RESUMO
Deciphering how DCAFs (DDB1-CUL4 Associated Factors) modulate a broad spectrum of cellular processes, including cell cycle progression and maintenance of genomic integrity is critical to better understand cellular homeostasis and diseases. Cells contain more than 100 DCAFs that associate with the Cullin-Ring Ubiquitin Ligase 4 (CRL4) complex that target specific protein substrates for degradation. DCAFs are thought to act as substrate receptors that dictate the specificity of the ubiquitination machinery ("catalytic DCAFs"). However, recent studies have suggested that some DCAFs might play a different role by targeting CRL4 complexes to distinct cellular compartments ("structural DCAFs"). Once localized to their correct cellular domains, these CRLs dissociate from the structural DCAFs prior to their association with other, substrate-specific catalytic DCAFs. Thus, we propose that DCAF switches can provide a mechanistic basis for the degradation of proteins that regulate cell growth and proliferation at precise points in space and time.
Assuntos
Proteínas de Ligação a DNA , Ubiquitina-Proteína Ligases , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , UbiquitinaçãoRESUMO
BACKGROUND: The WD40-repeat containing proteins, including DDB1-CUL4-associated factors (DCAFs), are abundant and conserved proteins that play important roles in different cellular processes including spermatogenesis. DCAFs are subset of WD40 family proteins that contain WDxR motif and have been proposed to function as substrate receptor for Cullin4-RING-based E3 ubiquitin ligase complexes to recruit diverse proteins for ubiquitination, a vital process in spermatogenesis. Large number of WD40 genes has been identified in different species including mouse and human. However, a systematic expression profiling of WD40 genes in different tissues of mouse and human has not been investigated. We hypothesize that large number of WD40 genes may express highly or specifically in the testis, where their expression is uniquely regulated during testis development and spermatogenesis. Therefore, the objective of this study is to mine and characterize expression patterns of WD40 genes in different tissues of mouse and human with particular emphasis on DCAF genes expressions during mouse testicular development. RESULTS: Publically available RNA sequencing (RNA seq) data mining identified 347 and 349 WD40 genes in mouse and human, respectively. Hierarchical clustering and heat map analyses of RNA seq datasets revealed differential expression patterns of WD40 genes with around 60-73% of the genes were highly or specifically expressed in testis. Similarly, around 74-83% of DCAF genes were predominantly or specifically expressed in testis. Moreover, WD40 genes showed distinct expression patterns during embryonic and postnatal testis development in mice. Finally, different germ cell populations of testis showed specific patterns of WD40 genes expression. Predicted gene ontology analyses revealed more than 80% of these proteins are implicated in cellular, metabolic, biological regulation and cell localization processes. CONCLUSIONS: We have identified large number of WD40 family genes that are highly or specifically expressed in the testes of mouse and human. Moreover, WD40 genes have distinct expression patterns during embryonic and postnatal development of the testis in mice. Further, different germ cell populations within the testis showed specific patterns of WD40 genes expression. These results provide foundation for further research towards understanding the functional genomics and molecular mechanisms of mammalian testis development and spermatogenesis.