Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Viruses ; 16(8)2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39205287

RESUMO

The Human Immunodeficiency Virus (HIV) encodes several proteins that contort the host cell environment to promote viral replication and spread. This is often accomplished through the hijacking of cellular ubiquitin ligases. These reprogrammed complexes initiate or enhance the ubiquitination of cellular proteins that may otherwise act to restrain viral replication. Ubiquitination of target proteins may alter protein function or initiate proteasome-dependent destruction. HIV Viral Protein R (Vpr) and the related HIV-2 Viral Protein X (Vpx), engage the CRL4-DCAF1 ubiquitin ligase complex to target numerous cellular proteins. In this review we describe the CRL4-DCAF1 ubiquitin ligase complex and its interactions with HIV Vpr and Vpx. We additionally summarize the cellular proteins targeted by this association as well as the observed or hypothesized impact on HIV.


Assuntos
Ubiquitina-Proteína Ligases , Ubiquitinação , Proteínas Virais Reguladoras e Acessórias , Replicação Viral , Produtos do Gene vpr do Vírus da Imunodeficiência Humana , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Infecções por HIV/virologia , Infecções por HIV/metabolismo , Interações Hospedeiro-Patógeno , HIV-1/fisiologia , HIV-1/genética , Proteínas Serina-Treonina Quinases , Receptores de Interleucina-17
2.
Cell Rep ; 43(7): 114368, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38905100

RESUMO

DOT1L mediates the methylation of histone H3 at lysine 79 and, in turn, the transcriptional activation or repression in a context-dependent manner, yet the regulatory mechanisms and functions of DOT1L/H3K79me remain to be fully explored. Following peptide affinity purification and proteomic analysis, we identified that DCAF1-a component of the E3 ligase complex involved in HIV regulation-is associated with H3K79me2 and DOT1L. Interestingly, blocking the expression or catalytic activity of DOT1L or repressing the expression of DCAF1 significantly enhances the tumor necrosis factor alpha (TNF-α)/nuclear factor κB (NF-κB)-induced reactivation of the latent HIV-1 genome. Mechanistically, upon TNF-α/NF-κB activation, DCAF1 is recruited to the HIV-1 long terminal repeat (LTR) by DOT1L and H3K79me2. Recruited DCAF1 subsequently induces the ubiquitination of NF-κB and restricts its accumulation at the HIV-1 LTR. Altogether, our findings reveal a feedback modulation of HIV reactivation by DOT1L-mediated histone modification regulation and highlight the potential of targeting the DOT1L/DCAF1 axis as a therapeutic strategy for HIV treatment.


Assuntos
HIV-1 , Histona-Lisina N-Metiltransferase , Histonas , NF-kappa B , Ubiquitina-Proteína Ligases , Humanos , HIV-1/fisiologia , HIV-1/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , NF-kappa B/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Repetição Terminal Longa de HIV/genética , Células HEK293 , Ativação Viral , Metilação , Fator de Necrose Tumoral alfa/metabolismo , Infecções por HIV/virologia , Infecções por HIV/metabolismo , Lisina/metabolismo , Proteínas Serina-Treonina Quinases
3.
J Exp Clin Cancer Res ; 43(1): 136, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711082

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a fatal malignancy with poor prognosis due to lack of effective clinical interference. DCAF1 plays a vital role in regulating cell growth and proliferation, and is involved in the progression of various malignancies. However, the function of DCAF1 in HCC development and the underlying mechanism are still unknown. This study aimed to explore the effect of DCAF1 in HCC and the corresponding molecular mechanism. METHODS: Quantitative real-time PCR, Western blot and immunostaining were used to determine DCAF1 expression in tumor tissues and cell lines. Subsequently, in vitro and in vivo experiments were conducted to explore the function of DCAF1 in tumor growth and metastasis in HCC. Coimmunoprecipitation, mass spectrometry and RNA sequencing were performed to identify the underlying molecular mechanisms. RESULTS: In this study, we found that DCAF1 was observably upregulated and associated with poor prognosis in HCC. Knockdown of DCAF1 inhibited tumor proliferation and metastasis and promoted tumor apoptosis, whereas overexpressing DCAF1 yielded opposite effects. Mechanistically, DCAF1 could activate the Akt signaling pathway by binding to PARD3 and enhancing its expression. We also found that the combined application of DCAF1 knockdown and Akt inhibitor could significantly suppress subcutaneous xenograft tumor growth. CONCLUSIONS: Our study illustrates that DCAF1 plays a crucial role in HCC development and the DCAF1/PARD3/Akt axis presents a potentially effective therapeutic strategy for HCC.


Assuntos
Carcinoma Hepatocelular , Progressão da Doença , Neoplasias Hepáticas , Metástase Neoplásica , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Feminino , Humanos , Masculino , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Apoptose , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Camundongos Nus , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Genetics ; 225(1)2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37433110

RESUMO

Cullin-RING ubiquitin ligases (CRLs) are the largest class of ubiquitin ligases with diverse functions encompassing hundreds of cellular processes. Inactivation of core components of the CRL4 ubiquitin ligase produces a germ cell defect in Caenorhabditis elegans that is marked by abnormal globular morphology of the nucleolus and fewer germ cells. We identified DDB1 Cullin4 associated factor (DCAF)-1 as the CRL4 substrate receptor that ensures proper germ cell nucleolus morphology. We demonstrate that the dcaf-1 gene is the ncl-2 (abnormal nucleoli) gene, whose molecular identity was not previously known. We also observed that CRL4DCAF-1 is required for male tail development. Additionally, the inactivation of CRL4DCAF-1 results in a male-specific lethality in which a percentage of male progeny arrest as embryos or larvae. Analysis of the germ cell nucleolus defect using transmission electron microscopy revealed that dcaf-1 mutant germ cells possess significantly fewer ribosomes, suggesting a defect in ribosome biogenesis. We discovered that inactivation of the sperm-fate specification gene fog-1 (feminization of the germ line-1) or its protein-interacting partner, fog-3, rescues the dcaf-1 nucleolus morphology defect. Epitope-tagged versions of both FOG-1 and FOG-3 proteins are aberrantly present in adult dcaf-1(RNAi) animals, suggesting that DCAF-1 negatively regulates FOG-1 and FOG-3 expression. Murine CRL4DCAF-1 targets the degradation of the ribosome assembly factor periodic trptophan protein 1 (PWP1). We observed that the inactivation of Caenorhabditis elegansDCAF-1 increases the nucleolar levels of PWP1 in the germ line, intestine, and hypodermis. Reducing the level of PWP-1 rescues the dcaf-1 mutant defects of fewer germ cell numbers and abnormal nucleolus morphology, suggesting that the increase in PWP-1 levels contributes to the dcaf-1 germline defect. Our results suggest that CRL4DCAF-1 has an evolutionarily ancient role in regulating ribosome biogenesis including a conserved target in PWP1.


Assuntos
Caenorhabditis elegans , Proteínas Culina , Masculino , Animais , Camundongos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas Culina/genética , Proteínas Culina/metabolismo , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Ubiquitina/metabolismo , Sêmen/metabolismo , Células Germinativas/metabolismo , Fatores de Transcrição/genética
5.
Development ; 149(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36278853

RESUMO

Cell competition, the elimination of cells surrounded by more fit neighbors, is proposed to suppress tumorigenesis. Mahjong (Mahj), a ubiquitin E3 ligase substrate receptor, has been thought to mediate competition of cells mutated for lethal giant larvae (lgl), a neoplastic tumor suppressor that defines apical-basal polarity of epithelial cells. Here, we show that Drosophila cells mutated for mahjong, but not for lgl [l(2)gl], are competed because they express the bZip-domain transcription factor Xrp1, already known to eliminate cells heterozygous for ribosomal protein gene mutations (Rp/+ cells). Xrp1 expression in mahj mutant cells results in activation of JNK signaling, autophagosome accumulation, eIF2α phosphorylation and lower translation, just as in Rp/+ cells. Cells mutated for damage DNA binding-protein 1 (ddb1; pic) or cullin 4 (cul4), which encode E3 ligase partners of Mahj, also display Xrp1-dependent phenotypes, as does knockdown of proteasome subunits. Our data suggest a new model of mahj-mediated cell competition that is independent of apical-basal polarity and couples Xrp1 to protein turnover.


Assuntos
Proteínas de Drosophila , Fatores de Transcrição , Animais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Competição entre as Células , Proteínas de Ligação a DNA/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Culina/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
6.
Immunol Lett ; 249: 33-42, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36055411

RESUMO

DCAF1 is considered to be a general substrate-recognizing subunit of E3 ligases, it has been implicated to be directly involved in different cellular processes. DCAF1 is also defined as a constitutive binding partner of viral protein R (Vpr) of the human immunodeficiency virus type 1 (HIV-1) and is essential for functions of Vpr. Here, we revealed that activation of NF-κB by virion-associated Vpr proteins highly depends on DCAF1, and that exogenous DCAF1 is capable of restraining NF-κB induction by external stimuli. Depletion of DCAF1 augments NF-κB activation. DCAF1 significantly inhibits the nuclear transportation of p65 through interactions with p65, after activation of the NF-κB pathway. Moreover, two main motifs of DCAF1 are identified to promote its inhibitory effects on the NF-κB pathway. Taken together, we propose a new role of DCAF1 in regulating cellular immune responses, beyond the function as a general adaptor for other cytokines or viral proteins.


Assuntos
HIV-1 , Produtos do Gene vpr do Vírus da Imunodeficiência Humana , Proteínas de Transporte , Citocinas/metabolismo , HIV-1/fisiologia , Humanos , NF-kappa B/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo
7.
J Pers Med ; 12(6)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35743672

RESUMO

Autism spectrum disorder (ASD) comprises a heterogeneous group of neurodevelopmental disorders and occurs in all racial, ethnic, and socioeconomic groups. Cutting-edge technologies are contributing to understanding genetic underpinnings in ASD. The reported patient is a 32-year-old male and as an infant was noted to have microcephaly, hypospadias, pulmonary vascular anomaly, and small stature. He was diagnosed with Cornelia De Lange Syndrome (CDLS) at that time based on the clinical features. As a child, he had autistic features and intellectual disabilities and as diagnoses with autism and intellectual disability. He was referred as an adult to our neurodiversity clinic and a full exome trio sequencing with reflex to mitochondrial genes identified a de novo variant of uncertain significance in a candidate gene, DCAF1. The specific variant was c.137 C > T (p.Thr46Ile) in exon 4 in the DCAF1 gene. In silico analysis supports a deleterious effect on protein structure/function. DCAF1 participates with DDB1 and CUL4 as a part of the E3 ubiquitin ligase complex. The E3 ligase complex has been associated with a syndromic form of X-linked intellectual disability. The DDB1/CUL4 E3 ubiquitination complex plays a role in methylation-dependent ubiquitination. Next, a methylation study identified a signature similar to the methylation pattern found in X- linked intellectual disability type 93. This is associated with variants of the BRWD3 gene, which is linked with the functioning of the DDB1/CUL4 E3 ubiquitination complex. Taken together, this suggests that the de novo DCAF1 variant may be a newly identified molecular cause of autism and intellectual disability.

8.
J Cell Physiol ; 237(1): 815-823, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34378805

RESUMO

Merlin is known as a tumor suppressor, while its role in osteomyelitis remains unclear. This study aimed to investigate the role of Merlin in Staphylococcus aureus-induced osteomyelitis and its underlying mechanisms. S. aureus-induced osteomyelitis mouse model was established in Merlinfl/fl Lyz2cre/+ and Merlinfl/fl Lyz2+/+ mice. Bone marrow-derived macrophages (BMDMs) were isolated and stimulated by lipopolysaccharide (LPS). Bioassays, including quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blot analysis, and enzyme-linked immunosorbent assays, were conducted to determine the levels of target genes or proteins. Immunoprecipitation was applied to determine the interactions between proteins. DCAF1fl/fl mice were further crossed with Lyz2-Cre mice to establish myeloid cell conditional knockout mice (DCAF1fl/fl Lyz2cre/+ ). It was found that the level of Merlin was elevated in patients with osteomyelitis and S. aureus-infected BMDMs. Merlin deficiency in macrophages suppressed the production of inflammatory cytokines and ameliorated the symptoms of osteomyelitis induced by S. aureus. Merlin deficiency in macrophages also suppressed the production of proinflammatory cytokines in BMDMs induced by LPS. The inhibitory effects of Merlin deficiency on the inflammatory response were associated with DDB1-Cul4-associated factor 1 (DCAF1). In summary, Merlin deficiency ameliorates S. aureus-induced osteomyelitis through the regulation of DCAF1.


Assuntos
Osteomielite , Infecções Estafilocócicas , Animais , Citocinas , Humanos , Lipopolissacarídeos/farmacologia , Camundongos , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Staphylococcus aureus/metabolismo
9.
EMBO J ; 40(22): e108008, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34595758

RESUMO

The cullin-4-based RING-type (CRL4) family of E3 ubiquitin ligases functions together with dedicated substrate receptors. Out of the ˜29 CRL4 substrate receptors reported, the DDB1- and CUL4-associated factor 1 (DCAF1) is essential for cellular survival and growth, and its deregulation has been implicated in tumorigenesis. We carried out biochemical and structural studies to examine the structure and mechanism of the CRL4DCAF1 ligase. In the 8.4 Å cryo-EM map of CRL4DCAF1 , four CUL4-RBX1-DDB1-DCAF1 protomers are organized into two dimeric sub-assemblies. In this arrangement, the WD40 domain of DCAF1 mediates binding with the cullin C-terminal domain (CTD) and the RBX1 subunit of a neighboring CRL4DCAF1 protomer. This renders RBX1, the catalytic subunit of the ligase, inaccessible to the E2 ubiquitin-conjugating enzymes. Upon CRL4DCAF1 activation by neddylation, the interaction between the cullin CTD and the neighboring DCAF1 protomer is broken, and the complex assumes an active dimeric conformation. Accordingly, a tetramerization-deficient CRL4DCAF1 mutant has higher ubiquitin ligase activity compared to the wild-type. This study identifies a novel mechanism by which unneddylated and substrate-free CUL4 ligases can be maintained in an inactive state.


Assuntos
Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Microscopia Crioeletrônica , Proteínas Culina/metabolismo , Humanos , Modelos Moleculares , Mutação , Domínios Proteicos , Multimerização Proteica , Proteínas Serina-Treonina Quinases/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo
10.
J Inflamm Res ; 14: 1667-1676, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33953594

RESUMO

INTRODUCTION: Ddb1-cullin4-associated-factor 1 (DCAF1) is known to regulate protein ubiquitination, while the roles of DCAF1 in osteomyelitis remain unknown. This study aims to investigate the effects of DCAF1 deficiency in macrophages on osteomyelitis and elucidate the molecular mechanism. METHODS: Staphylococcus aureus-induced mouse model of osteomyelitis was established on the DCAF1fl/flLyz2cre/+ and DCAF1fl/flLyz2+/+ (control) mice. Flow cytometry was conducted to analyze the populations of adaptive and innate immune cells. Lipopolysaccharides (LPS)-induced bone marrow-derived macrophages (BMDMs) were established. qRT-PCR and immunoblot analysis were used to determine the levels of inflammation-related biomarkers. ELISA was used to determine the release of inflammatory cytokines including IL-1ß, IL-6, and TNF. RESULTS: The populations of immune cells in the bone marrow and spleen were not affected due to DCAF1 deficiency in macrophages. DCAF1 suppressed inflammatory cytokines in LPS-induced BMDMs. Additionally, DCAF1 deficiency in macrophages induced severe symptoms including less bacterial load in the femur, cortical bone loss, and reactive bone formation. Mechanistic study revealed that DCAF1 deficiency induced p38 hyperactivation. DISCUSSION: DCAF1 in macrophages suppressed the Staphylococcus aureus-induced mouse model of osteomyelitis.

11.
Cancers (Basel) ; 12(7)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629964

RESUMO

Meningioma is the most common primary intracranial tumour, and surgical resection is the main therapeutic option. Merlin is a tumour suppressor protein that is frequently mutated in meningioma. The activity of the E3 ubiquitin ligase complex, CRL4-DCAF1, and the Raf/MEK/ERK scaffold protein Kinase suppressor of Ras 1 (KSR1) are upregulated in Merlin-deficient tumours, which drives tumour growth. Identifying small molecules that inhibit these key pathways may provide an effective treatment option for patients with meningioma. We used meningioma tissue and primary cells derived from meningioma tumours to investigate the expression of DDB1 and Cullin 4-associated factor 1 (DCAF1) and KSR1, and confirmed these proteins were overexpressed. We then used primary cells to assess the therapeutic potential of MLN3651, a neddylation inhibitor which impacts the activity of the CRL family of E3 ubiquitin ligases and the MAPK/ERK kinase (MEK1/2) inhibitor selumetinib. MLN3651 treatment reduced proliferation and activated apoptosis, whilst increasing Raf/MEK/ERK pathway activation. The combination of MLN3651 and the MEK1/2 inhibitor selumetinib prevented the increase in Raf/MEK/ERK activity, and had an additive effect compared with either treatment alone. Therefore, the combined targeting of CRL4-DCAF1 and Raf/MEK/ERK activity represents an attractive novel strategy in the treatment of Merlin-deficient meningioma.

12.
Int J Mol Sci ; 21(12)2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32549408

RESUMO

BACKGROUND: Diverse groups of carrot cultivars have been developed to meet consumer demands and industry needs. Varietal groups of the cultivated carrot are defined based on the shape of roots. However, little is known about the genetic basis of root shape determination. METHODS: Here, we used 307 carrot plants from 103 open-pollinated cultivars for a genome wide association study to identify genomic regions associated with the storage root morphology. RESULTS: A 180 kb-long region on carrot chromosome 1 explained 10% of the total observed phenotypic variance in the shoulder diameter. Within that region, DcDCAF1 and DcBTAF1 genes were proposed as candidates controlling secondary growth of the carrot storage root. Their expression profiles differed between the cultivated and the wild carrots, likely indicating that their elevated expression was required for the development of edible roots. They also showed higher expression at the secondary root growth stage in cultivars producing thick roots, as compared to those developing thin roots. CONCLUSIONS: We provided evidence for a likely involvement of DcDCAF1 and/or DcBTAF1 in the development of the carrot storage root and developed a genotyping assay facilitating the identification of variants in the region on carrot chromosome 1 associated with secondary growth of the carrot root.


Assuntos
Biologia Computacional/métodos , Daucus carota/crescimento & desenvolvimento , Proteínas de Plantas/genética , Mapeamento Cromossômico , Mineração de Dados , Bases de Dados Genéticas , Daucus carota/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único
13.
Redox Biol ; 32: 101485, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32171724

RESUMO

NRF2 is a master regulator of cellular anti-oxidant and anti-inflammatory responses, and strategies to augment NRF2-dependent responses may beneficial in many diseases. Basal NRF2 protein level is constrained by constitutive KEAP1-mediated degradation, but in the presence of electrophiles, NRF2 ubiquitination is inhibited. Impeded NRF2 degradation increases NRF2 protein, resulting in up-regulation of anti-oxidant gene transcription, and decreased inflammation. KEAP1-independent mechanisms regulating NRF2 stability have also been reported. Here we employed an HTS approach and identified a small molecule, BC-1901S, that stabilized NRF2 and increased its activity. BC-1901S activated NRF2 by inhibiting NRF2 ubiquitination in a KEAP1-independent manner. It further increased NRF2-dependent anti-oxidant gene transcription, and exhibited anti-inflammatory effects in vitro and in vivo. Further, we identified a new NRF2-interacting partner, DDB1 and CUL4 Associated Factor 1 (DCAF1), an E3 ligase that targeted NRF2 for proteasomal degradation. Mechanistically, BC-1901S directly bound to DCAF1 and disrupted NRF2/DCAF1 interaction, thus activating NRF2. These findings provide new insights in NRF2 biology and NRF2 based anti-inflammatory therapy.


Assuntos
Fator 2 Relacionado a NF-E2 , Ubiquitina-Proteína Ligases , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
14.
Biochem Biophys Res Commun ; 513(4): 933-939, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31003777

RESUMO

The lentiviral accessory protein Vpx enhances viral replication in macrophages, dendritic cells and resting CD4+ T cells by utilizing the host CRL4-DCAF1 E3 ligase to trigger the degradation of the intrinsic antiviral factor SAMHD1. Distinct from the species-specific recognition of either the N or C-terminus of SAMHD1 by Vpx proteins of different HIV-2 and SIV lineages, Vpx recruits SAMHD1 onto the same CRL4-DCAF1 complex. However, the determinants in DCAF1 that are required for Vpx-mediated SAMHD1 degradation have not been well characterized. Here, we demonstrate that the viral protein Vpx is resistant to suppression by a cellular inhibitor of the CRL4-DCAF1 E3 ligase, Merlin/NF2, through targeting a separate binding region in DCAF1. The Merlin binding-deficient DCAF1 truncation mutant (1-1417) is sufficient for Vpx-CRL4-DCAF1 E3 ligase assembly and SAMHD1 degradation. We found that the carboxyl-terminus ED-rich region (1312-1417) of DCAF1 is required for the nuclear localization of DCAF1 and for the Vpx-DCAF1 interaction. We identified the DCAF1 (1-1311) truncation mutant as a dominant negative mutant of wild-type DCAF1 that inhibits Vpx-mediated SAMHD1 degradation. These results suggest a unique strategy by which Vpx exploits DCAF1 to counteract this host restriction factor.


Assuntos
Lentivirus/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Sítios de Ligação , Linhagem Celular , Núcleo Celular/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Proteínas Mutantes , Proteínas Serina-Treonina Quinases/genética , Ubiquitina-Proteína Ligases/genética , Replicação Viral
15.
J Virol ; 91(9)2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28202763

RESUMO

The lentiviral accessory proteins Vpx and Vpr are known to utilize CRL4 (DCAF1) E3 ligase to induce the degradation of the host restriction factor SAMHD1 or host helicase transcription factor (HLTF), respectively. Selective disruption of viral CRL4 (DCAF1) E3 ligase could be a promising antiviral strategy. Recently, we have determined that posttranslational modification (neddylation) of Cullin-4 is required for the activation of Vpx-CRL4 (DCAF1) E3 ligase. However, the mechanism of Vpx/Vpr-CRL4 (DCAF1) E3 ligase assembly is still poorly understood. Here, we report that zinc coordination is an important regulator of Vpx-CRL4 E3 ligase assembly. Residues in a conserved zinc-binding motif of Vpx were essential for the recruitment of the CRL4 (DCAF1) E3 complex and Vpx-induced SAMHD1 degradation. Importantly, altering the intracellular zinc concentration by treatment with the zinc chelator N,N,N'-tetrakis-(2'-pyridylmethyl)ethylenediamine (TPEN) potently blocked Vpx-mediated SAMHD1 degradation and inhibited wild-type SIVmac (simian immunodeficiency virus of macaques) infection of myeloid cells, even in the presence of Vpx. TPEN selectively inhibited Vpx and DCAF1 binding but not the Vpx-SAMHD1 interaction or Vpx virion packaging. Moreover, we have shown that zinc coordination is also important for the assembly of the HIV-1 Vpr-CRL4 E3 ligase. In particular, Vpr zinc-binding motif mutation or TPEN treatment efficiently inhibited Vpr-CRL4 (DCAF1) E3 ligase assembly and Vpr-mediated HLTF degradation or Vpr-induced G2 cell cycle arrest. Collectively, our study sheds light on a conserved strategy by the viral proteins Vpx and Vpr to recruit host CRL4 (DCAF1) E3 ligase, which represents a target for novel anti-human immunodeficiency virus (HIV) drug development.IMPORTANCE The Vpr and its paralog Vpx are accessory proteins encoded by different human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) lentiviruses. To facilitate viral replication, Vpx has evolved to induce SAMHD1 degradation and Vpr to mediate HLTF degradation. Both Vpx and Vpr perform their functions by recruiting CRL4 (DCAF1) E3 ligase. In this study, we demonstrate that the assembly of the Vpx- or Vpr-CRL4 E3 ligase requires a highly conserved zinc-binding motif. This motif is specifically required for the DCAF1 interaction but not for the interaction of Vpx or Vpr with its substrate. Selective disruption of Vpx- or Vpr-CRL4 E3 ligase function was achieved by zinc sequestration using N,N,N'-tetrakis-(2'-pyridylmethyl)ethylenediamine (TPEN). At the same time, zinc sequestration had no effect on zinc-dependent cellular protein functions. Therefore, information obtained from this study may be important for novel anti-HIV drug development.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Etilenodiaminas/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular , Células HEK293 , Infecções por HIV/virologia , HIV-1/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Células Mieloides/virologia , Proteínas Serina-Treonina Quinases , Estrutura Terciária de Proteína , Proteína 1 com Domínio SAM e Domínio HD , Vírus da Imunodeficiência Símia/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Replicação Viral , Zinco/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
16.
Cancer Lett ; 375(2): 209-220, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26965998

RESUMO

Chronic intestinal inflammation is closely associated with colon cancer development and STAT3 seems to take center stage in bridging chronic inflammation to colon cancer progress. Here, we discovered that DICER1 was significantly downregulated in response to IL-6 or LPS stimulation and identified a novel mechanism for DICER1 downregulation via proteasomal degradation by ubiquitin ligase complex of CUL4A(DCAF1) in colon cancer cells. Meanwhile, PI3K-AKT signaling pathway phosphorylated DICER1 and contributed to its proteasomal degradation. The regulation of DICER1 by CUL4A(DCAF1) affected cell growth and apoptosis which is controlled by IL-6 activated Jak-STAT3 pathway. Intervention of CUL4A(DCAF1) ubiquitin ligase complex led to fluctuation in expression levels of DICER1 and microRNAs, and thus affected tumor growth in a mouse xenograft model. A panel of microRNAs that were downregulated by IL-6 stimulation was rescued by siRNA-CUL4A, and their predicated functions are involved in regulation of cell proliferation, apoptosis and motility. Furthermore, clinical specimen analysis revealed that decreased DICER1 expression was negatively correlated with STAT3 activation and cancer progression in human colon cancers. DICER1 and p-STAT3 expression levels correlated with 5-year overall survival of colon cancer patients. Consequently, this study proposes that inflammation-induced Jak-STAT3 signaling leads to colon cancer development through proteasomal degradation of DICER1 by ubiquitin ligase complex of CUL4A(DCAF1), which suggests a novel therapeutic opportunity for colon cancer.


Assuntos
Neoplasias do Colo/genética , Proteínas Culina/genética , RNA Helicases DEAD-box/biossíntese , Ribonuclease III/biossíntese , Fator de Transcrição STAT3/biossíntese , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose/genética , Carcinogênese/genética , Proliferação de Células/genética , Neoplasias do Colo/patologia , Proteínas Culina/biossíntese , RNA Helicases DEAD-box/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-6/administração & dosagem , Interleucina-6/genética , Masculino , Camundongos , MicroRNAs/biossíntese , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinases/genética , Ribonuclease III/genética , Fator de Transcrição STAT3/genética , Transdução de Sinais , Análise de Sobrevida , Ubiquitinação/genética , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Virology ; 477: 10-17, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25618414

RESUMO

Vpr and Vpx are a group of highly related accessory proteins from primate lentiviruses. Despite the high degree of amino acid homology within this group, these proteins can be highly divergent in their functions. In this work, we constructed chimeric and mutant proteins between HIV-1 and SIVagm Vpr in order to better understand the structure-function relationships. We tested these constructs for their abilities to induce G2 arrest in human cells and to degrade agmSAMHD1 and Mus81. We found that the C-terminus of HIV-1 Vpr, when transferred onto SIVagm Vpr, provides the latter with the de novo ability to induce G2 arrest in human cells. We confirmed that HIV-1 Vpr induces degradation of Mus81 although, surprisingly, degradation is independent and genetically separable from Vpr׳s ability to induce G2 arrest.


Assuntos
Ciclo Celular , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Produtos do Gene vpr/metabolismo , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Vírus da Imunodeficiência Símia/fisiologia , Produtos do Gene vpr/genética , Células HeLa , Humanos , Proteólise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína 1 com Domínio SAM e Domínio HD
18.
Virology ; 476: 19-25, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25499532

RESUMO

Vpr and Vpx are primate lentivirus proteins that manipulate the cellular CRL4 ubiquitin ligase complex. While Vpr is common to all primate lentiviruses, Vpx is only encoded by HIV-2 and a limited range of SIVs. Although Vpr and Vpx share a high degree of homology they are known to induce markedly different effects in host cell biology through the recruitment of different substrates to CRL4. Here we explore the interaction of HIV-1 Vpr and SIVmac Vpx with the CRL4 substrate receptor DCAF1. Through mutational analysis of DCAF1 we demonstrate that although Vpr and Vpx share a highly similar DCAF1-binding motif, they interact with a different set of residues in DCAF1. In addition, we show that Vpx recruits SAMHD1 through a protein-protein interface that includes interactions of SAMHD1 with both Vpx and DCAF1, as was first suggested in crystallography data by (Schwefel, D., Groom, H.C.T., Boucherit, V.C., Christodoulou, E., Walker, P.A., Stoye, J.P., Bishop, K.N., Taylor, I.A., 2014. Structural basis of lentiviral subversion of a cellular protein degradation pathway., Nature, 505, 234-238).


Assuntos
Proteínas de Transporte/metabolismo , HIV-1/metabolismo , Vírus da Imunodeficiência Símia/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Transporte/química , Proteínas de Transporte/genética , HIV-1/química , HIV-1/genética , Humanos , Dados de Sequência Molecular , Ligação Proteica , Proteínas Serina-Treonina Quinases , Estrutura Terciária de Proteína , Alinhamento de Sequência , Vírus da Imunodeficiência Símia/química , Vírus da Imunodeficiência Símia/genética , Ubiquitina-Proteína Ligases , Proteínas Virais Reguladoras e Acessórias/química , Proteínas Virais Reguladoras e Acessórias/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/química , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
19.
Virology ; 444(1-2): 191-202, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23849790

RESUMO

The HIV-1 protein Vpr enhances macrophage infection, triggers G2 cell cycle arrest, and targets cells for NK-cell killing. Vpr acts through the CRL4(DCAF1) ubiquitin ligase complex to cause G2 arrest and trigger expression of NK ligands. Corresponding ubiquitination targets have not been identified. UNG2 and SMUG1 are the only known substrates for Vpr-directed depletion through CRL4(DCAF1). Here we identify the endoribonuclease Dicer as a target of HIV-1 Vpr-directed proteasomal degradation through CRL4(DCAF1). We show that HIV-1 Vpr inhibits short hairpin RNA function as expected upon reduction of Dicer levels. Dicer inhibits HIV-1 replication in T cells. We demonstrate that Dicer also restricts HIV-1 replication in human monocyte-derived macrophages (MDM) and that reducing Dicer expression in MDMs enhances HIV-1 infection in a Vpr-dependent manner. Our results support a model in which Vpr complexes with human Dicer to boost its interaction with the CRL4(DCAF1) ubiquitin ligase complex and its subsequent degradation.


Assuntos
RNA Helicases DEAD-box/metabolismo , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Macrófagos/virologia , Ribonuclease III/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Células Cultivadas , Humanos , Macrófagos/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Linfócitos T/imunologia , Linfócitos T/virologia
20.
Viruses ; 3(9): 1624-33, 2011 09.
Artigo em Inglês | MEDLINE | ID: mdl-21994799

RESUMO

The lentiviral accessory protein, Vpx, is known to counteract a restriction factor that is specific to myeloid cells, such as macrophages and dendritic cells. This review summarizes the findings in two seminal studies that identify SAMHD1 as the cellular protein that is responsible for myeloid cell restriction, and establish the existence of other types of restriction in these cells.


Assuntos
Infecções por HIV/virologia , HIV-1/fisiologia , HIV-2/fisiologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Células Mieloides/metabolismo , Animais , Doenças Autoimunes do Sistema Nervoso/virologia , Células Dendríticas/metabolismo , Células Dendríticas/virologia , HIV-1/genética , HIV-2/genética , Humanos , Macrófagos/metabolismo , Macrófagos/virologia , Proteínas Monoméricas de Ligação ao GTP/genética , Células Mieloides/virologia , Malformações do Sistema Nervoso/virologia , Proteína 1 com Domínio SAM e Domínio HD , Vírus da Imunodeficiência Símia/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA