Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 57(4): 752-771, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599169

RESUMO

Damage-associated molecular patterns (DAMPs) are endogenous danger molecules produced in cellular damage or stress, and they can activate the innate immune system. DAMPs contain multiple types of molecules, including nucleic acids, proteins, ions, glycans, and metabolites. Although these endogenous molecules do not trigger immune response under steady-state condition, they may undergo changes in distribution, physical or chemical property, or concentration upon cellular damage or stress, and then they become DAMPs that can be sensed by innate immune receptors to induce inflammatory response. Thus, DAMPs play an important role in inflammation and inflammatory diseases. In this review, we summarize the conversion of homeostatic molecules into DAMPs; the diverse nature and classification, cellular origin, and sensing of DAMPs; and their role in inflammation and related diseases. Furthermore, we discuss the clinical strategies to treat DAMP-associated diseases via targeting DAMP-sensing receptors.


Assuntos
Inflamação , Ácidos Nucleicos , Humanos , Imunidade Inata , Receptores Imunológicos , Alarminas
2.
Immunity ; 54(6): 1123-1136.e8, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34107271

RESUMO

Neutrophils migrate rapidly to damaged tissue and play critical roles in host defense and tissue homeostasis. Here we investigated the mechanisms whereby neutrophils participate in tissue repair. In an intestinal epithelia injury model, neutrophil depletion exacerbated colitis and associated with reduced interleukin (IL)-22 and limited activation of type 3 innate lymphoid cells (ILC3s). Co-culture with neutrophils activated ILC3s in a manner dependent on neutrophil apoptosis. Metabolomic analyses revealed that lysophosphatidylserine (LysoPS) from apoptotic neutrophils directly stimulated ILC3 activation. ILC3-specific deletion of Gpr34, encoding the LysoPS receptor GPR34, or inhibition of downstream PI3K-AKT or ERK suppressed IL-22 production in response to apoptotic neutrophils. Gpr34-/- mice exhibited compromised ILC3 activation and tissue repair during colon injury, and neutrophil depletion abrogated these defects. GPR34 deficiency in ILC3s limited IL-22 production and tissue repair in vivo in settings of colon and skin injury. Thus, GPR34 is an ILC3-expressed damage-sensing receptor that triggers tissue repair upon recognition of dying neutrophils.


Assuntos
Apoptose/imunologia , Imunidade Inata/imunologia , Linfócitos/imunologia , Lisofosfolipídeos/imunologia , Neutrófilos/imunologia , Receptores de Lisofosfolipídeos/imunologia , Animais , Células Cultivadas , Colite/imunologia , Colo/imunologia , Homeostase/imunologia , Humanos , Interleucinas/imunologia , Mucosa Intestinal/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatidilinositol 3-Quinases/imunologia , Interleucina 22
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA