Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Adv Sci (Weinh) ; 11(35): e2405158, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39021327

RESUMO

Radiated tumor cell-derived extracellular vesicles (RT-EVs) encapsulate abundant DNA fragments from irradiated tumor cells, in addition to acting as integrators of multiple tumor antigens. Accumulating evidence indicates these DNA fragments from damaged cells are involved in downstream immune responses, but most of them are degraded in cells before incorporation into derived RT-EVs, thus the low abundance of DNA fragments limits immune responses of RT-EVs. Here, this study found that different radiations affected fates of DNA fragments in RT-EVs. Boron neutron capture therapy (BNCT) induced DNA accumulation in RT-EVs (BEVs) by causing more DNA breaks and DNA oxidation resisting nuclease degradation. This is attributed to the high-linear energy transfer (LET) properties of alpha particles from the neutron capture reaction of 10B. When being internalized by dendritic cells (DCs), BEVs activated the DNA sensing pathway, resulting in functional enhancements including antigen presentation, migration capacity, and cytokine secretion. After vaccination of the BEVs-educated DCs (BEV@BMDCs), the effector T cells significantly expanded and infiltrated into tumors, suggesting robust anti-tumor immune activation. BEV@BMDCs not only effectively inhibited the primary tumor growth and metastasis formation but also elicited long-term immune memory. In conclusion, a successful DC vaccine is provided as a promising candidate for tumor vaccine.


Assuntos
Terapia por Captura de Nêutron de Boro , Vacinas Anticâncer , Células Dendríticas , Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Animais , Camundongos , Vacinas Anticâncer/imunologia , Terapia por Captura de Nêutron de Boro/métodos , Modelos Animais de Doenças , DNA/imunologia , DNA/metabolismo , Camundongos Endogâmicos C57BL , Humanos , Linhagem Celular Tumoral , Feminino
2.
Oncoimmunology ; 13(1): 2338951, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590800

RESUMO

Recently, we showed that an autologous DC-based vaccine induces an increase in immunosuppressive PD-L1+ tumor-associated macrophages (TAM) both in the tumor and the tumor draining lymph nodes, thereby blunting the efficacy of therapeutic immunization. Only the combination of the DC vaccine with anti-PD-L1 immune checkpoint inhibition, but not the use of antibodies targeting PD-1 alone, was able to set off CD8+ cytotoxic T lymphocyte (CTL)-mediated tumor suppression in mice. In sum, we delineated a PD-L1 checkpoint blockade-based strategy to avoid TAM-induced T cell exhaustion during DC vaccine therapy.


Assuntos
Antígeno B7-H1 , Vacinas , Animais , Camundongos , Linfócitos T Citotóxicos , Linfócitos T CD8-Positivos , Macrófagos
3.
Pathol Res Pract ; 254: 155097, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38277745

RESUMO

Exosomes are nanometric membrane vesicles of late endosomal origin that are released by most, if not all, cell types as a sophisticated means of intercellular communication. They play an essential role in the movement of materials and information between cells, transport a variety of proteins, lipids, RNA, and other vital data, and over time, they become an essential part of the drug delivery system and a marker for the early detection of many diseases. Dendritic cells have generated interest in cancer immunotherapy due to their ability to initiate and modify effective immune responses. Apart from their cytokine release and direct interactions with other cell types, DCs also emit nanovesicles, such as exosomes, that contribute to their overall activity. Numerous studies have demonstrated exosomes to mediate and regulate immune responses against cancers. Dendritic cell-derived exosomes (DCs) have attracted a lot of attention as immunotherapeutic anti-cancer treatments since it was found that they contain functional MHC-peptide complexes along with a variety of other immune-stimulating components that together enable immune cell-dependent tumor rejection. By enhancing tumor and immunosuppressive immune cells or changing a pro-inflammatory milieu to inhibit tumor advancement, exosomes generated from dendritic cells can initiate and support tumor growth. This study reviewed the immunogenicity of dendritic cell-derived exosomes and strategies for expanding their immunogenic potential as novel and effective anti-cancer therapies.


Assuntos
Exossomos , Neoplasias , Humanos , Exossomos/genética , Células Dendríticas , Neoplasias/patologia , Imunidade , Imunoterapia
4.
Front Oncol ; 13: 1274048, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37876967

RESUMO

With the development of immunotherapy, the process of tumor treatment is also moving forward. Polysaccharides are biological response modifiers widely found in plants, animals, fungi, and algae and are mainly composed of monosaccharides covalently linked by glycosidic bonds. For a long time, polysaccharides have been widely used clinically to enhance the body's immunity. However, their mechanisms of action in tumor immunotherapy have not been thoroughly explored. Dendritic cells (DCs) are a heterogeneous population of antigen presenting cells (APCs) that play a crucial role in the regulation and maintenance of the immune response. There is growing evidence that polysaccharides can enhance the essential functions of DCs to intervene the immune response. This paper describes the research progress on the anti-tumor immune effects of natural polysaccharides on DCs. These studies show that polysaccharides can act on pattern recognition receptors (PRRs) on the surface of DCs and activate phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT), mitogen-activated protein kinase (MAPK), nuclear factor-κB (NF-κB), Dectin-1/Syk, and other signalling pathways, thereby promoting the main functions of DCs such as maturation, metabolism, antigen uptake and presentation, and activation of T cells, and then play an anti-tumor role. In addition, the application of polysaccharides as adjuvants for DC vaccines, in combination with adoptive immunotherapy and immune checkpoint inhibitors (ICIs), as well as their co-assembly with nanoparticles (NPs) into nano drug delivery systems is also introduced. These results reveal the biological effects of polysaccharides, provide a new perspective for the anti-tumor immunopharmacological research of natural polysaccharides, and provide helpful information for guiding polysaccharides as complementary medicines in cancer immunotherapy.

5.
Cancer Biother Radiopharm ; 38(7): 450-457, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37699203

RESUMO

Background: Dendritic cells (DCs) are the most important antigen-presenting cells in the body and play a key role in antigen recognition, uptake, processing, and presentation and mediate nonspecific immunity and specific immunity. Purpose: To summarize the main findings that DC vaccines are a new immunotherapy scheme combining the strengths of tumor antigens and DCs that can boost the body's identification and clearance of tumors. Methods: In this review, the authors focus on the biological characteristics of DCs, recent advances in the understanding of antitumor mechanisms, and the classification of DC vaccines. Results: The current progress of DC-based vaccine immunotherapy for common tumors with high morbidity or mortality in China were systematically summarize. Conclusions: The DC vaccines combining the strengths of tumor antigens will provide directions to explore reasonable, safe, and effective combination immunotherapy strategies for tumors in the future.


Assuntos
Antígenos de Neoplasias , Imunoterapia , Humanos , China , Células Dendríticas
6.
Rinsho Ketsueki ; 64(7): 670-677, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-37544729

RESUMO

Adult T-cell leukemia-lymphoma (ATL) is a highly aggressive peripheral T-cell neoplasm caused by human T-cell leukemia virus type 1 (HTLV-1) infection occurring in approximately 5% of patients after prolonged latent period. ATL relapses within a short period despite its transient response to multiagent chemotherapy and the prognosis is extremely poor due to anticancer drug resistance and immunodeficiency. Although novel agents with different mechanisms, such as molecular targeted agents, have improved the prognosis, the number of cured patients remains limited. Hematopoietic stem cell transplantation resulted in long-term remission, whereas its indication is limited due to treatment-related mortality. As most ATL patients are of advanced age, development of a lesser toxic treatment is necessary. Therefore, we developed a novel therapeutic dendritic cell vaccine targeting the HTLV-1 Tax antigen. The safety profile has been confirmed in a pilot and phase I clinical studies, and a promising long-term clinical efficacy has also been obtained. This novel vaccine is a noninvasive, long-lasting therapy for ATL and can potentially be extended to different applications for low-grade ATL and high-risk HTLV-1 carriers.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T do Adulto , Adulto , Humanos , Leucemia-Linfoma de Células T do Adulto/terapia , Leucemia-Linfoma de Células T do Adulto/patologia , Linfócitos T Citotóxicos , Células Dendríticas , Imunoterapia Ativa , Produtos do Gene tax
7.
Int Immunopharmacol ; 123: 110722, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37573687

RESUMO

The dendritic cell (DC) vaccine is a promising cancerimmunotherapy strategy, but its efficacy in treating the solid tumor is limited. To overcome this limitation, an oncolytic adenovirus (OAV-IL-12) was developed to enhance antigen targeting ability of adenovirus-assembled DC vaccine (DCs-CD137L/CAIX) for renal carcinoma treatment. Peritumoral administration of OAV-IL-12 increased the number of tumor-infiltrating DCs and their subsets (CD8+DCs and CD103+DCs). Combining OAV-IL-12 with DCs-CD137L/CAIX significantly inhibited the growth of subcutaneous tumors by inducing potent cytotoxic T lymphocyte (CTL) effect and improving the immune infiltration in tumor lesions. Interestingly, this treatment also reduced tumor growth distal to the OAV-IL-12 injecting side via eliciting a systemic CTL response. Furthermore, OAV-IL-12 potentiated DCs-CD137L/CAIX treatment induced dual CTL responses against both CAIX and adenovirus antigens. The therapeutic benefits of this treatment approach mainly relied on multifunctional CD8+T cell immune responses, as indicated by the depletion assay. Moreover, OAV-IL-12 potentiated DCs-CD137L/CAIX treatment generated a long-lasting protective effect against tumors by inducing memory CD8+T cell immune responses. These results suggest that the effective tumor targeting of the adenovirus-based DC vaccine, boosted by OAV-IL-12, is a promising treatment approach for renal carcinoma and other solid tumors.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Vacinas , Humanos , Linfócitos T Citotóxicos , Adenoviridae/genética , Carcinoma de Células Renais/terapia , Antígenos de Neoplasias , Interleucina-12 , Neoplasias Renais/terapia , Células Dendríticas
8.
J Pharm Anal ; 13(6): 616-624, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37440907

RESUMO

Glioblastoma (GBM) is a lethal cancer with limited therapeutic options. Dendritic cell (DC)-based cancer vaccines provide a promising approach for GBM treatment. Clinical studies suggest that other immunotherapeutic agents may be combined with DC vaccines to further enhance antitumor activity. Here, we report a GBM case with combination immunotherapy consisting of DC vaccines, anti-programmed death-1 (anti-PD-1) and poly I:C as well as the chemotherapeutic agent cyclophosphamide that was integrated with standard chemoradiation therapy, and the patient remained disease-free for 69 months. The patient received DC vaccines loaded with multiple forms of tumor antigens, including mRNA-tumor associated antigens (TAA), mRNA-neoantigens, and hypochlorous acid (HOCl)-oxidized tumor lysates. Furthermore, mRNA-TAAs were modified with a novel TriVac technology that fuses TAAs with a destabilization domain and inserts TAAs into full-length lysosomal associated membrane protein-1 to enhance major histocompatibility complex (MHC) class I and II antigen presentation. The treatment consisted of 42 DC cancer vaccine infusions, 26 anti-PD-1 antibody nivolumab administrations and 126 poly I:C injections for DC infusions. The patient also received 28 doses of cyclophosphamide for depletion of regulatory T cells. No immunotherapy-related adverse events were observed during the treatment. Robust antitumor CD4+ and CD8+ T-cell responses were detected. The patient remains free of disease progression. This is the first case report on the combination of the above three agents to treat glioblastoma patients. Our results suggest that integrated combination immunotherapy is safe and feasible for long-term treatment in this patient. A large-scale trial to validate these findings is warranted.

9.
Neuro Oncol ; 25(10): 1752-1762, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37289203

RESUMO

Glioblastoma is a deadly brain tumor without any significantly successful treatments to date. Tumor antigen-targeted immunotherapy platforms including peptide and dendritic cell (DC) vaccines, have extended survival in hematologic malignancies. The relatively "cold" tumor immune microenvironment and heterogenous nature of glioblastoma have proven to be major limitations to translational application and efficacy of DC vaccines. Furthermore, many DC vaccine trials in glioblastoma are difficult to interpret due to a lack of contemporaneous controls, absence of any control comparison, or inconsistent patient populations. Here we review glioblastoma immunobiology aspects that are relevant to DC vaccines, review the clinical experience with DC vaccines targeting glioblastoma, discuss challenges in clinical trial design, and summarize conclusions and directions for future research for the development of effective DC vaccines for patients.


Assuntos
Neoplasias Encefálicas , Vacinas Anticâncer , Glioblastoma , Glioma , Humanos , Glioblastoma/tratamento farmacológico , Vacinas Anticâncer/uso terapêutico , Células Dendríticas , Glioma/tratamento farmacológico , Neoplasias Encefálicas/patologia , Imunoterapia , Microambiente Tumoral
10.
Mol Ther ; 31(8): 2376-2390, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37312452

RESUMO

Induced pluripotent stem cells (iPSCs) express a broad spectrum of tumor-associated antigens and exert prophylactic effects on various tumors. However, some problems remain, such as potential tumorigenicity, challenges in transport to the lymph nodes and spleen, and limited antitumor effects. Thus, designing a safe and effective iPSC-based tumor vaccine is necessary. We prepared iPSC-derived exosomes and incubated them with DCs (dendritic cells) for pulsing to explore their antitumor effects in murine melanoma models. The antitumor immune response induced by the DC vaccine pulsed with iPSC exosomes (DC + EXO) was assessed in vitro and in vivo. After DC + EXO vaccination, extracted spleen T cells effectively killed a variety of tumor cells (melanoma, lung cancer, breast cancer, and colorectal cancer) in vitro. In addition, DC + EXO vaccination significantly inhibited melanoma growth and lung metastasis in mouse models. Furthermore, DC + EXO vaccination induced long-term T cell responses and prevented melanoma rechallenge. Finally, biocompatibility studies showed that the DC vaccine did not significantly alter the viability of normal cells and mouse viscera. Hence, our research may provide a prospective strategy of a safe and effective iPSC-based tumor vaccine for clinical use.


Assuntos
Vacinas Anticâncer , Exossomos , Células-Tronco Pluripotentes Induzidas , Neoplasias Pulmonares , Melanoma , Camundongos , Animais , Camundongos Endogâmicos C57BL , Melanoma/terapia , Imunidade Celular , Células Dendríticas
11.
Clin Transl Oncol ; 25(10): 2972-2982, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37079211

RESUMO

OBJECTIVE: Great success has been achieved in CAR-T cell immunotherapy in the treatment of hematological tumors. However, it is particularly difficult in solid tumors, because CAR-T is difficult to enter interior and exert long-term stable immune effects. Dendritic cells (DCs) can not only present tumor antigens but also promote the infiltration of T cells. Therefore, CAR-T cells with the help of DC vaccines are a reliable approach to treat solid tumors. METHODS: To test whether DC vaccine could promote CAR-T cell therapy in solid tumors, DC vaccine was co-cultured with MSLN CAR-T cells. The in vitro effects of DC vaccine on CAR-T were assessed by measuring cell proliferation, cell differentiation, and cytokine secretion. Effects of DC vaccine on CAR-T were evaluated using mice with subcutaneous tumors in vivo. The infiltration of CAR-T was analyzed using immunofluorescence. The persistence of CAR-T in mouse blood was analyzed using real-time quantitative PCR. RESULTS: The results showed that DC vaccine significantly enhanced the proliferation potential of MSLN CAR-T cells in vitro. DC vaccines not only promoted the infiltration of CAR-T cells, but also significantly improved the persistence of CAR-T in solid tumors in vivo. CONCLUSION: In conclusion, this study has demonstrated that DC vaccine can promote CAR-T therapy in solid tumors, which provides the possibility of widespread clinical application of CAR-T cells in the future.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Vacinas , Camundongos , Animais , Linfócitos T , Exaustão das Células T , Neoplasias/terapia , Imunoterapia Adotiva/métodos
12.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36675017

RESUMO

Dendritic cells (DC) are powerful cells that play critical roles in anti-tumor immunity, and their use in cancer immunotherapy unlocks hidden capabilities as an effective therapeutic. In order to maximize the full potential of DC, we developed a DC vaccine named CellgramDC-WT1 (CDW). CDW was pulsed with WT1, an antigen commonly expressed in solid tumors, and induced with zoledronate to aid DC maturation. Although our previous study focused on using Rg3 as an inducer of DC maturation, problems with quality control and access led us to choose zoledronate as a better alternative. Furthermore, CDW secreted IL-12 and IFN-γ, which induced the differentiation of naïve T cells to active CD8+ T cells and elicited cytotoxic T lymphocyte (CTL) response against cancer cells with WT1 antigens. By confirming the identity and function of CDW, we believe CDW is an improved DC vaccine and holds promising potential in the field of cancer immunotherapy.


Assuntos
Vacinas Anticâncer , Neoplasias , Vacinas , Humanos , Ácido Zoledrônico/farmacologia , Neoplasias/terapia , Imunoterapia , Linfócitos T Citotóxicos , Células Dendríticas , Proteínas WT1
13.
Int J Cancer ; 152(7): 1463-1475, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36451303

RESUMO

Only a small fraction of tumor-infiltrating lymphocytes can specifically recognize and attack cancer cells in PD-1/PD-L1 blockade therapy. Here, we investigate approaches to expand the neoantigen-specific CD8+ T cells to overcome the difficulties in treating PD-1/PD-L1 blockade-resistant tumors. Mutation-associated neoepitopes of murine nonsmall cell lung cancer ASB-XIV were estimated by whole-exome and RNA sequencing and predicted by MHC-I binding affinity (FPKM >1) in silico. Using ASB-XIV-specific CD8+ T cells, we screened a panel of 257 neoepitope peptides derived from ASB-XIV missense and indel mutations. Mutated Phf3 peptide (mPhf3) was successfully identified as an immunogenic neoepitope. Prophylactic mPhf3-DC vaccination inhibited ASB-XIV tumor growth through CD8+ T cell-mediated antitumor immunity. Combining the mPhf3-DC vaccine and anti-PD-1 treatment elicited robust antitumor activity through the induction of mPhf3-specific CD8+ T cells in the tumor microenvironment. Furthermore, the adoptive transfer of mPhf3-specific CD8+ T cells eradicated ASB-XIV tumors. Likewise, the combination of mutated Cdt1 peptide (mCdt1)-DC vaccine and anti-PD-1 treatment or adoptive transfer of mCdt1-specific CD8+ T cells also led to significant regression of PD-1 blockade-resistant murine gastric YTN16 tumors. In conclusion, a novel immunogenic neoepitope of ASB-XIV was identified for immunotherapy targeting neoantigens. Identification of immunogenic neoantigens can extend the therapeutic strategies by increasing the frequency of neoantigen-specific T cells, even for PD-1/PD-L1 blockade-resistant tumors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Camundongos , Animais , Linfócitos T CD8-Positivos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Antígeno B7-H1/metabolismo , Antígenos de Neoplasias , Neoplasias Pulmonares/metabolismo , Imunoterapia , Peptídeos/metabolismo , Microambiente Tumoral
14.
J Transl Med ; 20(1): 505, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329529

RESUMO

BACKGROUND: Immune checkpoint inhibitors are promising tools in combating several cancers, including head and neck squamous cell carcinoma (HNSCC). However, a substantial portion of HNSCC patients do not respond to PD-L1 antibody. Here we describe a photodynamic therapeutic (PDT) approach to enhance anti-tumor effects of the anti-PD-L1 antibody. METHODS: Phototoxicity of PDT was confirmed using fluorescence microscopy, Cell Counting Kit-8 (CCK-8), Enzyme Linked Immunosorbent Assay (ELISA) and flow cytometry analyses. Phenotypic and functional maturation of immature DCs (imDCs) induced by PDT were measured using flow cytometry and ELISA. A mouse model was established using the HNSCC line, SCC7, and was used to evaluate therapeutic effects of PDT-DC vaccine in facilitating anti-tumor immunity of PD-L1 antibody. RESULTS: Immunogenic cell death (ICD) of SCC7 cells was induced by PDT with 0.5 µM of m-THPC and the 5 J/cm2 of light dose. ICD of SCC7 cells stimulated imDCs maturation. In vivo assays suggested that PDT-DC vaccine and anti-PD-L1 mAb synergistically induced anti-tumor immunity and suppressed tumor progression. CONCLUSION: PDT-DC vaccine enhances therapeutic effects of PD-L1 antibody, which might provide a novel approach for HNSCC immunotherapy.


Assuntos
Neoplasias de Cabeça e Pescoço , Inibidores de Checkpoint Imunológico , Camundongos , Animais , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Modelos Animais de Doenças , Antígeno B7-H1/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Neoplasias de Cabeça e Pescoço/terapia , Células Dendríticas
15.
Biomed Pharmacother ; 155: 113541, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36127221

RESUMO

Dendritic cells (DCs) are potent antigen-presenting cells (APCs) that are essential in mediating the body's natural and adaptive immune responses. The body can regulate the function of DCs in various ways to enhance their antitumor effects. In the tumour microenvironment (TME), antigen-specific T cell responses are initiated through DC processing and delivery of tumour-associated antigens (TAAs); conversely, tumour cells inhibit DC recruitment by releasing metabolites, cytokines and other regulatory TME and function. Different subpopulations of DCs exist in tumour tissues, and their functions vary. Insight into DC subgroups in TME allows assessment of the effectiveness of tumour immunotherapy. Astragalus polysaccharide (APS) is the main component of the Chinese herb Astragalus membranaceus. The study found that the antitumor effects of APS are closely related to DCs. APS can promote the expression of surface molecules CD80 and CD86, promote the maturation of DCs, and activate CTL to exert antitumor effects. We reviewed the application of DCs in tumor immunotherapy and the mechanism of modulation of DCs by Astragalus polysaccharide to provide new directions and strategies for tumor therapy and new drug development.


Assuntos
Astrágalo , Neoplasias , Humanos , Anticorpos Anti-Hepatite B/metabolismo , Anticorpos Anti-Hepatite B/farmacologia , Células Dendríticas , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/metabolismo , Imunoterapia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Citocinas/metabolismo , Microambiente Tumoral
16.
Front Immunol ; 13: 988071, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090972

RESUMO

T-cell exhaustion plays a pivotal role in the resistance of microsatellite-stable colorectal cancer (CRC) to immunotherapy. Identifying and targeting T-cell exhaustion-activating mechanisms is a promising strategy to augment the effects of immunotherapy. Here, we found that thymidine phosphorylase (TYMP) plays a decisive role in inducing systemic T-cell exhaustion and abrogating the efficacy of dendritic cell (DC) therapy in a CRC model. Targeting TYMP with tipiracil hydrochloride (TPI) induces immunological cell death (ICD). The combined effects of TPI and imiquimod-activated DCs turn CT26 tumors into immunologically 'hot' tumors by inducing ICD in vivo. High-dimensional cytometry analysis revealed T-cell and IFN-γ dependency on the therapeutic outcome. In addition, chemoimmunotherapy converts intratumoral Treg cells into Th1 effector cells and eliminates tumor-associated macrophages, resulting in higher cytotoxic T lymphocyte infiltration and activation. This effect is also associated with the downregulation of PD-L1 expression in tumors, leading to the prevention of T-cell exhaustion. Thus, cooperative and cognitive interactions between dendritic cells and immunogenic cell death induced by therapy with TPI promote the immune response and tumoricidal activities against microsatellite stable colorectal cancer. Our results support TYMP targeting to improve the effects of DC immunotherapy and outcomes in CRC.


Assuntos
Neoplasias Colorretais , Timidina Fosforilase , Células Dendríticas , Humanos , Fatores Imunológicos , Imunoterapia/métodos
17.
Biomaterials ; 288: 121722, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35963815

RESUMO

The postoperative recurrence and metastasis of triple negative breast cancer (TNBC) remain one fatal reason for the failure of clinical treatments. Although the rise of immunotherapy has brought hopes for reducing postoperative recurrence and potential metastasis, the low immune response and immunosuppression of tumor microenvironment (TME) still restrain its extensive application. Herein, we reported a boosting strategy by improving immunogenicity and reversing suppressive TME to realize efficient immunotherapy of TNBC. In this work, a CaCO3 biomineralized hydrogel DC vaccine was synthesized by fixing the membrane proteins of 4T1 cells-DCs fusion cells (FP) into biomineralized silk fibroin hydrogel. On one side, the FP-containing biomineralized hydrogel vaccine (SH@FP@CaCO3) has increased immunogenicity by providing a wide variety of tumor-associated antigens (TAAs) and realizing long-term protein release for DCs maturation and T cell activation. On the other side, the introduction of CaCO3 would increase the pH of TME and promote the polarization of M2-type macrophages to M1-type macrophages, thus reversing the immune-inhibitory microenvironment and relieving the immunosuppressive effect on T cells. The results indicate that the biomineralized hydrogel vaccine shows excellent immune activation effects by simultaneously enhancing the immunogenicity and reversing the immunosuppression TME, which provides a promising strategy for cancer immunotherapy.


Assuntos
Vacinas Anticâncer , Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Humanos , Hidrogéis , Fatores Imunológicos/uso terapêutico , Imunoterapia/métodos , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral
18.
J Control Release ; 349: 254-268, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35803328

RESUMO

Dendritic cells (DCs) vaccines are a major focus of future anti-tumor immunotherapy for their pivotal role in eliciting reactive tumor-specific T-cell responses. Tumor cell-mediated DCs (TC-DC) activation and tumor antigen-mediated DCs (TA-DC) activation are two conventional modes of DC vaccine construction in clinical studies. The former physiologically mimicks the tumor identification and rejection, significantly contributing to DC-based immune recognition and migration towards the complexed tumor microenvironment (TME). However, as immunosuppressive molecules may exist in TME, these TC-DC are generally characterized with aberrant lipid accumulation and inositol-requiring kinase 1α (IRE1α)-X-box binding protein 1 (XBP1) hyperactivation, which is provoked by overwhelming oxidative stress and endoplasmic reticulum (ER) stress, resulting in TC-DC malfunction. Oppositely, without contacting immunosuppressive TME, TA-DC vaccines perform better in T-cell priming and lymph nodes (LNs) homing, but are relatively weak in TME infiltration and identification. Herein, we prepared a KIRA6-loaded α-Tocopherol nanoemulsion (KT-NE), which simultaneously ameliorated oxidative stress and ER stress in the dysfunctional lipid-laden TC-DC. The TC-DC treated by KT-NE could maintain immunological activity, simultaneously, exhibited satisfactory chemotaxis towards LNs and tumor sites in vivo, and effectively suppressed malignant progression by unleashing activated tumor-reactive T cells. This study generated a new DC-vaccine that owned puissant aptitude to identify complicated TME as well as robust immunological activity to boost T-cell initiation, which may provide some insights into the design and application of DC-vaccines for clinical application.


Assuntos
Vacinas Anticâncer , Neoplasias , Antígenos de Neoplasias , Células Dendríticas , Endorribonucleases , Humanos , Inositol , Lipídeos , Neoplasias/terapia , Proteínas Serina-Treonina Quinases , Microambiente Tumoral , Proteína 1 de Ligação a X-Box , alfa-Tocoferol
19.
Biochim Biophys Acta Rev Cancer ; 1877(5): 188763, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35872287

RESUMO

Therapeutic dendritic cell (DC) vaccines stimulate the elimination of tumor cells by the immune system. However, while antigen-specific T cell responses induced by DC vaccines are commonly observed, the clinical response rate is relatively poor, necessitating vaccine optimization. There is evidence that the suppression of DC function by immune checkpoints hinders the anti-tumor immune responses mediated by DC vaccines, ultimately leading to the immune escape of the tumor cells. The use of immune checkpoint inhibitors (ICIs) and immune checkpoint activators (ICAs) has extended the immunotherapeutic range. It is known that both inhibitory and stimulatory checkpoint molecules are expressed by most DC subsets and can thus be used to manipulate the effectiveness of DC vaccines. Such manipulation has been investigated using strategies such as chemotherapy, agonistic or antagonistic antibodies, siRNA, shRNA, CRISPR-Cas9, soluble antibodies, lentiviruses, and adenoviruses to maximize the efficacy of DC vaccines. Thus, a deeper understanding of immune checkpoints may assist in the development of improved DC vaccines. Here, we review the actions of various ICIs or ICAs shown by preclinical studies, as well as their potential application in DC vaccines. New therapeutic interventional strategies for blocking and stimulating immune checkpoint molecules in DCs are also described in detail.


Assuntos
Vacinas Anticâncer , Vacinas Anticâncer/uso terapêutico , Células Dendríticas , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Proteínas de Checkpoint Imunológico , RNA Interferente Pequeno
20.
Cancers (Basel) ; 14(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35454882

RESUMO

Conventional dendritic cells (cDCs) orchestrate immune responses to cancer and comprise two major subsets: type-1 cDCs (cDC1s) and type-2 cDCs (cDC2s). Compared with cDC1s, which are dedicated to the activation of CD8+ T cells, cDC2s are ontogenically and functionally heterogeneous, with their main function being the presentation of exogenous antigens to CD4+ T cells for the initiation of T helper cell differentiation. cDC1s play an important role in tumor-specific immune responses through cross-presentation of tumor-derived antigens for the priming of CD8+ T cells, whereas little is known of the role of cDC2s in tumor immunity. Recent studies have indicated that human cDC2s can be divided into at least two subsets and have implicated these cells in both anti- and pro-tumoral immune responses. Furthermore, the efficacy of cDC2-based vaccines as well as cDC2-targeted therapeutics has been demonstrated in both mouse models and human patients. Here we summarize current knowledge about the role of cDC2s in tumor immunity and address whether these cells are beneficial in the context of antitumor immune responses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA