Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Int J Biol Macromol ; 268(Pt 2): 131811, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677694

RESUMO

It is estimated that 15 % of couples at reproductive age worldwide suffer from infertility, approximately 50 % of cases are caused by male factors. Significant progress has been made in the diagnosis and treatment of male infertility through assisted reproductive technology and molecular genetics methods. However, there is still inadequate research on the underlying mechanisms of gene regulation in the process of spermatogenesis. Guanine-quadruplexes (G4s) are a class of non-canonical secondary structures of nucleic acid commonly found in genomes and RNAs that play important roles in various biological processes. Interestingly, the DEAH-box helicase 36 (DHX36) displays high specificity for the G4s which can unwind both DNA G4s and RNA G4s enzymatically and is highly expressed in testis, thereby regulating multiple cellular functions including transcription, pre-mRNA splicing, translation, telomere maintenance, genomic stability, and RNA metabolism in development and male infertility. This review provides an overview of the roles of G4s and DHX36 in reproduction and development. We mainly focus on the potential role of DHX36 in male infertility. We also discuss possible future research directions regarding the mechanism of spermatogenesis mediated by DHX36 through G4s in spermatogenesis-related genes and provide new targets for gene therapy of male infertility.


Assuntos
RNA Helicases DEAD-box , Quadruplex G , Infertilidade Masculina , Espermatogênese , Masculino , Humanos , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/química , Infertilidade Masculina/genética , Espermatogênese/genética , Animais , RNA/genética , RNA/metabolismo
2.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339029

RESUMO

G-quadruplexes (G4s) are secondary DNA and RNA structures stabilized by positive cations in a central channel formed by stacked tetrads of Hoogsteen base-paired guanines. G4s form from G-rich sequences across the genome, whose biased distribution in regulatory regions points towards a gene-regulatory role. G4s can themselves be regulated by helicases, such as DHX36 (aliases: G4R1 and RHAU), which possess the necessary activity to resolve these stable structures. G4s have been shown to both positively and negatively regulate gene expression when stabilized by ligands, or through the loss of helicase activity. Using DHX36 knockout Jurkat cell lines, we identified widespread, although often subtle, effects on gene expression that are associated with the presence or number of observed G-quadruplexes in promoters or gene regions. Genes that significantly change their expression, particularly those that show a significant increase in RNA abundance under DHX36 knockout, are associated with a range of cellular functions and processes, including numerous transcription factors and oncogenes, and are linked to several cancers. Our work highlights the direct and indirect role of DHX36 in the transcriptome of T-lymphocyte leukemia cells and the potential for DHX36 dysregulation in cancer.


Assuntos
RNA Helicases DEAD-box , Quadruplex G , Neoplasias , Humanos , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Expressão Gênica , RNA/metabolismo , Células Jurkat/metabolismo
3.
Genes Cells ; 28(10): 694-708, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37632696

RESUMO

The guanine-rich stretch of single-stranded DNA (ssDNA) forms a G-quadruplex (G4) in a fraction of genic and intergenic chromosomal regions. The probability of G4 formation increases during events causing ssDNA generation, such as transcription and replication. In turn, G4 abrogates these events, leading to DNA damage. DHX36 unwinds G4-DNA in vitro and in human cells. However, its spatial correlation with G4-DNA in vivo and its role in genome maintenance remain unclear. Here, we demonstrate a connection between DHX36 and G4-DNA and its implications for genomic integrity. The nuclear localization of DHX36 overlapped with that of G4-DNA, RNA polymerase II, and a splicing-related factor. Depletion of DHX36 resulted in accumulated DNA damage, slower cell growth, and enhanced cell growth inhibition upon treatment with a G4-stabilizing compound; DHX36 expression reversed these defects. In contrast, the reversal upon expression of DHX36 mutants that could not bind G4 was imperfect. Thus, DHX36 may suppress DNA damage by promoting the clearance of G4-DNA for cell growth and survival. Our findings deepen the understanding of G4 resolution in the maintenance of genomic integrity.

4.
Chemistry ; 29(34): e202300705, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-36971407

RESUMO

The development of site-specific, target-selective and biocompatible small molecule ligands as a fluorescent tool for real-time study of cellular functions of RNA G-quadruplexes (G4s), which are associated with human cancers, is of significance in cancer biology. We report a fluorescent ligand that is a cytoplasm-specific and RNA G4-selective fluorescent biosensor in live HeLa cells. The in vitro results show that the ligand is highly selective targeting RNA G4s including VEGF, NRAS, BCL2 and TERRA. These G4s are recognized as human cancer hallmarks. Moreover, intracellular competition studies with BRACO19 and PDS, and the colocalization study with G4-specific antibody (BG4) in HeLa cells may support that the ligand selectively binds to G4s in cellulo. Furthermore, the ligand was demonstrated for the first time in the visualization and monitoring of dynamic resolving process of RNA G4s by the overexpressed RFP-tagged DHX36 helicase in live HeLa cells.


Assuntos
Quadruplex G , Neoplasias , Humanos , Células HeLa , Ligantes , RNA/metabolismo , Citoplasma/metabolismo
5.
Noncoding RNA Res ; 8(2): 174-186, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36710986

RESUMO

Background: PIWI-interacting RNAs (piRNAs) are a class of noncoding RNAs originally reported in the reproductive system of mammals and later found to be aberrantly expressed in tumors. However, the function and mechanism of piRNAs in testicular cancer are not very clear. Methods: The expression level and distribution of piR-36249 were detected by RT-qPCR and immunofluorescence staining assay. Testicular cancer cell (NT2) progression was measured by CCK8 assay, colony formation assay and wound healing assay. Cell apoptosis was assessed by flow cytometry and western blot. RNA sequencing and dual-luciferase reporter assay were conducted to identify the potential targets of piR-36249. The relationship between piR-36249 and OAS2 or DHX36 was confirmed using overexpression assay, knockdown assay, pull-down assay and RIP assay. Results: piR-36249 is significantly downregulated in testicular cancer tissues compared to tumor-adjacent tissues. Functional studies demonstrate that piR-36249 inhibits testicular cancer cell proliferation, migration and activates the cell apoptosis pathway. Mechanically, we identify that piR-36249 binds to the 3'UTR of 2'-5'-oligoadenylate synthetase 2 (OAS2) mRNA. OAS2 has been shown in the literature to be a tumor suppressor modulating the occurrence and development of some tumors. Here, we show that OAS2 knockdown also promotes testicular cancer cell proliferation and migration. Furthermore, piR-36249 interacts with DHX36, which has been reported to promote translation. DHX36 can also bind to OAS2 mRNA, and knockdown of DHX36 increases OAS2 mRNA but downregulates its protein, indicating the enhancing effect of DHX36 on OAS2 protein expression. Conclusion: All these data suggest that piR-36249, together with DHX36, functions in inhibiting the malignant phenotype of testicular cancer cells by upregulating OAS2 protein and that piR-36249 may be used as a suppressor factor to regulate the development of testicular cancer.

6.
J Mol Cell Biol ; 14(11)2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36484653

RESUMO

Spermatogenesis is a highly complex developmental process that typically consists of mitosis, meiosis, and spermiogenesis. DNA/RNA helicase DHX36, a unique guanine-quadruplex (G4) resolvase, plays crucial roles in a variety of biological processes. We previously showed that DHX36 is highly expressed in male germ cells with the highest level in zygotene spermatocytes. Here, we deleted Dhx36 in advanced germ cells with Stra8-GFPCre and found that a Dhx36 deficiency in the differentiated spermatogonia leads to meiotic defects and abnormal spermiogenesis. These defects in late stages of spermatogenesis arise from dysregulated transcription of G4-harboring genes, which are required for meiosis. Thus, this study reveals that Dhx36 plays crucial roles in late stages of spermatogenesis.


Assuntos
RNA Helicases , RNA , Masculino , DNA/genética , DNA Helicases/genética , Meiose , RNA Helicases/genética , Espermatócitos , Espermatogênese/genética , Animais , Camundongos
7.
Angew Chem Int Ed Engl ; 61(52): e202203553, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36300875

RESUMO

RNA G-quadruplex (rG4) structures in the 5' untranslated region (5'UTR) play crucial roles in fundamental cellular processes. ADAR is an important enzyme that binds to double-strand RNA and accounts for the conversion of Adenosine to Inosine in RNA editing. However, so far there is no report on the formation and regulatory role of rG4 on ADAR expression. Here, we identify and characterize a thermostable rG4 structure within the 5'UTR of the ADAR1 mRNA and demonstrate its formation and inhibitory role on translation in reporter gene and native gene constructs. We reveal rG4-specific helicase DHX36 interacts with this rG4 in vitro and in cells under knockdown and knockout conditions by GTFH (G-quadruplex-triggered fluorogenic hybridization) probes and modulates translation in an rG4-dependent manner. Our results further substantiate the rG4 structure-DHX36 protein interaction in cells and highlight rG4 to be a key player in controlling ADAR1 translation.


Assuntos
Quadruplex G , Regiões 5' não Traduzidas , RNA Mensageiro/metabolismo
8.
Animal Model Exp Med ; 5(6): 542-549, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35789129

RESUMO

The G-quadruplex (G4) sequences are short fragments of 4-interval triple guanine (G) with frequent and ubiquitous distribution in the genome and RNA transcripts. The G4 sequences are usually folded into secondary "knot" structure via Hoogsteen hydrogen bond to exert negative regulation on a variety of biological processes, including DNA replication and transcription, mRNA translation, and telomere maintenance. Recent structural biological and mouse genetics studies have demonstrated that RHAU (DHX36) can bind and unwind the G4 "knots" to modulate embryonic development and postnatal organ function. Deficiency of RHAU gives rise to embryonic lethality, impaired organogenesis, and organ dysfunction. These studies uncovered the pivotal G4 resolvase function of RHAU to release the G4 barrier, which plays fundamental roles in development and physiological homeostasis. This review discusses the latest advancements and findings in deciphering RHAU functions using animal models.


Assuntos
Quadruplex G , RNA , Animais , Camundongos , RNA/genética , RNA/química , RNA/metabolismo , Recombinases/química , Recombinases/genética , Recombinases/metabolismo , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , DNA/química , DNA/metabolismo
9.
Cell Rep ; 39(10): 110927, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35675771

RESUMO

Adult muscle stem cells, also known as satellite cells (SCs), play pivotal roles in muscle regeneration, and long non-coding RNA (lncRNA) functions in SCs remain largely unknown. Here, we identify a lncRNA, Lockd, which is induced in activated SCs upon acute muscle injury. We demonstrate that Lockd promotes SC proliferation; deletion of Lockd leads to cell-cycle arrest, and in vivo repression of Lockd in mouse muscles hinders regeneration process. Mechanistically, we show that Lockd directly interacts with RNA helicase DHX36 and the 5'end of Lockd possesses the strongest binding with DHX36. Furthermore, we demonstrate that Lockd stabilizes the interaction between DHX36 and EIF3B proteins; synergistically, this complex unwinds the RNA G-quadruplex (rG4) structure formed at Anp32e mRNA 5' UTR and promotes the translation of ANP32E protein, which is required for myoblast proliferation. Altogether, our findings identify a regulatory Lockd/DHX36/Anp32e axis that promotes myoblast proliferation and acute-injury-induced muscle regeneration.


Assuntos
RNA Helicases DEAD-box , Quadruplex G , Chaperonas Moleculares , Desenvolvimento Muscular , Mioblastos , RNA Longo não Codificante , Regiões 5' não Traduzidas , Animais , Proliferação de Células , RNA Helicases DEAD-box/metabolismo , Camundongos , Chaperonas Moleculares/metabolismo , Músculos/metabolismo , Mioblastos/citologia , RNA Longo não Codificante/metabolismo , Regeneração
10.
Methods ; 204: 1-13, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35483547

RESUMO

G-quadruplex structures (G4s) form readily in DNA and RNA and play diverse roles in gene expression and other processes, and their inappropriate formation and stabilization are linked to human diseases. G4s are inherently long-lived, such that their timely unfolding depends on a suite of DNA and RNA helicase proteins. Biochemical analysis of G4 binding and unfolding by individual helicase proteins is important for establishing their levels of activity, affinity, and specificity for G4s, including individual G4s of varying sequence and structure. Here we describe a set of simple, accessible methods in which electrophoretic mobility shift assays (EMSA) are used to measure the kinetics of G4 binding, dissociation, and unfolding by helicase proteins. We focus on practical considerations and the pitfalls that are most likely to arise when these methods are used to study the activities of helicases on G4s.


Assuntos
RNA Helicases DEAD-box , Quadruplex G , RNA Helicases DEAD-box/química , DNA/química , DNA Helicases/genética , DNA Helicases/metabolismo , Humanos , Cinética , RNA/genética
11.
J Mol Biol ; 434(2): 167384, 2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-34863993

RESUMO

The destiny of a messenger RNA is determined from a combination of in cis elements, like peculiar secondary structures, and in trans modulators, such as RNA binding proteins and non-coding, regulatory RNAs. RNA guanine quadruplexes belong to the first group: these strong secondary structures have been characterized in many mRNAs, and their stabilization or unwinding provides an additional step for the fine tuning of mRNA stability and translation. On the other hand, many cytoplasmic long non-coding RNAs intervene in post-transcriptional regulation, frequently by direct base-pairing with their mRNA targets. We have previously identified the lncRNA SMaRT as a key modulator of the correct timing of murine skeletal muscle differentiation; when expressed, lnc-SMaRT interacts with a G-quadruplex-containing region of Mlx-γ mRNA, therefore inhibiting its translation by counteracting the DHX36 helicase activity. The "smart" mode of action of lnc-SMaRT led us to speculate whether this molecular mechanism could be extended to other targets and conserved in other species. Here, we show that the molecular complex composed by lnc-SMaRT and DHX36 also includes other mRNAs. We prove that lnc-SMaRT is able to repress Spire1 translation through base-pairing with its G-quadruplex-forming sequence, and that Spire1 modulation participates to the regulation of proper skeletal muscle differentiation. Moreover, we demonstrate that the interaction between DHX36 and lnc-SMaRT is indirect and mediated by the mRNAs present in the complex. Finally, we suggest an extendibility of the molecular mechanism of lnc-SMaRT from the mouse model to humans, identifying potential functional analogues.


Assuntos
Diferenciação Celular/genética , Proteínas dos Microfilamentos/metabolismo , Desenvolvimento Muscular/genética , Desenvolvimento Muscular/fisiologia , Músculos/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Acil-CoA Desidrogenases , Animais , RNA Helicases DEAD-box , Quadruplex G , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas do Tecido Nervoso/genética , Conformação Proteica , Processamento Pós-Transcricional do RNA , RNA Longo não Codificante/genética , RNA Mensageiro , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Aging (Albany NY) ; 13(23): 25578-25587, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34862880

RESUMO

G-Quadruplex (G4) DNA (G4 DNA) and RNA (G4 RNA) are secondary nucleic acid structures that have multiple roles in vital cellular processes. G4 DNA- and RNA-binding proteins and unwinding helicases associate with and regulate G4s during virtually all processes that involve DNA and RNA. DEAH-Box helicase 36 (DHX36), a member of the large DExD/H box helicase family, enzymatically unwinds both G4 DNA and G4 RNA. By exerting its G4 helicase function, DHX36 regulates transcription, genomic stability, telomere maintenance, translation and RNA metabolism. This review will provide an overview of G4s and DHX36, including DHX36's potential role in neuronal development and neurodegeneration. We conclude with a discussion of the possible functions of G4s and DHX36 in the aging brain.


Assuntos
Envelhecimento/metabolismo , RNA Helicases DEAD-box/metabolismo , Quadruplex G , Envelhecimento/fisiologia , Animais , RNA Helicases DEAD-box/fisiologia , Humanos , Neoplasias/metabolismo , Doenças do Sistema Nervoso/metabolismo
13.
J Biol Chem ; 297(2): 100914, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34174288

RESUMO

GGGGCC (G4C2) hexanucleotide repeat expansions in the endosomal trafficking gene C9orf72 are the most common genetic cause of ALS and frontotemporal dementia. Repeat-associated non-AUG (RAN) translation of this expansion through near-cognate initiation codon usage and internal ribosomal entry generates toxic proteins that accumulate in patients' brains and contribute to disease pathogenesis. The helicase protein DEAH-box helicase 36 (DHX36-G4R1) plays active roles in RNA and DNA G-quadruplex (G4) resolution in cells. As G4C2 repeats are known to form G4 structures in vitro, we sought to determine the impact of manipulating DHX36 expression on repeat transcription and RAN translation. Using a series of luciferase reporter assays both in cells and in vitro, we found that DHX36 depletion suppresses RAN translation in a repeat length-dependent manner, whereas overexpression of DHX36 enhances RAN translation from G4C2 reporter RNAs. Moreover, upregulation of RAN translation that is typically triggered by integrated stress response activation is prevented by loss of DHX36. These results suggest that DHX36 is active in regulating G4C2 repeat translation, providing potential implications for therapeutic development in nucleotide repeat expansion disorders.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Proteína C9orf72/genética , RNA Helicases DEAD-box/metabolismo , Expansão das Repetições de DNA , Quadruplex G , RNA Helicases/metabolismo , Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/metabolismo , Linhagem Celular Tumoral , Demência Frontotemporal/enzimologia , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Humanos , Biossíntese de Proteínas
14.
Comput Struct Biotechnol J ; 19: 2526-2536, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025941

RESUMO

Because of high stability and slow unfolding rates of G-quadruplexes (G4), cells have evolved specialized helicases that disrupt these non-canonical DNA and RNA structures in an ATP-dependent manner. One example is DHX36, a DEAH-box helicase, which participates in gene expression and replication by recognizing and unwinding parallel G4s. Here, we studied the molecular basis for the high affinity and specificity of DHX36 for parallel-type G4s using all-atom molecular dynamics simulations. By computing binding free energies, we found that the two main G4-interacting subdomains of DHX36, DSM and OB, separately exhibit high G4 affinity but they act cooperatively to recognize two distinctive features of parallel G4s: the exposed planar face of a guanine tetrad and the unique backbone conformation of a continuous guanine tract, respectively. Our results also show that DSM-mediated interactions are the main contributor to the binding free energy and rely on making extensive van der Waals contacts between the GXXXG motifs and hydrophobic residues of DSM and a flat guanine plane. Accordingly, the sterically more accessible 5'-G-tetrad allows for more favorable van der Waals and hydrophobic interactions which leads to the preferential binding of DSM to the 5'-side. In contrast to DSM, OB binds to G4 mostly through polar interactions by flexibly adapting to the 5'-terminal guanine tract to form a number of strong hydrogen bonds with the backbone phosphate groups. We also identified a third DHX36/G4 interaction site formed by the flexible loop missing in the crystal structure.

15.
Front Oncol ; 11: 655757, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33987090

RESUMO

Lung cancer is one of the most prevalent cancers in both men and women worldwide. The nucleic acid G4 structures have been implicated in the transcriptional programmes of cancer-related genes in some cancers such as lung cancer. However, the role of the dominant G4 resolvase DHX36 in the progression of lung cancer remains unknown. In this study, by bioinformatic analysis of public datasets (TCGA and GEO), we find DHX36 is an independent prognosis indicator in non-small-cell lung carcinoma (NSCLC) with subtype dependence. The stable lentiviral knockdown of the DHX36 results in accelerated migration and aggregation of the S-phase subpopulation in lung cancer cells. The reduction of DHX36 level de-sensitises the proliferation response of lung cancer cells to chemotherapeutic drugs such as paclitaxel with cell dependence. The knockdown of this helicase leads to promoted tumour growth, demonstrated by a 3D fluorescence spheroid lung cancer model, and the stimulation of cell colony formation as shown by single-cell cultivation. High throughput proteomic array indicates that DHX36 functions in lung cancer cells through regulating multiple signalling pathways including activation of protein activity, protein autophosphorylation, Fc-receptor signalling pathway, response to peptide hormone and stress-activated protein kinase signalling cascade. A causal transcriptomic analysis suggests that DHX36 is significantly associated with mRNA surveillance, RNA degradation, DNA replication and Myc targets. Therefore, we unveil that DHX36 presents clinical significance and plays a role in tumour suppression in lung cancer, and propose a potentially new concept for an anti-cancer therapy based on helicase-specific targeting.

16.
Methods Mol Biol ; 2209: 175-191, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33201470

RESUMO

Single-molecule manipulation methods are useful techniques to probe the interactions of proteins and nucleic acid structures. Here, we describe the magnetic tweezers-based single-molecule investigation of the binding of helicases to G-quadruplex structures and their ATP-dependent unwinding activity, using DHX36 (also known as RHAU and G4R1) helicase and a DNA G-quadruplex structure for an example. We specifically emphasize on the principle and method to probe the interactions between DHX36 and the DNA G-quadruplex in different intermediate states during an ATPase cycle of DHX36, based on detecting the DHX36-induced changes in the lifetime of the DNA G-quadruplex under tension. The principle of the measurement can be broadly extended to the studies of other DNA or RNA G-quadruplex helicases.


Assuntos
RNA Helicases DEAD-box/química , DNA Viral/química , Proteínas de Drosophila/química , Quadruplex G , Imagem Individual de Molécula/métodos , Animais , Drosophila , Humanos , Fenômenos Magnéticos , Ligação Proteica
17.
Int J Mol Sci ; 21(12)2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32575790

RESUMO

DExD (DDX)- and DExH (DHX)-box RNA helicases, named after their Asp-Glu-x-Asp/His motifs, are integral to almost all RNA metabolic processes in eukaryotic cells. They play myriad roles in processes ranging from transcription and mRNA-protein complex remodeling, to RNA decay and translation. This last facet, translation, is an intricate process that involves DDX/DHX helicases and presents a regulatory node that is highly targetable. Studies aimed at better understanding this family of conserved proteins have revealed insights into their structures, catalytic mechanisms, and biological roles. They have also led to the development of chemical modulators that seek to exploit their essential roles in diseases. Herein, we review the most recent insights on several general and target-specific DDX/DHX helicases in eukaryotic translation initiation.


Assuntos
Eucariotos/enzimologia , Biossíntese de Proteínas , RNA Helicases/metabolismo , Animais , Eucariotos/genética , Humanos , Modelos Moleculares , Conformação Proteica , RNA Helicases/química , Estabilidade de RNA
18.
J Hepatol ; 73(2): 371-382, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32165252

RESUMO

BACKGROUND & AIMS: RNA G-quadruplexes (RG4s) appear to be important in post-transcriptional gene regulation, but their pathophysiological functions remain unknown. MicroRNA-26a (miR-26a) is emerging as a therapeutic target for various human diseases, however the mechanisms underlying endogenous miR-26a regulation are poorly understood. Herein, we study the role of RG4 in miR-26a expression and function in vitro and in vivo. METHODS: Putative RG4s within liver-enriched miRNAs were predicted by bioinformatic analysis, and the presence of an RG4 structure in the miR-26a-1 precursor (pre-miR-26a-1) was further analyzed by biophysical and biochemical methods. RG4 stabilizers, pre-miR-26a-1 overexpression plasmids, and luciferase reporter assays were used to assess the effect of RG4 on pre-miR-26a-1 maturation. Both miR-26a knock-in and knockout mouse models were employed to investigate the influence of this RG4 on miR-26a expression and function. Moreover, the interaction between RG4 in pre-miR-26a-1 and DEAH-box helicase 36 (DHX36) was determined by biophysical and molecular methods. Finally, miR-26a processing and DHX36 expression were quantified in the livers of obese mice. RESULTS: We identify a guanine-rich sequence in pre-miR-26a-1 that can fold into an RG4 structure. This RG4 impairs pre-miR-26a-1 maturation, resulting in a decrease in miR-26a expression and subsequently an increase in miR-26a cognate targets. In line with known miR-26a functions, this RG4 can regulate hepatic insulin sensitivity and lipid metabolism in vitro and in vivo. Furthermore, we reveal that DHX36 can bind and unwind this RG4 structure, thereby enhancing miR-26a maturation. Intriguingly, there is a concordant decrease of miR-26a maturation and DHX36 expression in obese mouse livers. CONCLUSIONS: Our findings define a dynamic DHX36/RG4/miR-26a regulatory axis during obesity, highlighting an important role of RG4 in physiology and pathology. LAY SUMMARY: Specific RNA sequences called G-quadruplexes (or RG4) appear to be important in post-transcriptional gene regulation. Obesity leads to the formation of these RG4 structures in pre-miR-26a-1 molecules, impairing the maturation and function of miR-26a, which has emerged as a therapeutic target in several diseases. This contributes to hepatic insulin resistance and the dysregulation of liver metabolism.


Assuntos
RNA Helicases DEAD-box/metabolismo , Quadruplex G , Fígado/metabolismo , MicroRNAs/metabolismo , Obesidade/metabolismo , Animais , Biologia Computacional/métodos , Descoberta de Drogas/métodos , Regulação da Expressão Gênica , Técnicas de Introdução de Genes/métodos , Técnicas de Inativação de Genes/métodos , Resistência à Insulina/genética , Camundongos , Modelos Animais , Estrutura Molecular
19.
Am J Cancer Res ; 10(12): 4211-4233, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33414996

RESUMO

The nucleic acid guanine-quadruplex structures (G4s) are involved in many aspects of cancer progression. The DEAH-box polypeptide 36 (DHX36) has been identified as a dominant nucleic acid helicase which targets and disrupts DNA and RNA G4s in an ATP-dependent manner. However, the actual role of DHX36 in breast cancer remains unknown. In this study, we observed that the gene expression of DHX36 was positively associated with patient survival in breast cancer. The abundance of DHX36 is also linked with pathologic conditions and the stage of breast cancer. By using the xenograft mouse model, we demonstrated that the stable knockdown of DHX36 via lentivirus in breast cancer cells significantly promoted tumour growth. We also found that, after the DHX36 knockdown (KD), the invasion of triple-negative breast cancer cells was enhanced. In addition, we found a significant increase in the number of cells in the S-phase and a reduction of apoptosis with the response to cisplatin. DHX36 KD also desensitized the cytotoxic cellular response to paclitaxel and cisplatin. Transcriptomic profiling analysis by RNA sequencing indicated that DHX36 altered gene expression profile through the upstream activation of TNF, IFNγ, NFκb and TGFß1. High throughput signalling analysis showed that one cluster of stress-associated kinase proteins including p53, ROCK1 and JNK were suppressed, while the mitotic checkpoint protein-serine kinases CDK1 and CDK2 were activated, as a consequence of the DHX36 knockdown. Our study reveals that DHX36 functions as a tumour suppressor and may be considered as a potential therapeutic target in breast cancer.

20.
J Struct Biol ; 209(1): 107399, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31586599

RESUMO

G-quadruplexes (G4) are secondary structures of nucleic acids that can form in cells and have diverse biological functions. Several biologically important proteins interact with G-quadruplexes, of which RHAU (or DHX36) - a helicase from the DEAH-box superfamily, was shown to bind and unwind G-quadruplexes efficiently. We report a X-ray co-crystal structure at 1.5 Šresolution of an N-terminal fragment of RHAU bound to an exposed tetrad of a parallel-stranded G-quadruplex. The RHAU peptide folds into an L-shaped α-helix, and binds to a G-quadruplex through π-stacking and electrostatic interactions. X-ray crystal structure of our complex identified key amino acid residues important for G-quadruplex-peptide binding interaction at the 3'-end G•G•G•G tetrad. Together with previous solution and crystal structures of RHAU bound to the 5'-end G•G•G•G and G•G•A•T tetrads, our crystal structure highlights the occurrence of a robust G-quadruplex recognition motif within RHAU that can adapt to different accessible tetrads.


Assuntos
RNA Helicases DEAD-box/ultraestrutura , Proteínas de Ligação a DNA/ultraestrutura , Quadruplex G , Conformação de Ácido Nucleico , Motivos de Aminoácidos/genética , Cristalografia por Raios X , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , Humanos , Peptídeos/química , Peptídeos/genética , Ligação Proteica/genética , Conformação Proteica em alfa-Hélice/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA