Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
Pharmaceutics ; 16(5)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38794243

RESUMO

Cancer vaccines have emerged as a potent strategy to improve cancer immunity, with or without the combination of checkpoint blockade. In our investigation, liposomal formulations containing synthetic long peptides and α-Galactosylceramide, along with a DC-SIGN-targeting ligand, Lewis Y (LeY), were studied for their anti-tumor potential. The formulated liposomes boosted with anti-CD40 adjuvant demonstrated robust invariant natural killer (iNKT), CD4+, and CD8+ T-cell activation in vivo. The incorporation of LeY facilitated the targeting of antigen-presenting cells expressing DC-SIGN in vitro and in vivo. Surprisingly, mice vaccinated with LeY-modified liposomes exhibited comparable tumor reduction and survival rates to those treated with untargeted counterparts despite a decrease in antigen-specific CD8+ T-cell responses. These results suggest that impaired induction of antigen-specific CD8+ T-cells via DC-SIGN targeting does not compromise anti-tumor potential, hinting at alternative immune activation routes beyond CD8+ T-cell activation.

2.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732232

RESUMO

C-type lectins in organisms play an important role in the process of innate immunity. In this study, a C-type lectin belonging to the DC-SIGN class of Micropterus salmoides was identified. MsDC-SIGN is classified as a type II transmembrane protein. The extracellular segment of MsDC-SIGN possesses a coiled-coil region and a carbohydrate recognition domain (CRD). The key amino acid motifs of the extracellular CRD of MsDC-SIGN in Ca2+-binding site 2 were EPN (Glu-Pro-Asn) and WYD (Trp-Tyr-Asp). MsDC-SIGN-CRD can bind to four pathogen-associated molecular patterns (PAMPs), including lipopolysaccharide (LPS), glucan, peptidoglycan (PGN), and mannan. Moreover, it can also bind to Gram-positive, Gram-negative bacteria, and fungi. Its CRD can agglutinate microbes and displays D-mannose and D-galactose binding specificity. MsDC-SIGN was distributed in seven tissues of the largemouth bass, among which the highest expression was observed in the liver, followed by the spleen and intestine. Additionally, MsDC-SIGN was present on the membrane of M. salmoides leukocytes, thereby augmenting the phagocytic activity against bacteria. In a subsequent investigation, the expression patterns of the MsDC-SIGN gene and key genes associated with the TLR signaling pathway (TLR4, NF-κB, and IL10) exhibited an up-regulated expression response to the stimulation of Aeromonas hydrophila. Furthermore, through RNA interference of MsDC-SIGN, the expression level of the DC-SIGN signaling pathway-related gene (RAF1) and key genes associated with the TLR signaling pathway (TLR4, NF-κB, and IL10) was decreased. Therefore, MsDC-SIGN plays a pivotal role in the immune defense against A. hydrophila by modulating the TLR signaling pathway.


Assuntos
Aeromonas hydrophila , Bass , Moléculas de Adesão Celular , Doenças dos Peixes , Transdução de Sinais , Animais , Aeromonas hydrophila/imunologia , Bass/imunologia , Bass/metabolismo , Bass/microbiologia , Bass/genética , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Doenças dos Peixes/metabolismo , Proteínas de Peixes/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/metabolismo , Infecções por Bactérias Gram-Negativas/microbiologia , Imunidade Inata , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Moléculas com Motivos Associados a Patógenos/imunologia , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética , Receptores Toll-Like/metabolismo , Receptores Toll-Like/genética
3.
Immunol Cell Biol ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38757764

RESUMO

Delta inulin, or Advax, is a polysaccharide vaccine adjuvant that significantly enhances vaccine-mediated immune responses against multiple pathogens and was recently licensed for use in the coronavirus disease 2019 (COVID-19) vaccine SpikoGen. Although Advax has proven effective as an immune adjuvant, its specific binding targets have not been characterized. In this report, we identify a cellular receptor for Advax recognition. In vitro uptake of Advax particles by macrophage cell lines was substantially greater than that of latex beads of comparable size, suggesting an active uptake mechanism by phagocytic cells. Using a lectin array, Advax particles were recognized by lectins specific for various carbohydrate structures including mannosyl, N-acetylgalactosamine and galactose moieties. Expression in nonphagocytic cells of dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN), a C-type lectin receptor, resulted in enhanced uptake of fluorescent Advax particles compared with mock-transfected cells. Advax uptake was reduced with the addition of ethylenediaminetetraacetic acid and mannan to cells, which are known inhibitors of DC-SIGN function. Finally, a specific blockade of DC-SIGN using a neutralizing antibody abrogated Advax uptake in DC-SIGN-expressing cells. Together, these results identify DC-SIGN as a putative receptor for Advax. Given the known immunomodulatory role of DC-SIGN, the findings described here have implications for the use of Advax adjuvants in humans and inform future mechanistic studies.

4.
Microbes Infect ; 26(5-6): 105344, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38670218

RESUMO

To generate a new murine model for virus, DC-SIGN gene in murine was humanized. In this study, we successfully generated a humanized C57BL/6N mouse model expressing human DC-SIGN (hDC-SIGN) using CRISPR/Cas9 technology, and evaluated its characters and susceptibility to virus. The humanized mice could survival as usual, and with normal physiological index just like the wild-type mice. Whereas, we found significant differences in the intestinal flora and metabolic profiles between wild-type mice and humanized mice. Following intranasal infection with SARS-CoV-2, hDC-SIGN mice exhibited significantly increased viral loads in the lungs and nasal turbinates, along with more severe lung damage. This phenomenon may be associated with differential lipid metabolism and Fcγ receptor-mediated phagocytosis in two mouse models. This study provides a useful tool for investigating the mechanisms of coronavirus infection and potential drug therapies against novel coronavirus.


Assuntos
COVID-19 , Moléculas de Adesão Celular , Modelos Animais de Doenças , Lectinas Tipo C , Camundongos Endogâmicos C57BL , Receptores de Superfície Celular , SARS-CoV-2 , Animais , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , COVID-19/virologia , Humanos , Camundongos , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Suscetibilidade a Doenças , Pulmão/virologia , Carga Viral , Microbioma Gastrointestinal , Fagocitose , Camundongos Transgênicos , Receptores de IgG/genética , Receptores de IgG/metabolismo , Metabolismo dos Lipídeos
5.
Eur J Med Chem ; 269: 116299, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38479167

RESUMO

Dendritic cells (DCs) play a pivotal role in controlling HIV-1 infections of CD4+ T cells. DC-SIGN, which is expressed on the surface of DCs, efficiently captures HIV-1 virions by binding to the highly mannosylated membrane protein, gp120, and then the DCs transport the virus to target T cells in lymphoid organs. This study explored the modification of T20, a peptide inhibitor of HIV-1 fusion, by conjugation of the N-terminus with varying sizes of oligomannose, which are DC-SIGN-specific carbohydrates, aiming to create dual-targeting HIV inhibitors. Mechanistic studies indicated the dual-target binding of the conjugates. Antiviral assays demonstrated that N-terminal mannosylation of T20 resulted in increased inhibition of the viral infection of TZM-b1 cells (EC50 = 0.3-0.8 vs. 1.4 nM). Pentamannosylated T20 (M5-T20) exhibited a stronger inhibitory effect on virus entry into DC-SIGN+ 293T cells compared with T20 (67% vs. 50% inhibition at 500 µM). M5-T20 displayed an extended half-life in rats relative to T20 (T1/2: 8.56 vs. 1.64 h, respectively). These conjugates represent a potential new treatment for HIV infections with improved antiviral activity and pharmacokinetics, and this strategy may prove useful in developing dual-target inhibitors for other pathogens that require DC-SIGN involvement for infection.


Assuntos
Inibidores da Fusão de HIV , Infecções por HIV , HIV-1 , Animais , Ratos , Enfuvirtida/farmacologia , Enfuvirtida/metabolismo , Inibidores da Fusão de HIV/farmacologia , Inibidores da Fusão de HIV/metabolismo , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo
6.
Cell Stress Chaperones ; 29(2): 227-234, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453000

RESUMO

Dendritic cells, macrophages, neutrophils, and other antigen-presenting cells express various C-type lectin receptors that function to recognize the glycans associated with pathogens. The dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) binds various pathogens such as HIV glycoprotein 120, the Ebola glycoprotein, hemagglutinin, and the dengue virus glycoprotein in addition to the SARS-CoV-2 spike protein, and also triggers antigen-presenting cell endocytosis and immune escape from systemic infections. Many studies on the binding of SARS-CoV-2 spike protein with glycans have been published, but the underlying mechanism by which intracellular signaling occurs remains unclear. In this study, we report that the S1 spike protein of SARS-CoV-2 induces the phosphorylation of extracellular signal-regulated kinases (ERKs) in THP-1 cells, a DC-SIGN-expressing human monocytic leukemic cell line. On the other hand, the phosphorylation level of NF-κB remained unchanged under the same conditions. These data suggest that the major cell signaling pathway regulated by the S1 spike protein is the ERK pathway, which is superior to the NF-κB pathway in these DC-SIGN-expressing THP-1 cells and may contribute to immune hyperactivation in SARS-CoV-2 infections. Additionally, several glycans such as mannans, mannosylated bovine serum albumin, the serum amyloid beta protein, and intracellular adhesion molecule 3 suppressed ERK phosphorylation, suggesting that these molecules are target molecules for SARS-CoV-2 infection by suppressing immune hyperactivation that occurs in the ERK signaling pathway.


Assuntos
COVID-19 , Receptores de Superfície Celular , Glicoproteína da Espícula de Coronavírus , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , NF-kappa B/metabolismo , SARS-CoV-2/metabolismo , Sistema de Sinalização das MAP Quinases , Células THP-1 , Peptídeos beta-Amiloides , COVID-19/metabolismo , Moléculas de Adesão Celular/metabolismo , Transdução de Sinais , Lectinas Tipo C/metabolismo , Polissacarídeos/metabolismo , Células Dendríticas/metabolismo
7.
Arch Pharm (Weinheim) ; 357(4): e2300396, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38086006

RESUMO

Many viruses exploit the human C-type lectin receptor dendritic cell-specific ICAM-3 grabbing nonintegrin (DC-SIGN) for cell entry and virus dissemination. An inhibition of DC-SIGN-mediated virus attachment by glycan-derived ligands has, thus, emerged as a promising strategy toward broad-spectrum antiviral therapeutics. In this contribution, several cognate fragments of oligomannose- and complex-type glycans grafted onto a poly-l-lysine scaffold are evaluated as polyvalent DC-SIGN ligands. The range of selected carbohydrate epitopes encompasses linear (α- d-Man-(1→2)-α- d-Man, α- d-Man-(1→2)-α- d-Man-(1→2)-α- d-Man-(1→3)-α- d-Man) and branched (α- d-Man-(1→6)-[α- d-Man-(1→3)]-α- d-Man) oligomannosides, as well as α- l-Fuc. The thermodynamics of binding are investigated on a mono- and multivalent level to shed light on the molecular details of the interactions with the tetravalent receptor. Cellular models of virus attachment and DC-SIGN-mediated virus dissemination reveal a high potency of the presented glycopolymers in the low pico- and nanomolar ranges, respectively. The high activity of oligomannose epitopes in combination with the biocompatible properties of the poly- l-lysine scaffold highlights the potential for further preclinical development of polyvalent DC-SIGN ligands.


Assuntos
COVID-19 , Moléculas de Adesão Celular , Receptores de Superfície Celular , SARS-CoV-2 , Humanos , Molécula 3 de Adesão Intercelular , Polímeros , Relação Estrutura-Atividade , Lectinas Tipo C/metabolismo , Ligantes , Polissacarídeos/farmacologia , Epitopos
8.
Virol J ; 20(1): 286, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049805

RESUMO

Zika virus (ZIKV) and dengue virus (DENV) share a lot of similarities being both phylogenetically closely related, share the same insect vector passage for reaching the host, affinity for the same carbohydrate receptor domains (CRDs), indicating feasible competition between them on the natural field. Here, we prospected interactions of both envelope proteins with a DC-SIGN, a transmembrane c-type lectine receptor with the most implicated CRD with the Flavivirus infection presents on dendritic cells involved in viruses replication processes into the host, and among rares CRD receptors susceptible to interacting with a broad of subtypes of DENV. Protein-protein docking procedures produced structures for molecular dynamics experiments, suggesting the most energetically favorable complex. The difference found in the deltaG results prompted the experimentation with molecular dynamics. To investigate further specific residues involved with such interactions we produced a decomposition analysis using molecular dynamics of the docked proteins evaluated afterward with the Generalized Born Surface Area method. Solvent-accessible surface area (SASA) analysis for both showed very similar but with a slight reduction for ZIKV_E, which agreed with residues SASA analysis highlighting regions more exposed in the ZIVK protein than in DENV. Despite residues PHE313 is reponsible for most of the interactions with the envelope of these arboviruses, ZIKV interacted with this residue in DC-SIGN with lower energies and using more interactions with not expexted residues GLU241 and ARG386. Taken together these results suggest better competitive interaction of ZIKV with the DC-SIGN receptor, particularly in the CRD portion.


Assuntos
Vírus da Dengue , Dengue , Infecção por Zika virus , Zika virus , Humanos , Simulação de Dinâmica Molecular
9.
Viruses ; 15(12)2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38140693

RESUMO

Although COVID-19 transmission has been reduced by the advent of vaccinations and a variety of rapid monitoring techniques, the SARS-CoV-2 virus itself has shown a remarkable ability to mutate and persist. With this long track record of immune escape, researchers are still exploring prophylactic treatments to curtail future SARS-CoV-2 variants. Specifically, much focus has been placed on the antiviral lectin Griffithsin in preventing spike protein-mediated infection via the hACE2 receptor (direct infection). However, an oft-overlooked aspect of SARS-CoV-2 infection is viral capture by attachment receptors such as DC-SIGN, which is thought to facilitate the initial stages of COVID-19 infection in the lung tissue (called trans-infection). In addition, while immune escape is dictated by mutations in the spike protein, coronaviral virions also incorporate M, N, and E structural proteins within the particle. In this paper, we explored how several structural facets of both the SARS-CoV-2 virion and the antiviral lectin Griffithsin can affect and attenuate the infectivity of SARS-CoV-2 pseudovirus. We found that Griffithsin was a better inhibitor of hACE2-mediated direct infection when the coronaviral M protein is present compared to when it is absent (possibly providing an explanation regarding why Griffithsin shows better inhibition against authentic SARS-CoV-2 as opposed to pseudotyped viruses, which generally do not contain M) and that Griffithsin was not an effective inhibitor of DC-SIGN-mediated trans-infection. Furthermore, we found that DC-SIGN appeared to mediate trans-infection exclusively via binding to the SARS-CoV-2 spike protein, with no significant effect observed when other viral proteins (M, N, and/or E) were present. These results provide etiological data that may help to direct the development of novel antiviral treatments, either by leveraging Griffithsin binding to the M protein as a novel strategy to prevent SARS-CoV-2 infection or by narrowing efforts to inhibit trans-infection to focus on DC-SIGN binding to SARS-CoV-2 spike protein.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , SARS-CoV-2/metabolismo , Antivirais/farmacologia
10.
ACS Biomater Sci Eng ; 9(12): 6783-6796, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37969099

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in high morbidity and mortality rates worldwide. Although the epidemic has been controlled in many areas and numerous patients have been successfully treated, the risk of reinfection persists due to the low neutralizing antibody titers and weak immune response. To provide long-term immune protection for infected patients, novel bispecific CB6/dendritic cell (DC)-specific intercellular adhesion molecule 3-grabbing nonintegrin (SIGN) nanovesicles (NVs) were constructed to target both the SARS-CoV-2 spike protein (S) and the DC receptors for virus neutralization and immune activation. Herein, we designed NVs expressing both CB6 and DC-SIGN single chain variable fragments (scFvs) on the surface to block SARS-CoV-2 invasion and activate DC function. Monophosphoryl lipid A (MPLA) was loaded into the CB6/DC-SIGN NVs as an adjuvant to promote this process. The CB6/DC-SIGN NVs prevented a pseudovirus expressing the S protein from infecting the target cells expressing high levels of angiotensin-converting enzyme 2 in vitro. Additionally, CB6/DC-SIGN NVs admixed with S-expressing pseudoviruses activated the DCs, which was promoted by the adjuvant MPLA loaded in the NVs. Using a mouse model, we also confirmed that the CB6/DC-SIGN NVs effectively improved the neutralizing antibody titer and inhibited the growth of tumors expressing the S protein after 3 weeks of treatment. This potential NV-based treatment not only exerts a blocking effect by binding the S protein in the short term but may also provide patients with long-term protection against secondary infections.


Assuntos
COVID-19 , Anticorpos de Cadeia Única , Humanos , COVID-19/prevenção & controle , Anticorpos de Cadeia Única/genética , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , SARS-CoV-2/genética , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Anticorpos Neutralizantes/uso terapêutico
11.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958800

RESUMO

Breast cancer (BC) is the most prevalent malignancy in women and researchers have strived to develop optimal strategies for its diagnosis and management. Neoadjuvant chemotherapy (NAC), which reduces tumor size, risk of metastasis and patient mortality, often also allows for a de-escalation of breast and axillary surgery. Nonetheless, complete pathological response (pCR) is achieved in no more than 40% of patients who underwent NAC. Dendritic cells (DCs) are professional antigen-presenting cells present in the tumor microenvironment. The multitude of their subtypes was shown to be associated with the pathological and clinical characteristics of BC, but it was not evaluated in BC tissue after NAC. We found that highe r densities of CD123+ plasmacytoid DCs (pDCs) were present in tumors that did not show pCR and had a higher residual cancer burden (RCB) score and class. They were of higher stage and grade and more frequently HER2-negative. The density of CD123+ pCDs was an independent predictor of pCR in the studied group. DC-LAMP+ mature DCs (mDCs) were also related to characteristics of clinical relevance (i.e., pCR, RCB, and nuclear grade), although no clear trends were identified. We conclude that CD123+ pDCs are candidates for a novel biomarker of BC response to NAC.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Prognóstico , Terapia Neoadjuvante , Subunidade alfa de Receptor de Interleucina-3 , Células Dendríticas/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Receptor ErbB-2 , Microambiente Tumoral
12.
Front Cell Infect Microbiol ; 13: 1177270, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808906

RESUMO

DC-SIGN is a C-type lectin expressed in myeloid cells such as immature dendritic cells and macrophages. Through glycan recognition in viral envelope glycoproteins, DC-SIGN has been shown to act as a receptor for a number of viral agents such as HIV, Ebola virus, SARS-CoV, and SARS-CoV-2. Using a system of Vesicular Stomatitis Virus pseudotyped with MERS-CoV spike protein, here, we show that DC-SIGN is partially responsible for MERS-CoV infection of dendritic cells and that DC-SIGN efficiently mediates trans-infection of MERS-CoV from dendritic cells to susceptible cells, indicating a potential role of DC-SIGN in MERS-CoV dissemination and pathogenesis.


Assuntos
Coronavírus da Síndrome Respiratória do Oriente Médio , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Receptores de Superfície Celular/metabolismo , Moléculas de Adesão Celular/metabolismo , Lectinas Tipo C/metabolismo , Células Dendríticas/metabolismo
13.
Viruses ; 15(9)2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37766307

RESUMO

The SARS-CoV-2 virion has shown remarkable resilience, capable of mutating to escape immune detection and re-establishing infectious capabilities despite new vaccine rollouts. Therefore, there is a critical need to identify relatively immutable epitopes on the SARS-CoV-2 virion that are resistant to future mutations the virus may accumulate. While hACE2 has been identified as the receptor that mediates SARS-CoV-2 susceptibility, it is only modestly expressed in lung tissue. C-type lectin receptors like DC-SIGN can act as attachment sites to enhance SARS-CoV-2 infection of cells with moderate or low hACE2 expression. We developed an easy-to-implement assay system that allows for the testing of SARS-CoV-2 trans-infection. Using our assay, we assessed how SARS-CoV-2 Spike S1-domain glycans and spike proteins from different strains affected the ability of pseudotyped lentivirions to undergo DC-SIGN-mediated trans-infection. Through our experiments with seven glycan point mutants, two glycan cluster mutants and four strains of SARS-CoV-2 spike, we found that glycans N17 and N122 appear to have significant roles in maintaining COVID-19's infectious capabilities. We further found that the virus cannot retain infectivity upon the loss of multiple glycosylation sites, and that Omicron BA.2 pseudovirions may have an increased ability to bind to other non-lectin receptor proteins on the surface of cells. Taken together, our work opens the door to the development of new therapeutics that can target overlooked epitopes of the SARS-CoV-2 virion to prevent C-type lectin-receptor-mediated trans-infection in lung tissue.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Mutação , Epitopos , Lectinas Tipo C/genética , Polissacarídeos
14.
Eur J Pharm Sci ; 190: 106570, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37634600

RESUMO

Allergen-specific immunotherapy (AIT) is the only curative treatment for allergic diseases. However, the long desensitization phase and potentially dangerous allergic side effects limit its broad application. Therefore, safer and more effective vaccines are required. Targeting dendritic cells (DCs) with novel allergen conjugates is a promising strategy for AIT. In this study, a novel vaccine with a DC-targeting effect for AIT was constructed. Liposomes were used as vehicles, and a targeted nanovaccine (Lex-lip-Der f 2) was constructed by loading the recombinant group 2 allergen of Dermatophagoides farinae (Der f 2) and conjugating with the DC-SIGN ligand Lewis X. The effect of the vaccine on DCs and T cell responses and the safety of the vaccine were investigated in vitro. The results showed that the Lex-lip-Der f 2 vaccine was spherical, with size of approximately 128 nm. The protein-loading capacity of the vaccine was 0.106 ± 0.001 mg per mg liposome and protein was gradually released from the liposomes during the first 12 h. Lex-lip-Der f 2 was taken up more efficiently by DCs than non-targeted liposomes or free Der f 2. Besides, Lex-lip-Der f 2 significantly inhibited the release of IL-4, IL-6, and TNF-a from DCs. Accordingly, Der f 2-lip loaded DCs significantly decreased IL-4 levels in autologous naïve CD4+T cells. Moreover, Lex-lip-Der f 2-treated basophils showed lower activation levels. These results suggest that DC-SIGN targeting mediated by Lewis X could inhibit the Th2 cell response and improve vaccine safety, and may be a novel vaccination strategy.

15.
Cell Surf ; 10: 100109, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37520856

RESUMO

The dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) is an innate immune C-type lectin receptor that recognizes carbohydrate-based pathogen associated with molecular patterns of various bacteria, fungi, viruses and protozoa. Although a range of highly mannosylated glycoproteins have been shown to induce signaling via DC-SIGN, precise structure of the recognized oligosaccharide epitope is still unclear. Using the array of oligosaccharides related to selected fragments of main fungal antigenic polysaccharides we revealed a highly specific pentamannoside ligand of DC-SIGN, consisting of α-(1 â†’ 2)-linked mannose chains with one inner α-(1 â†’ 3)-linked unit. This structural motif is present in Candida albicans cell wall mannan and corresponds to its antigenic factors 4 and 13b. This epitope is not ubiquitous in other yeast species and may account for the species-specific nature of fungal recognition via DC-SIGN. The discovered highly specific oligosaccharide ligands of DC-SIGN are tractable tools for interdisciplinary investigations of mechanisms of fungal innate immunity and anti-Candida defense. Ligand- and receptor-based NMR data demonstrated the pentasaccharide-to-DC-SIGN interaction in solution and enabled the deciphering of the interaction topology.

16.
Int J Mol Sci ; 24(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37373062

RESUMO

Ductal carcinoma in situ (DCIS) is the preinvasive form of breast cancer (BC). It is disputed whether all cases of DCIS require extensive treatment as the overall risk of progression to BC is estimated at 40%. Therefore, the crucial objective for researchers is to identify DCIS with significant risk of transformation into BC. Dendritic cells (DC) are professional antigen presenting cells and as such play a pivotal role in the formation of immune cells that infiltrate in breast tumors. The aim of this study was to investigate the relationship between the density of DCs with different superficial antigens (CD1a, CD123, DC-LAMP, DC-SIGN) and various histopathological characteristics of DCIS. Our evaluation indicated that CD123+ and DC-LAMP+ cells were strongly associated with maximal tumor size, grading and neoductgenesis. Together with CD1a+ cells, they were negatively correlated with hormonal receptors expression. Furthermore, the number of DC-LAMP+ cells was higher in DCIS with comedo necrosis, ductal spread, lobular cancerization as well as comedo-type tumors, while CD1a+ cells were abundant in cases with Paget disease. We concluded that different subpopulations of DCs relate to various characteristics of DCIS. Of the superficial DCs markers, DC-LAMP seems particularly promising as a target for further research in this area.


Assuntos
Neoplasias da Mama , Carcinoma Ductal de Mama , Carcinoma Intraductal não Infiltrante , Humanos , Feminino , Carcinoma Intraductal não Infiltrante/metabolismo , Subunidade alfa de Receptor de Interleucina-3 , Neoplasias da Mama/metabolismo , Células Dendríticas/metabolismo , Carcinoma Ductal de Mama/patologia
17.
Virusdisease ; : 1-19, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37363363

RESUMO

The Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is related with the COVID-19 pandemic. Recent spike protein variations have had an effect on the transmission of the virus. In addition to ACE-2, spike proteins can employ DC-SIGN and its analogous receptor, DC-SIGNR, for host evasion. Spike variations in the DC-SIGN interaction region and role of DC-SIGN in immune evasion have not been well defined. To understand the spike protein variations and their binding mode, phylogenetic analysis of the complete GISAID (Global Initiative for Sharing Avian Influenza Data) data of the SARS-CoV-2 spike protein was considered. In addition, an in silico knockout network evaluation of the SARS-CoV-2 single-cell transcriptome was conducted to determine the key role of DC-SIGN/R in immunological dysregulation. Within the DC-SIGN-interacting region of the SARS-CoV spike protein, the spike protein of SARS-CoV-2 displayed remarkable similarity to the SARS-CoV spike protein. Surprisingly, the phylogenetic analysis revealed that the SARS-CoV-2's spike exhibited significantly diverse variants in the DC-SIGN interaction domain, which altered the frequency of these variants. The variation within the DC-SIGN-interacting domain of spike proteins affected the binding of a limited number of variants with DC-SIGN and DC-SIGNR and affected their evolution. MMGBSA binding free energies evaluation differed for variants from those of the wild type, suggesting the influence of substitution mutations on the interaction pattern. In silico knockout network analysis of the single-cell transcriptome of Bronchoalveolar Lavage and peripheral blood mononuclear cells revealed that SARS-CoV-2 altered DC-SIGN/R signaling. Early surveillance of diverse SARS-CoV-2 strains could preclude a worsening of the pandemic and facilitate the development of an optimum vaccine against variations. The spike Receptor Binding Domain genetic variants are thought to boost SARS CoV-2 immune evasion, resulting in its higher longevity. Supplementary Information: The online version contains supplementary material available at 10.1007/s13337-023-00820-3.

18.
Int J Mol Sci ; 24(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37240354

RESUMO

Dendritic cells (DC) are critical cellular mediators of host immunity, notably by expressing a broad panel of pattern recognition receptors. One of those receptors, the C-type lectin receptor DC-SIGN, was previously reported as a regulator of endo/lysosomal targeting through functional connections with the autophagy pathway. Here, we confirmed that DC-SIGN internalization intersects with LC3+ autophagy structures in primary human monocyte-derived dendritic cells (MoDC). DC-SIGN engagement promoted autophagy flux which coincided with the recruitment of ATG-related factors. As such, the autophagy initiation factor ATG9 was found to be associated with DC-SIGN very early upon receptor engagement and required for an optimal DC-SIGN-mediated autophagy flux. The autophagy flux activation upon DC-SIGN engagement was recapitulated using engineered DC-SIGN-expressing epithelial cells in which ATG9 association with the receptor was also confirmed. Finally, Stimulated emission depletion (STED) microscopy performed in primary human MoDC revealed DC-SIGN-dependent submembrane nanoclusters formed with ATG9, which was required to degrade incoming viruses and further limit DC-mediated transmission of HIV-1 infection to CD4+ T lymphocytes. Our study unveils a physical association between the Pattern Recognition Receptor DC-SIGN and essential components of the autophagy pathway contributing to early endocytic events and the host's antiviral immune response.


Assuntos
HIV-1 , Humanos , HIV-1/fisiologia , Antivirais/metabolismo , Células Dendríticas , Lectinas Tipo C/metabolismo , Autofagia
19.
Protein Cell ; 14(1): 4-16, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36726757

RESUMO

C-type lectins (CTLs) represent a large family of soluble and membrane-bound proteins which bind calcium dependently via carbohydrate recognition domains (CRDs) to glycan residues presented on the surface of a variety of pathogens. The deconvolution of a cell's glycan code by CTLs underpins several important physiological processes in mammals such as pathogen neutralization and opsonization, leukocyte trafficking, and the inflammatory response. However, as our knowledge of CTLs has developed it has become apparent that the role of this innate immune family of proteins can be double-edged, where some pathogens have developed approaches to subvert and exploit CTL interactions to promote infection and sustain the pathological state. Equally, CTL interactions with host glycoproteins can contribute to inflammatory diseases such as arthritis and cancer whereby, in certain contexts, they exacerbate inflammation and drive malignant progression. This review discusses the 'dual agent' roles of some of the major mammalian CTLs in both resolving and promoting infection, inflammation and inflammatory disease and highlights opportunities and emerging approaches for their therapeutic modulation.


Assuntos
Inflamação , Lectinas Tipo C , Polissacarídeos , Animais , Humanos , Inflamação/metabolismo , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Mamíferos/metabolismo , Proteínas de Membrana , Polissacarídeos/química , Polissacarídeos/metabolismo
20.
Nano Lett ; 23(4): 1496-1504, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36758952

RESUMO

Despite intense scrutiny throughout the pandemic, development of efficacious drugs against SARS-CoV-2 spread remains hindered. Understanding the underlying mechanisms of viral infection is fundamental for developing novel treatments. While angiotensin converting enzyme 2 (ACE2) is accepted as the key entry receptor of the virus, other infection mechanisms exist. Dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN) and its counterpart DC-SIGN-related (DC-SIGNR, also known as L-SIGN) have been recognized as possessing functional roles in COVID-19 disease and binding to SARS-CoV-2 has been demonstrated previously with ensemble and qualitative techniques. Here we examine the thermodynamic and kinetic parameters of the ligand-receptor interaction between these C-type lectins and the SARS-CoV-2 S1 protein using force-distance curve-based AFM and biolayer interferometry. We evidence that the S1 receptor binding domain is likely involved in this bond formation. Further, we employed deglycosidases and examined a nonglycosylated S1 variant to confirm the significance of glycosylation in this interaction. We demonstrate that the high affinity interactions observed occur through a mechanism distinct from that of ACE2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Lectinas Tipo C/metabolismo , Ligantes , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA