplasm. We demonstrate that p53, when present at high levels in the cytoplasm, has an inhibitory effect on caspase-9. Concurrently, knockdown of endogenous p53 caused an increase in the activity of caspase-9. p53 was found to interact with the p35 fragment of caspase-9, and this interaction inhibits the caspase-9 activity. In a p53-null background, the high-level expression of both exogenous WT and mutant p53 increased the resistance of these cells to cisplatin, and the data showed a correlation between high p53 expression and caspase-9 inhibition. These results suggest the inhibition of caspase-9 as a potential mechanism in evading apoptosis in tumors with high-level p53 expression that is cytoplasmically localized.


Assuntos
Apoptose/genética , Caspase 9/metabolismo , Cisplatino , Resistência a Medicamentos/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Inibidores de Caspase/metabolismo , Inibidores de Caspase/farmacologia , Linhagem Celular Tumoral , Citoplasma/metabolismo , Humanos , Immunoblotting , Mutação/genética , Proteína Supressora de Tumor p53/farmacologia
16.
Wilehm Roux Arch Dev Biol ; 191(6): 371-377, 1982 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28305261

RESUMO

In the first polar lobe ofBithynia eggs a special plasm, the vegetal body, is present. It consists of a cupshaped aggregate of small vesicles. Centrifugation of eggs prior to first cleavage may result in displacement of the vegetal body. In about 50% of thecentriguged eggs the vegetal body is found outside the polar lobe, in one of the blastomeres. Removal of the polar lobe from non-centrifuged eggs always leads to severe defects in development. When the lobe is removed from centrifuged eggs, however, about 50% of the eggs develop into normal embryos. It is concluded that the presence of the vegetal body in a blastomere suffices to ensure normal development and, hence, that the polar lobe-specific morphogenetic determinants are contained within the vegetal body.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA