RESUMO
Whole Genome Duplications (WGDs) are events that double the content and structure of a genome. In some organisms, multiple WGD events have been observed while loss of genetic material is a typical occurrence following a WGD event. The requirement of classic rearrangement models that every genetic marker has to occur exactly two times in a given problem instance, therefore, poses a serious restriction in this context. The Double-Cut and Join (DCJ) model is a simple and powerful model for the analysis of large structural rearrangements. After being extended to the DCJ-Indel model, capable of handling gains and losses of genetic material, research has shifted in recent years toward enabling it to handle natural genomes, for which no assumption about the distribution of markers has to be made. The traditional theoretical framework for studying WGD events is the Genome Halving Problem (GHP). While the GHP is solved for the DCJ model for genomes without losses, there are currently no exact algorithms utilizing the DCJ-Indel model that are able to handle natural genomes. In this work, we present a general view on the DCJ-Indel model that we apply to derive an exact polynomial time and space solution for the GHP on genomes with at most two genes per family before generalizing the problem to an integer linear program solution for natural genomes.
Assuntos
Algoritmos , Genoma , Modelos Genéticos , Genoma/genética , Duplicação Gênica , Evolução MolecularRESUMO
BACKGROUND: Two genomes [Formula: see text] and [Formula: see text] over the same set of gene families form a canonical pair when each of them has exactly one gene from each family. Denote by [Formula: see text] the number of common families of [Formula: see text] and [Formula: see text]. Different distances of canonical genomes can be derived from a structure called breakpoint graph, which represents the relation between the two given genomes as a collection of cycles of even length and paths. Let [Formula: see text] and [Formula: see text] be respectively the numbers of cycles of length i and of paths of length j in the breakpoint graph of genomes [Formula: see text] and [Formula: see text]. Then, the breakpoint distance of [Formula: see text] and [Formula: see text] is equal to [Formula: see text]. Similarly, when the considered rearrangements are those modeled by the double-cut-and-join (DCJ) operation, the rearrangement distance of [Formula: see text] and [Formula: see text] is [Formula: see text], where c is the total number of cycles and [Formula: see text] is the total number of paths of even length. MOTIVATION: The distance formulation is a basic unit for several other combinatorial problems related to genome evolution and ancestral reconstruction, such as median or double distance. Interestingly, both median and double distance problems can be solved in polynomial time for the breakpoint distance, while they are NP-hard for the rearrangement distance. One way of exploring the complexity space between these two extremes is to consider a [Formula: see text] distance, defined to be [Formula: see text], and increasingly investigate the complexities of median and double distance for the [Formula: see text] distance, then the [Formula: see text] distance, and so on. RESULTS: While for the median much effort was done in our and in other research groups but no progress was obtained even for the [Formula: see text] distance, for solving the double distance under [Formula: see text] and [Formula: see text] distances we could devise linear time algorithms, which we present here.
RESUMO
Background & Aims: Primary biliary cholangitis (PBC) is a chronic cholangiopathy characterised by immuno-mediated injury of interlobular bile ducts leading to intrahepatic cholestasis and progressive liver fibrosis. PBC histology is characterised by portal inflammation, progressive fibrosis, ductopenia, and the appearance of the so-called ductular reaction. The aim of the present study was to investigate the pathogenetic relevance of ductular reaction in PBC. Methods: Liver biopsies were collected from naïve people with PBC (N = 87). Clinical-serological parameters were obtained at diagnosis and after 1 year of ursodeoxycholic acid (UDCA) treatment. Histological staging was performed on all slides according to multiple scoring systems and criteria for PBC. Liver samples were obtained from Mdr2 -/- mice treated with or without UDCA. Samples were processed for histology, immunohistochemistry, and immunofluorescence. Results: Ductular reaction in people with PBC correlated with the disease stage and liver fibrosis, but not with disease activity; an extensive ductular reaction correlated with serum alkaline phosphatase levels at diagnosis, response to UDCA, and individuals' estimated survival, independently from other histological parameters, including disease stage. In people with PBC, reactive ductules were associated with the establishment of junctions with bile canaliculi and with fibrogenetic cell activation. Consistently, in a mouse model of intrahepatic cholestasis, UDCA treatment was effective in reducing ductular reaction and fibrosis and increasing ductular-canalicular junctions. Conclusions: Extensive ductular reaction outlines a severe histologic phenotype in PBC and is associated with an inadequate therapy response and a worse estimated prognosis. Lay summary: In people affected by primary biliary cholangitis (PBC), the histological appearance of extensive ductular reaction identifies individuals at risk of progressive fibrosis. Ductular reaction at diagnosis correlates with the lack of response to first-line therapy with ursodeoxycholic acid and serves to restore ductular-canalicular junctions in people with PBC. Assessing ductular reaction extension at diagnosis may add valuable information for clinicians.
RESUMO
BACKGROUND: A classical problem in comparative genomics is to compute the rearrangement distance, that is the minimum number of large-scale rearrangements required to transform a given genome into another given genome. The traditional approaches in this area are family-based, i.e., require the classification of DNA fragments of both genomes into families. Furthermore, the most elementary family-based models, which are able to compute distances in polynomial time, restrict the families to occur at most once in each genome. In contrast, the distance computation in models that allow multifamilies (i.e., families with multiple occurrences) is NP-hard. Very recently, Bohnenkämper et al. (J Comput Biol 28:410-431, 2021) proposed an ILP formulation for computing the genomic distance of genomes with multifamilies, allowing structural rearrangements, represented by the generic double cut and join (DCJ) operation, and content-modifying insertions and deletions of DNA segments. This ILP is very efficient, but must maximize a matching of the genes in each multifamily, in order to prevent the free lunch artifact that would otherwise let empty or almost empty matchings give smaller distances. RESULTS: In this paper, we adopt the alternative family-free setting that, instead of family classification, simply uses the pairwise similarities between DNA fragments of both genomes to compute their rearrangement distance. We adapted the ILP mentioned above and developed a model in which pairwise similarities are used to assign weights to both matched and unmatched genes, so that an optimal solution does not necessarily maximize the matching. Our model then results in a natural family-free genomic distance, that takes into consideration all given genes, without prior classification into families, and has a search space composed of matchings of any size. In spite of its bigger search space, our ILP seems to be boosted by a reduction of the number of co-optimal solutions due to the weights. Indeed, it converged faster than the original one by Bohnenkämper et al. for instances with the same number of multiple connections. We can handle not only bacterial genomes, but also fungi and insects, or sets of chromosomes of mammals and plants. In a comparison study of six fruit fly genomes, we obtained accurate results.
RESUMO
The computation of genomic distances has been a very active field of computational comparative genomics over the past 25 years. Substantial results include the polynomial-time computability of the inversion distance by Hannenhalli and Pevzner in 1995 and the introduction of the double cut and join distance by Yancopoulos et al. in 2005. Both results, however, rely on the assumption that the genomes under comparison contain the same set of unique markers (syntenic genomic regions, sometimes also referred to as genes). In 2015, Shao et al. relax this condition by allowing for duplicate markers in the analysis. This generalized version of the genomic distance problem is NP-hard, and they give an integer linear programming (ILP) solution that is efficient enough to be applied to real-world datasets. A restriction of their approach is that it can be applied only to balanced genomes that have equal numbers of duplicates of any marker. Therefore, it still needs a delicate preprocessing of the input data in which excessive copies of unbalanced markers have to be removed. In this article, we present an algorithm solving the genomic distance problem for natural genomes, in which any marker may occur an arbitrary number of times. Our method is based on a new graph data structure, the multi-relational diagram, that allows an elegant extension of the ILP by Shao et al. to count runs of markers that are under- or over-represented in one genome with respect to the other and need to be inserted or deleted, respectively. With this extension, previous restrictions on the genome configurations are lifted, for the first time enabling an uncompromising rearrangement analysis. Any marker sequence can directly be used for the distance calculation. The evaluation of our approach shows that it can be used to analyze genomes with up to a few 10,000 markers, which we demonstrate on simulated and real data.
Assuntos
Biologia Computacional , Rearranjo Gênico/genética , Genoma/genética , Genômica , Algoritmos , Modelos Genéticos , Programação LinearRESUMO
BACKGROUND: Reconstructing ancestral genomes is one of the central problems presented in genome rearrangement analysis since finding the most likely true ancestor is of significant importance in phylogenetic reconstruction. Large scale genome rearrangements can provide essential insights into evolutionary processes. However, when the genomes are large and distant, classical median solvers have failed to adequately address these challenges due to the exponential increase of the search space. Consequently, solving ancestral genome inference problems constitutes a task of paramount importance that continues to challenge the current methods used in this area, whose difficulty is further increased by the ongoing rapid accumulation of whole-genome data. RESULTS: In response to these challenges, we provide two contributions for ancestral genome inference. First, an improved discrete quantum-behaved particle swarm optimization algorithm (IDQPSO) by averaging two of the fitness values is proposed to address the discrete search space. Second, we incorporate DCJ sorting into the IDQPSO (IDQPSO-Median). In comparison with the other methods, when the genomes are large and distant, IDQPSO-Median has the lowest median score, the highest adjacency accuracy, and the closest distance to the true ancestor. In addition, we have integrated our IDQPSO-Median approach with the GRAPPA framework. Our experiments show that this new phylogenetic method is very accurate and effective by using IDQPSO-Median. CONCLUSIONS: Our experimental results demonstrate the advantages of IDQPSO-Median approach over the other methods when the genomes are large and distant. When our experimental results are evaluated in a comprehensive manner, it is clear that the IDQPSO-Median approach we propose achieves better scalability compared to existing algorithms. Moreover, our experimental results by using simulated and real datasets confirm that the IDQPSO-Median, when integrated with the GRAPPA framework, outperforms other heuristics in terms of accuracy, while also continuing to infer phylogenies that were equivalent or close to the true trees within 5 days of computation, which is far beyond the difficulty level that can be handled by GRAPPA.
Assuntos
Algoritmos , Genoma , Rearranjo GênicoRESUMO
This paper generalizes previous studies on genome rearrangement under biological constraints, using double cut and join (DCJ). We propose a model for weighted DCJ, along with a family of optimization problems called φ -MCPS (Minimum Cost Parsimonious Scenario), that are based on labeled graphs. We show how to compute solutions to general instances of φ -MCPS, given an algorithm to compute φ -MCPS on a circular genome with exactly one occurrence of each gene. These general instances can have an arbitrary number of circular and linear chromosomes, and arbitrary gene content. The practicality of the framework is displayed by presenting polynomial-time algorithms that generalize the results of Bulteau, Fertin, and Tannier on the Sorting by wDCJs and indels in intergenes problem, and that generalize previous results on the Minimum Local Parsimonious Scenario problem.
RESUMO
BACKGROUND: Genome rearrangements are essential processes for evolution and are responsible for existing varieties of genome architectures. Many studies have been conducted to obtain an algorithm that identifies the minimum number of inversions that are necessary to transform one genome into another; this allows for genome sequence representation in polynomial time. Studies have not been conducted on the topic of rearranging a genome when it is represented as a secondary structure. Unlike sequences, the secondary structure preserves the functionality of the genome. Sequences can be different, but they all share the same structure and, therefore, the same functionality. RESULTS: This paper proposes a double cut and join for RNA secondary structures (DCJ-RNA) algorithm. This algorithm allows for the description of evolutionary scenarios that are based on secondary structures rather than sequences. The main aim of this paper is to suggest an efficient algorithm that can help researchers compare two ribonucleic acid (RNA) secondary structures based on rearrangement operations. The results, which are based on real datasets, show that the algorithm is able to count the minimum number of rearrangement operations, as well as to report an optimum scenario that can increase the similarity between the two structures. CONCLUSION: The algorithm calculates the distance between structures and reports a scenario based on the minimum rearrangement operations required to make the given structure similar to the other. DCJ-RNA can also be used to measure the distance between the two structures. This can help identify the common functionalities between different species.
Assuntos
Conformação de Ácido Nucleico , RNA/química , Algoritmos , Sequência de Bases , Inversão Cromossômica , Bases de Dados de Ácidos Nucleicos , Modelos Genéticos , Fatores de TempoRESUMO
BACKGROUND: Combinatorial works on genome rearrangements have so far ignored the influence of intergene sizes, i.e. the number of nucleotides between consecutive genes, although it was recently shown decisive for the accuracy of inference methods (Biller et al. in Genome Biol Evol 8:1427-39, 2016; Biller et al. in Beckmann A, Bienvenu L, Jonoska N, editors. Proceedings of Pursuit of the Universal-12th conference on computability in Europe, CiE 2016, Lecture notes in computer science, vol 9709, Paris, France, June 27-July 1, 2016. Berlin: Springer, p. 35-44, 2016). In this line, we define a new genome rearrangement model called wDCJ, a generalization of the well-known double cut and join (or DCJ) operation that modifies both the gene order and the intergene size distribution of a genome. RESULTS: We first provide a generic formula for the wDCJ distance between two genomes, and show that computing this distance is strongly NP-complete. We then propose an approximation algorithm of ratio 4/3, and two exact ones: a fixed-parameter tractable (FPT) algorithm and an integer linear programming (ILP) formulation. CONCLUSIONS: We provide theoretical and empirical bounds on the expected growth of the parameter at the center of our FPT and ILP algorithms, assuming a probabilistic model of evolution under wDCJ, which shows that both these algorithms should run reasonably fast in practice.
RESUMO
BACKGROUND: The ability to estimate the evolutionary distance between extant genomes plays a crucial role in many phylogenomic studies. Often such estimation is based on the parsimony assumption, implying that the distance between two genomes can be estimated as the rearrangement distance equal the minimal number of genome rearrangements required to transform one genome into the other. However, in reality the parsimony assumption may not always hold, emphasizing the need for estimation that does not rely on the rearrangement distance. The distance that accounts for the actual (rather than minimal) number of rearrangements between two genomes is often referred to as the true evolutionary distance. While there exists a method for the true evolutionary distance estimation, it however assumes that genomes can be broken by rearrangements equally likely at any position in the course of evolution. This assumption, known as the random breakage model, has recently been refuted in favor of the more rigorous fragile breakage model postulating that only certain "fragile" genomic regions are prone to rearrangements. RESULTS: We propose a new method for estimating the true evolutionary distance between two genomes under the fragile breakage model. We evaluate the proposed method on simulated genomes, which show its high accuracy. We further apply the proposed method for estimation of evolutionary distances within a set of five yeast genomes and a set of two fish genomes. CONCLUSIONS: The true evolutionary distances between the five yeast genomes estimated with the proposed method reveals that some pairs of yeast genomes violate the parsimony assumption. The proposed method further demonstrates that the rearrangement distance between the two fish genomes underestimates their evolutionary distance by about 20%. These results demonstrate how drastically the two distances can differ and justify the use of true evolutionary distance in phylogenomic studies.
Assuntos
Evolução Molecular , Modelos Genéticos , Genômica , FilogeniaRESUMO
BACKGROUND: Rearrangements are large-scale mutations in genomes, responsible for complex changes and structural variations. Most rearrangements that modify the organization of a genome can be represented by the double cut and join (DCJ) operation. Given two balanced genomes, i.e., two genomes that have exactly the same number of occurrences of each gene in each genome, we are interested in the problem of computing the rearrangement distance between them, i.e., finding the minimum number of DCJ operations that transform one genome into the other. This problem is known to be NP-hard. RESULTS: We propose a linear time approximation algorithm with approximation factor O(k) for the DCJ distance problem, where k is the maximum number of occurrences of any gene in the input genomes. Our algorithm works for linear and circular unichromosomal balanced genomes and uses as an intermediate step an O(k)-approximation for the minimum common string partition problem, which is closely related to the DCJ distance problem. CONCLUSIONS: Experiments on simulated data sets show that our approximation algorithm is very competitive both in efficiency and in quality of the solutions.
RESUMO
Genome rearrangements are large-scale evolutionary events that shuffle genomic architectures. The minimal number of such events between two genomes is often used in phylogenomic studies to measure the evolutionary distance between the genomes. Double-Cut-and-Join (DCJ) operations represent a convenient model of most common genome rearrangements (reversals, translocations, fissions, and fusions), while other genome rearrangements, such as transpositions, can be modeled by pairs of DCJs. Since the DCJ model does not directly account for transpositions, their impact on DCJ scenarios is unclear. In the present work, we study implicit appearance of transpositions (as pairs of DCJs) in DCJ scenarios. We consider shortest DCJ scenarios satisfying the maximum parsimony assumption, as well as more general DCJ scenarios based on some realistic but less restrictive assumptions. In both cases, we derive a uniform lower bound for the rate of implicit transpositions, which depends only on the genomes but not a particular DCJ scenario between them. Our results imply that implicit appearance of transpositions in DCJ scenarios may be unavoidable or even abundant for some pairs of genomes. We estimate that for mammalian genomes implicit transpositions constitute at least 6% of genome rearrangements.
RESUMO
BACKGROUND: The study of genomic variation has provided key insights into the functional role of mutations. Predominantly, studies have focused on single nucleotide variants (SNV), which are relatively easy to detect and can be described with rich mathematical models. However, it has been observed that genomes are highly plastic, and that whole regions can be moved, removed or duplicated in bulk. These structural variants (SV) have been shown to have significant impact on phenotype, but their study has been held back by the combinatorial complexity of the underlying models. RESULTS: We describe here a general model of structural variation that encompasses both balanced rearrangements and arbitrary copy-number variants (CNV). CONCLUSIONS: In this model, we show that the space of possible evolutionary histories that explain the structural differences between any two genomes can be sampled ergodically.
RESUMO
BACKGROUND: Traditionally, the merit of a rearrangement scenario between two gene orders has been measured based on a parsimony criteria alone; two scenarios with the same number of rearrangements are considered equally good. In this paper, we acknowledge that each rearrangement has a certain likelihood of occurring based on biological constraints, e.g. physical proximity of the DNA segments implicated or repetitive sequences. RESULTS: We propose optimization problems with the objective of maximizing overall likelihood, by weighting the rearrangements. We study a binary weight function suitable to the representation of sets of genome positions that are most likely to have swapped adjacencies. We give a polynomial-time algorithm for the problem of finding a minimum weight double cut and join scenario among all minimum length scenarios. In the process we solve an optimization problem on colored noncrossing partitions, which is a generalization of the Maximum Independent Set problem on circle graphs. CONCLUSIONS: We introduce a model for weighting genome rearrangements and show that under simple yet reasonable conditions, a fundamental distance can be computed in polynomial time. This is achieved by solving a generalization of the Maximum Independent Set problem on circle graphs. Several variants of the problem are also mentioned.
RESUMO
Since most dramatic genomic changes are caused by genome rearrangements as well as gene duplications and gain/loss events, it becomes crucial to understand their mechanisms and reconstruct ancestral genomes of the given genomes. This problem was shown to be NP-complete even in the "simplest" case of three genomes, thus calling for heuristic rather than exact algorithmic solutions. At the same time, a larger number of input genomes may actually simplify the problem in practice as it was earlier illustrated with MGRA, a state-of-the-art software tool for reconstruction of ancestral genomes of multiple genomes. One of the key obstacles for MGRA and other similar tools is presence of breakpoint reuses when the same breakpoint region is broken by several different genome rearrangements in the course of evolution. Furthermore, such tools are often limited to genomes composed of the same genes with each gene present in a single copy in every genome. This limitation makes these tools inapplicable for many biological datasets and degrades the resolution of ancestral reconstructions in diverse datasets. We address these deficiencies by extending the MGRA algorithm to genomes with unequal gene contents. The developed next-generation tool MGRA2 can handle gene gain/loss events and shares the ability of MGRA to reconstruct ancestral genomes uniquely in the case of limited breakpoint reuse. Furthermore, MGRA2 employs a number of novel heuristics to cope with higher breakpoint reuse and process datasets inaccessible for MGRA. In practical experiments, MGRA2 shows superior performance for simulated and real genomes as compared to other ancestral genome reconstruction tools.
Assuntos
Evolução Molecular , Amplificação de Genes , Deleção de Genes , Ordem dos Genes , Genoma , Software , Animais , Pontos de Quebra do Cromossomo , Modelos GenéticosRESUMO
BACKGROUND: Given two genomes that have diverged by a series of rearrangements, we infer minimum Double Cut-and-Join (DCJ) scenarios to explain their organization differences, coupled with indel scenarios to explain their intergene size distribution, where DCJs themselves also alter the sizes of broken intergenes. RESULTS: We give a polynomial-time algorithm that, given two genomes with arbitrary intergene size distributions, outputs a DCJ scenario which optimizes on the number of DCJs, and given this optimal number of DCJs, optimizes on the total sum of the sizes of the indels. CONCLUSIONS: We show that there is a valuable information in the intergene sizes concerning the rearrangement scenario itself. On simulated data we show that statistical properties of the inferred scenarios are closer to the true ones than DCJ only scenarios, i.e. scenarios which do not handle intergene sizes.
Assuntos
Rearranjo Gênico/genética , Genoma , Modelos Genéticos , Algoritmos , Mutação INDELRESUMO
Structural variation in genomes can be revealed by many (dis)similarity measures. Rearrangement operations, such as the so called double-cut-and-join (DCJ), are large-scale mutations that can create complex changes and produce such variations in genomes. A basic task in comparative genomics is to find the rearrangement distance between two given genomes, i.e., the minimum number of rearragement operations that transform one given genome into another one. In a family-based setting, genes are grouped into gene families and efficient algorithms have already been presented to compute the DCJ distance between two given genomes. In this work we propose the problem of computing the DCJ distance of two given genomes without prior gene family assignment, directly using the pairwise similarities between genes. We prove that this new family-free DCJ distance problem is APX-hard and provide an integer linear program to its solution. We also study a family-free DCJ similarity and prove that its computation is NP-hard.
RESUMO
Computing the edit distance between two genomes is a basic problem in the study of genome evolution. The double-cut-and-join (DCJ) model has formed the basis for most algorithmic research on rearrangements over the last few years. The edit distance under the DCJ model can be computed in linear time for genomes without duplicate genes, while the problem becomes NP-hard in the presence of duplicate genes. In this article, we propose an integer linear programming (ILP) formulation to compute the DCJ distance between two genomes with duplicate genes. We also provide an efficient preprocessing approach to simplify the ILP formulation while preserving optimality. Comparison on simulated genomes demonstrates that our method outperforms MSOAR in computing the edit distance, especially when the genomes contain long duplicated segments. We also apply our method to assign orthologous gene pairs among human, mouse, and rat genomes, where once again our method outperforms MSOAR.
Assuntos
Algoritmos , Genes Duplicados , Genoma , Genômica/estatística & dados numéricos , Programação Linear , Animais , Evolução Biológica , Genômica/métodos , Humanos , Camundongos , Modelos Genéticos , RatosRESUMO
One of the fundamental problems in bioinformatics is phylogenetic tree reconstruction, which can be used for classifying living organisms into different taxonomic clades. The classical approach to this problem is based on a marker such as 16S ribosomal RNA. Since evolutionary events like genomic rearrangements are not included in reconstructions of phylogenetic trees based on single genes, much effort has been made to find other characteristics for phylogenetic reconstruction in recent years. With the increasing availability of completely sequenced genomes, gene order can be considered as a new solution for this problem. In the present work, we applied maximal common intervals (MCIs) in two or more genomes to infer their distance and to reconstruct their evolutionary relationship. Additionally, measures based on uncommon segments (UCS's), i.e., those genomic segments which are not detected as part of any of the MCIs, are also used for phylogenetic tree reconstruction. We applied these two types of measures for reconstructing the phylogenetic tree of 63 prokaryotes with known COG (clusters of orthologous groups) families. Similarity between the MCI-based (resp. UCS-based) reconstructed phylogenetic trees and the phylogenetic tree obtained from NCBI taxonomy browser is as high as 93.1% (resp. 94.9%). We show that in the case of this diverse dataset of prokaryotes, tree reconstruction based on MCI and UCS outperforms most of the currently available methods based on gene orders, including breakpoint distance and DCJ. We additionally tested our new measures on a dataset of 13 closely-related bacteria from the genus Prochlorococcus. In this case, distances like rearrangement distance, breakpoint distance and DCJ proved to be useful, while our new measures are still appropriate for phylogenetic reconstruction.