Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dis Model Mech ; 16(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38050706

RESUMO

Duchenne muscular dystrophy (DMD), caused by mutations in the dystrophin (DMD) gene, is associated with fatal muscle degeneration and atrophy. Patients with DMD have progressive reductions in skeletal muscle strength and resistance to eccentric muscle stretch. Using the DE50-MD dog model of DMD, we assessed tibiotarsal joint (TTJ) flexor and extensor force dynamics, and the resistance of dystrophic muscle to eccentric stretch. Male DE50-MD and wild-type (WT) dogs were analysed every 3 months until 18 months of age. There was an age-associated decline in eccentric contraction resistance in DE50-MD TTJ flexors that discriminated, with high statistical power, WT from DE50-MD individuals. For isometric contraction, at the majority of timepoints, DE50-MD dogs had lower maximum absolute and relative TTJ flexor force, reduced TTJ muscle contraction times and prolonged relaxation compared to those in WT dogs. Cranial tibial muscles, the primary TTJ flexor, of 18-month-old DE50-MD dogs had significant numbers of regenerating fibres as expected, but also fewer type I fibres and more hybrid fibres than those in WT dogs. We conclude that these parameters, in particular, the eccentric contraction decrement, could be used as objective outcome measures for pre-clinical assessment in DE50-MD dogs.


Assuntos
Distrofia Muscular de Duchenne , Humanos , Cães , Masculino , Animais , Lactente , Distrofia Muscular de Duchenne/genética , Músculo Esquelético , Distrofina/genética , Contração Muscular/fisiologia , Força Muscular/fisiologia , Mutação
2.
Dis Model Mech ; 15(12)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36444978

RESUMO

Duchenne muscular dystrophy (DMD) is a fatal muscle-wasting disease, caused by mutations in the dystrophin gene, characterised by cycles of muscle degeneration, inflammation and regeneration. Recently, there has been renewed interest specifically in drugs that ameliorate muscle inflammation in DMD patients. The DE50-MD dog is a model of DMD that closely mimics the human DMD phenotype. We quantified inflammatory proteins in serum from wild-type (WT) and DE50-MD dogs aged 3-18 months to identify biomarkers for future pre-clinical trials. Significantly higher concentrations of C-C motif chemokine ligand 2 (CCL2), granulocyte-macrophage colony-stimulating factor (GM-CSF or CSF2), keratinocyte chemotactic-like (KC-like, homologous to mouse CXCL1), TNFα (or TNF), and interleukins IL2, IL6, IL7, IL8 (CXCL8), IL10, IL15 and IL18 were detected in DE50-MD serum compared to WT serum. Of these, CCL2 best differentiated the two genotypes. The relative level of CCL2 mRNA was greater in the vastus lateralis muscle of DE50-MD dogs than in that of WT dogs, and CCL2 was expressed both within and at the periphery of damaged myofibres. Serum CCL2 concentration was significantly associated with acid phosphatase staining in vastus lateralis biopsy samples in DE50-MD dogs. In conclusion, the serum cytokine profile suggests that inflammation is a feature of the DE50-MD phenotype. Quantification of serum CCL2 in particular is a useful non-invasive biomarker of the DE50-MD phenotype.


Assuntos
Citocinas , Distrofia Muscular de Duchenne , Humanos , Cães , Camundongos , Animais , Atrofia Muscular
3.
Wellcome Open Res ; 7: 238, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36865375

RESUMO

Background: Animal models of Duchenne muscular dystrophy (DMD) are essential to study disease progression and assess efficacy of therapeutic intervention, however dystrophic mice fail to display a clinically relevant phenotype, limiting translational utility. Dystrophin-deficient dogs exhibit disease similar to humans, making them increasingly important for late-stage preclinical evaluation of candidate therapeutics. The DE50-MD canine model of DMD carries a mutation within a human 'hotspot' region of the dystrophin gene, amenable to exon-skipping and gene editing strategies. As part of a large natural history study of disease progression, we have characterised the DE50-MD skeletal muscle phenotype to identify parameters that could serve as efficacy biomarkers in future preclinical trials. Methods: Vastus lateralis muscles were biopsied from a large cohort of DE50-MD dogs and healthy male littermates at 3-monthly intervals (3-18 months) for longitudinal analysis, with multiple muscles collected post-mortem to evaluate body-wide changes. Pathology was characterised quantitatively using histology and measurement of gene expression to determine statistical power and sample sizes appropriate for future work. Results: DE50-MD skeletal muscle exhibits widespread degeneration/regeneration, fibrosis, atrophy and inflammation. Degenerative/inflammatory changes peak during the first year of life, while fibrotic remodelling appears more gradual. Pathology is similar in most skeletal muscles, but in the diaphragm, fibrosis is more prominent, associated with fibre splitting and pathological hypertrophy. Picrosirius red and acid phosphatase staining represent useful quantitative histological biomarkers for fibrosis and inflammation respectively, while qPCR can be used to measure regeneration ( MYH3, MYH8), fibrosis ( COL1A1), inflammation ( SPP1), and stability of DE50-MD dp427 transcripts. Conclusion: The DE50-MD dog is a valuable model of DMD, with pathological features similar to young, ambulant human patients. Sample size and power calculations show that our panel of muscle biomarkers are of strong pre-clinical value, able to detect therapeutic improvements of even 25%, using trials with only six animals per group.

4.
Neuromuscul Disord ; 31(8): 736-751, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34384671

RESUMO

The DE50-MD canine model of Duchenne muscular dystrophy (DMD) has a dystrophin gene splice site mutation causing deletion of exon 50, an out-of-frame transcript and absence of dystrophin expression in striated muscles. We hypothesized that the musculoskeletal phenotype of DE50-MD dogs could be detected using Magnetic Resonance Imaging (MRI), that it would progress with age and that it would reflect those in other canine models and DMD patients. 15 DE50-MD and 10 age-matched littermate wild type (WT) male dogs underwent MRI every 3 months from 3 to 18 months of age. Normalized muscle volumes, global muscle T2 and ratio of post- to pre-gadolinium T1-weighted SI were evaluated in 7 pelvic limb and 4 lumbar muscles bilaterally. DE50-MD dogs, compared to WT, had smaller volumes in all muscles, except the cranial sartorius; global muscle T2 was significantly higher in DE50-MD dogs compared to WT. Muscle volumes plateaued and global muscle T2 decreased with age. Normalized muscle volumes and global muscle T2 revealed significant differences between groups longitudinally and should be useful to determine efficacy of therapeutics in this model with suitable power and low sample sizes. Musculoskeletal changes reflect those of DMD patients and other dog models.


Assuntos
Imageamento por Ressonância Magnética , Músculo Esquelético/diagnóstico por imagem , Distrofia Muscular Animal/diagnóstico por imagem , Distrofia Muscular de Duchenne/diagnóstico por imagem , Animais , Modelos Animais de Doenças , Cães , Masculino , Músculo Esquelético/patologia
5.
Wellcome Open Res ; 6: 354, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35600245

RESUMO

Background: Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease caused by mutations in the dystrophin gene. Due to their phenotypic similarity to human patients, large animal models are invaluable tools for pre-clinical trials. The DE50-MD dog is a relatively new model of DMD, and carries a therapeutically-tractable mutation lying within the hotspot for human patients, making it especially valuable. Prior to conducting therapeutic trials using this novel animal model, it is essential to establish a panel of viable biomarkers. Methods: We evaluated a panel of blood-borne biomarkers of musculoskeletal disease in the DE50-MD dog. Venous blood samples were obtained monthly throughout an 18-month study period in DE50-MD (N=18) and wild-type (WT) control (N=14) dogs. A panel of potential plasma/serum biomarkers of DMD was measured and their theoretical utility in future clinical trials determined using sample size calculations. Results: Compared to WT dogs, DE50-MD dogs had substantially higher circulating creatine kinase (CK) activities, myomesin-3 (MYOM3), and the dystromiRs miR-1, miR-133a and miR-206, but significantly lower serum myostatin concentrations. An age-associated pattern, similar to that observed in DMD patients, was seen for CK and MYOM3. Sample size calculations suggested that low cohort sizes (N≤3) could be used to detect up to a 50% improvement in DE50-MD results towards WT levels for each biomarker or a combination thereof (via principal component analysis); as few as N=3 animals should enable detection of a 25% improvement using a combined biomarker approach (alpha 0.05, power 0.8). Conclusions: We have established a panel of blood-borne biomarkers that could be used to monitor musculoskeletal disease or response to a therapeutic intervention in the DE50-MD dog using low numbers of animals. The blood biomarker profile closely mimics that of DMD patients, supporting the hypothesis that this DMD model would be suitable for use in pre-clinical trials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA