Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 534
Filtrar
1.
Front Psychiatry ; 15: 1414622, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957734

RESUMO

3,4-Methylenedioxymethamphetamine (MDMA) is being investigated in controlled clinical trials for use as an adjunct medication treatment for post-traumatic stress disorder. MDMA is metabolized by N-demethylation, primarily by CYP2D6, to its main inactive metabolite, 4-hydroxy-3-methoxymethamphetamine. It is also metabolized to a lesser extent by CYP1A2, CYP2B6, and CYP3A4 to its active metabolite, 3,4-methylenedioxyamphetamine. Considering the extensive hepatic metabolism and excretion, MDMA use in psychiatry raises concerns over drug-induced liver injury (DILI), a rare but dangerous event. Majority of the drugs withdrawn from the market for liver injury caused death or transplantation at frequencies under 0.01%. Unfortunately, markers for liver injury were not measured in most published clinical trials. At the same time, no visible DILI-related symptoms and adverse events were observed. Idiosyncratic DILI cases are rarely registered during clinical trials due to their rare nature. In this study, we surveyed a larger, over 1,500, and a more diverse set of reports from the FDA Adverse Event Reporting System and found 23 cases of hepatic injury and hepatic failure, in which MDMA was reported to be taken in addition to one or more substances. Interestingly, 22 out of 23 cases had one or more listed drugs with a known DILI concern based on the FDA's DILIrank dataset. Furthermore, only one report had MDMA listed as the primary suspect. Considering the nearly 20 million doses of MDMA used annually, this single report is insufficient for establishing a significant association with DILI.

2.
JHEP Rep ; 6(7): 101098, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961854

RESUMO

Background & Aims: Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors are the cornerstone of systemic therapy for patients with hormone receptor-positive, HER2-negative (HR+/HER2-) metastatic breast cancer. In the various therapeutic studies with CDK4/6 inhibitors, elevations in liver tests were more frequent than in the control groups. The mechanism of CDK4/6 inhibitor-induced liver toxicity is not well understood; moreover, natural history and appropriate management are poorly described. Methods: We conducted a retrospective study, collecting cases of CDK4/6 hepatitis from the REFHEPS (Réseau Francophone pour l'étude de l'HEpatotoxicité des Produits de Santé) database. Results: In this study, we report on 22 cases of hepatitis induced by CDK4/6 inhibitors (ribociclib, n = 19 and abemaciclib, n = 3). According to the CTCAE classification, all hepatitis cases were grade 3 or 4. Twelve (54.6%) patients had a liver biopsy showing acute centrilobular hepatitis with foci of necrosis and lymphocytic infiltrate. Nine (40.9%) patients were treated with corticosteroids for resolution of hepatitis. In three cases, another CDK4/6 inhibitor could be resumed after resolution of the hepatitis without recurrence. Conclusions: CDK4/6 inhibitor-induced hepatitis is poorly described in the literature but there are several arguments pointing out that these drugs should be included in the DI-ALH (drug-induced autoimmune-like hepatitis) category. Impact and implications: This study highlights the clinical significance and hepatotoxic risks of CDK4/6 inhibitors, like ribociclib and abemaciclib, in HR+/HER2-metastatic breast cancer treatment. It underscores the necessity for enhanced hepatic monitoring and tailored management strategies, including corticosteroid intervention for unresolved hepatitis post-withdrawal. These findings are crucial for oncologists, hepatologists, and patients, guiding therapeutic decisions and indicating careful liver function monitoring during therapy. The utility of corticosteroids in managing drug-induced hepatitis and the feasibility of resuming CDK4/6 inhibitor therapy post-recovery are notable practical outcomes. Nonetheless, the study's retrospective nature and limited case numbers introduce constraints, underscoring the need for further research to refine our understanding of CDK4/6 inhibitor-associated hepatotoxicity.

3.
Cell Rep Med ; 5(7): 101653, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39019009

RESUMO

Drug-induced liver injury (DILI) is a significant cause of acute liver failure (ALF) and liver transplantation in the Western world. Acetaminophen (APAP) overdose is a main contributor of DILI, leading to hepatocyte cell death through necrosis. Here, we identified that neddylation, an essential post-translational modification involved in the mitochondria function, was upregulated in liver biopsies from patients with APAP-induced liver injury (AILI) and in mice treated with an APAP overdose. MLN4924, an inhibitor of the neuronal precursor cell-expressed developmentally downregulated protein 8 (NEDD8)-activating enzyme (NAE-1), ameliorated necrosis and boosted liver regeneration in AILI. To understand how neddylation interferes in AILI, whole-body biotinylated NEDD8 (bioNEDD8) and ubiquitin (bioUB) transgenic mice were investigated under APAP overdose with and without MLN4924. The cytidine diphosphate diacylglycerol (CDP-DAG) synthase TAM41, responsible for producing cardiolipin essential for mitochondrial activity, was found modulated under AILI and restored its levels by inhibiting neddylation. Understanding this ubiquitin-like crosstalk in AILI is essential for developing promising targeted inhibitors for DILI treatment.


Assuntos
Acetaminofen , Cardiolipinas , Doença Hepática Induzida por Substâncias e Drogas , Ciclopentanos , Proteína NEDD8 , Pirimidinas , Acetaminofen/efeitos adversos , Animais , Proteína NEDD8/metabolismo , Proteína NEDD8/genética , Humanos , Pirimidinas/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Cardiolipinas/metabolismo , Camundongos , Ciclopentanos/farmacologia , Masculino , Fígado/metabolismo , Fígado/patologia , Fígado/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Transdução de Sinais/efeitos dos fármacos , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas Ativadoras de Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores
4.
Arch Toxicol ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023798

RESUMO

Hepatic bile acid regulation is a multifaceted process modulated by several hepatic transporters and enzymes. Drug-induced cholestasis (DIC), a main type of drug-induced liver injury (DILI), denotes any drug-mediated condition in which hepatic bile flow is impaired. Our ability in translating preclinical toxicological findings to human DIC risk is currently very limited, mainly due to important interspecies differences. Accordingly, the anticipation of clinical DIC with available in vitro or in silico models is also challenging, due to the complexity of the bile acid homeostasis. Herein, we assessed the in vitro inhibition potential of 47 marketed drugs with various degrees of reported DILI severity towards all metabolic and transport mechanisms currently known to be involved in the hepatic regulation of bile acids. The reported DILI concern and/or cholestatic annotation correlated with the number of investigated processes being inhibited. Furthermore, we employed univariate and multivariate statistical methods to determine the important processes for DILI discrimination. We identified time-dependent inhibition (TDI) of cytochrome P450 (CYP) 3A4 and reversible inhibition of the organic anion transporting polypeptide (OATP) 1B1 as the major risk factors for DIC among the tested mechanisms related to bile acid transport and metabolism. These results were consistent across multiple statistical methods and DILI classification systems applied in our dataset. We anticipate that our assessment of the two most important processes in the development of cholestasis will enable a risk assessment for DIC to be efficiently integrated into the preclinical development process.

5.
Eur J Pharm Biopharm ; : 114417, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39013493

RESUMO

Conventional 2D drug screening often fails to predict clinical outcomes accurately. We present an innovative approach to enhance hepatotoxicity assessment by encapsulating HepG2 spheroids in gelatin hydrogel matrices with varying mechanical properties. Encapsulated spheroids exhibit sustained liver-specific functionality, enhanced drug-metabolizing enzyme expression, and increased drug sensitivity compared to 2D cultures. The platform detects critical variations in drug response, with significant differences in IC50 values between 2D and spheroid cultures ranging from 1.3-fold to > 13-fold, particularly for acetaminophen. Furthermore, drug-metabolizing enzyme expression varies across hydrogel concentrations, suggesting a role for matrix mechanical properties in modulating liver cell function. This novel spheroid-hydrogel platform offers a transformative approach to hepatotoxicity assessment, providing enhanced sensitivity, improved prediction, and a more physiologically relevant environment. Adopting such advanced in vitro models can accelerate drug development, reduce animal testing, and contribute to improved patient safety and clinical outcomes.

6.
Cureus ; 16(6): e61980, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38983976

RESUMO

Most drug liver injury cases are the result of an unexpected interaction with medications. We present a 33-year-old woman, four months postpartum, on ethinyl estradiol/norgestrel, who presented in the ED with nausea, vomiting, abdominal pain, and severe pruritus six weeks after starting glecaprevir-pibrentasvir (GP) treatment. The patient was suspected to have a drug-induced liver injury (DILI), and GP was discontinued. Other potential causes of liver injury were ruled out via labs, imaging, and liver biopsy. The patient's liver function significantly improved after discontinuing GP. Few cases of DILI secondary to GP have been reported. However, to the best of our knowledge, DILI from the interaction of ethinyl estradiol and GP does not exist in published literature. In our case, DILI was likely due to the effect of GP and ethinyl estradiol on the liver's cytochrome 450 (CYP 450) system. The aim of this report is to raise awareness and improve pharmacovigilance, especially in patients receiving medications that are metabolized by the liver's CYP 450 system. Early detection of DILI secondary to drug-interaction and discontinuation of the culprit medication is the mainstay of treatment. However, there is a lack of evidence-based management strategies for premature discontinuation of GP in the setting of DILI while treating chronic hepatitis C virus (HCV) infection. Further investigations are warranted.

7.
Noncoding RNA Res ; 9(4): 1190-1202, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39026604

RESUMO

Background: Drug-induced liver injury (DILI) is a leading cause of drug development failures during clinical trials and post-market introduction. Current biomarkers, such as ALT and AST, lack the necessary specificity and sensitivity needed for accurate detection. Exosomes, which protect LncRNAs from RNase degradation, could provide reliable and easily accessible options for biomarkers. Materials and methods: RNA-sequencing was used to identify differentially expressed LncRNAs (DE-LncRNAs), followed by isolation of LncRNAs from plasma exosomes in this study. Exosome characterization was conducted by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot (WB). Bioinformatics analysis included functional enrichment and co-expression network analysis. Five rat models were established, and quantitative real-time PCR was used to verify the specificity and sensitivity of two candidate exosomal LncRNAs. Results: The APAP-induced hepatocellular injury model was successfully established for RNA-sequencing, leading to the identification of several differentially expressed exosomal LncRNAs. Eight upregulated exosomal DE-LncRNAs were selected for validation. Among them, NONRATT018001.2 (p < 0.05) and MSTRG.73954.4 (p < 0.05) exhibited a more than 2-fold increase in expression levels. In hepatocellular injury and intrahepatic cholestasis models, both NONRATT018001.2 and MSTRG.73954.4 showed earlier increases compared to serum biomarkers ALT and AST. However, no histological changes were observed until the final time point. In the fatty liver model, NONRATT018001.2 and MSTRG.73954.4 increased earlier than ALT and AST at 21 days. By the 7th day, minor steatosis was evident in liver tissue, while the expression levels of the two candidate exosomal LncRNAs exceeded 2 and 4 times, respectively. In the hepatic fibrosis model, NONRATT018001.2 and MSTRG.73954.4 showed increases at every time point. By the 49th day, hepatocellular necrosis and fibrosis were observed in the liver tissue, with NONRATT018001.2 showing an increase of more than 8 times. The specificity of the identified exosomal DE-LncRNAs was verified using a myocardial injury model and they showed no significant differences between the case and control groups. Conclusion: NONRATT018001.2 and MSTRG.73954.4 hold potential as biomarkers for distinguishing different types of organ injury induced by drugs, particularly enabling early prediction of liver injury. Further experiments, such as siRNA interference or gene knockout, are warranted to explore the underlying mechanisms of these LncRNAs.

8.
Artigo em Inglês | MEDLINE | ID: mdl-39036565

RESUMO

The use of herbal and dietary supplements has gained an increasing foothold in the United States. While often touted as safer alternatives to more traditional "western" therapeutics, the pharmacology and pharmacokinetics of these substances, their interactions with other medications, their purity, and individual pharmacogenomics, remain unknown. Turmeric is a popular supplement that has been demonstrated to be safe, and even hepatoprotective. Recently, however, there have been several reports of turmeric-induced liver injury. We report a case of drug-induced liver injury due to turmeric that was complicated by acute liver failure and hepatorenal syndrome.

9.
Cureus ; 16(6): e63304, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38938905

RESUMO

Solid organ transplant recipients are prone to developing a wide range of complications associated with the procedure itself, as well as with immunosuppressants. Guillain-Barré syndrome, which is part of the spectrum of inflammatory neuropathies, is not expected to occur early after organ transplant when immunosuppression is at its highest point. We describe the clinical case of a patient who underwent an urgent liver transplant due to acute liver failure secondary to drug-induced liver injury and developed Guillain-Barré syndrome early after the transplant.

10.
Biomedicines ; 12(6)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38927494

RESUMO

Idiosyncratic drug-induced liver injury (DILI) is a complex multifactorial disease in which the toxic potential of the drug, together with genetic and acquired factors and deficiencies in adaptive processes, which limit the extent of damage, may determine susceptibility and make individuals unique in their development of hepatotoxicity. In our study, we sequenced the exomes of 43 pediatric patients diagnosed with DILI to identify important gene variations associated with this pathology. The result showed the presence of two variations in the NAT2 gene: c.590G>A (p.Arg197Gln) and c.341T>C (p.Ile114Thr). These variations could be found separately or together in 41 of the 43 patients studied. The presence of these variations as a risk factor for DILI could confirm the importance of the acetylation pathway in drug metabolism.

11.
Biofabrication ; 16(3)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38865994

RESUMO

The lack of adequate humanin vitromodels that recapitulate the cellular composition and response of the human liver to injury hampers the development of anti-fibrotic drugs. The goal of this study was to develop a human spheroid culture model to study liver fibrosis by using induced pluripotent stem cell (iPSC)-derived liver cells. iPSCs were independently differentiated towards hepatoblasts (iHepatoblasts), hepatic stellate cells (iHSCs), endothelial cells (iECs) and macrophages (iMΦ), before assembly into free floating spheroids by culturing cells in 96-well U-bottom plates and orbital shaking for up to 21 days to allow further maturation. Through transcriptome analysis, we show further maturation of iECs and iMΦ, the differentiation of the iHepatoblasts towards hepatocyte-like cells (iHeps) and the inactivation of the iHSCs by the end of the 3D culture. Moreover, these cultures display a similar expression of cell-specific marker genes (CYP3A4, PDGFRß, CD31andCD68) and sensitivity to hepatotoxicity as spheroids made using freshly isolated primary human liver cells. Furthermore, we show the functionality of the iHeps and the iHSCs by mimicking liver fibrosis through iHep-induced iHSC activation, using acetaminophen. In conclusion, we have established a reproducible human iPSC-derived liver culture model that can be used to mimic fibrosisin vitroas a replacement of primary human liver derived 3D models. The model can be used to investigate pathways involved in fibrosis development and to identify new targets for chronic liver disease therapy.


Assuntos
Diferenciação Celular , Técnicas de Cocultura , Células-Tronco Pluripotentes Induzidas , Cirrose Hepática , Fígado , Esferoides Celulares , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Esferoides Celulares/patologia , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Fígado/patologia , Fígado/citologia , Modelos Biológicos , Hepatócitos/citologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/patologia , Células Cultivadas
12.
Cureus ; 16(5): e59687, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38836151

RESUMO

Antibiotics are among the most common causes of drug-induced liver injury worldwide. Amoxicillin/clavulanic acid and nitrofurantoin are the most common culprits while tetracyclines are a rare cause of liver injury. Among tetracyclines, minocycline has been reported more frequently than doxycycline, which is an extremely rare cause of drug-induced liver injury. We present a healthy 28-year-old male patient from rural United States who was taking doxycycline for Lyme disease. After five days of therapy, he developed nausea, vomiting, fatigue, and significant transaminitis consistent with a hepatocellular pattern of liver injury. After a thorough workup which ruled out other causes such as infection, autoimmune diseases, liver malignancy, and vascular, structural, and metabolic disorders, his liver injury was attributed to doxycycline. We reached the diagnosis also by demonstrating a consistent temporal association between doxycycline intake and liver injury and the patient recovered completely with the cessation of doxycycline. Recognition of doxycycline as a cause of drug-induced liver injury should be considered in patients utilizing this antibiotic. Doxycycline, unlike minocycline, has a short latency period. Early recognition and discontinuation of doxycycline in our patient resulted in the complete resolution of symptoms and transaminitis preventing further morbidity and mortality.

13.
bioRxiv ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38895462

RESUMO

Drug-induced liver injury (DILI) has been significant challenge in drug discovery, often leading to clinical trial failures and necessitating drug withdrawals. The existing suite of in vitro proxy-DILI assays is generally effective at identifying compounds with hepatotoxicity. However, there is considerable interest in enhancing in silico prediction of DILI because it allows for the evaluation of large sets of compounds more quickly and cost-effectively, particularly in the early stages of projects. In this study, we aim to study ML models for DILI prediction that first predicts nine proxy-DILI labels and then uses them as features in addition to chemical structural features to predict DILI. The features include in vitro (e.g., mitochondrial toxicity, bile salt export pump inhibition) data, in vivo (e.g., preclinical rat hepatotoxicity studies) data, pharmacokinetic parameters of maximum concentration, structural fingerprints, and physicochemical parameters. We trained DILI-prediction models on 888 compounds from the DILIst dataset and tested on a held-out external test set of 223 compounds from DILIst dataset. The best model, DILIPredictor, attained an AUC-ROC of 0.79. This model enabled the detection of top 25 toxic compounds compared to models using only structural features (2.68 LR+ score). Using feature interpretation from DILIPredictor, we were able to identify the chemical substructures causing DILI as well as differentiate cases DILI is caused by compounds in animals but not in humans. For example, DILIPredictor correctly recognized 2-butoxyethanol as non-toxic in humans despite its hepatotoxicity in mice models. Overall, the DILIPredictor model improves the detection of compounds causing DILI with an improved differentiation between animal and human sensitivity as well as the potential for mechanism evaluation. DILIPredictor is publicly available at https://broad.io/DILIPredictor for use via web interface and with all code available for download and local implementation via https://pypi.org/project/dilipred/.

14.
J Ethnopharmacol ; 331: 118282, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38701935

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Sang Yu granule (SY), a traditional Chinese medicine prescription of Xijing Hospital, was developed based on the Guanyin powder in the classical prescription "Hong's Collection of Proven Prescriptions" and the new theory of modern Chinese medicine. It has been proved to have a certain therapeutic effect on drug-induced liver injury (DILI), but the specific mechanism of action is still unclear. AIM OF STUDY: Aim of the study was to explore the effect of SangYu granule on treating drug-induced liver injury induced by acetaminophen in mice. MATERIALS AND METHODS: The chemical composition of SY, serum, and liver tissue was analyzed using ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry. To assess hepatic function, measurements were taken using kits for total bile acids, as well as serum AST, ALT, and ALP activity. Concentrations of IL-1ß and TNF-α in serum were quantified using ELISA kits. Transcriptome Sequencing Analysis and 2bRAD-M microbial diversity analysis were employed to evaluate gene expression variance in liver tissue and fecal microbiota diversity among different groups, respectively. Western blotting was performed to observe differences in the activation levels of FXR, SHP, CYP7A1 and PPARα in the liver, and the levels of FXR and FGF-15 genes and proteins in the ileum of mice. Additionally, fecal microbiota transplantation (FMT) experiments were conducted to investigate the potential therapeutic effect of administering the intestinal microbial suspension from mice treated with SY on drug-induced liver injury. RESULTS: SY treatment exhibited significant hepatoprotective effects in mice, effectively ameliorating drug-induced liver injury while concurrently restoring intestinal microbial dysbiosis. Furthermore, SY administration demonstrated a reduction in the concentration of total bile acids, the expression of FXR and SHP proteins in the liver was up-regulated, CYP7A1 protein was down-regulated, and the expressions of FXR and FGF-15 proteins in the ileum were up-regulated. However, no notable impact on PPARα was observed. Furthermore, results from FMT experiments indicated that the administration of fecal suspensions derived from mice treated with SY did not yield any therapeutic benefits in the context of drug-induced liver injury. CONCLUSION: The aforementioned findings strongly suggest that SY exerts a pronounced ameliorative effect on drug-induced liver injury through its ability to modulate the expression of key proteins involved in bile acid secretion, thereby preserving hepato-enteric circulation homeostasis.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Fígado , PPAR alfa , Animais , Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Masculino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Camundongos , PPAR alfa/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos , Colesterol 7-alfa-Hidroxilase/metabolismo , Colesterol 7-alfa-Hidroxilase/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/sangue , Ácidos e Sais Biliares/metabolismo , Interleucina-1beta/metabolismo , Interleucina-1beta/genética
15.
J Hepatol ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38703829

RESUMO

BACKGROUND & AIMS: Idiosyncratic drug-induced liver injury (DILI) is a complex and unpredictable event caused by drugs, and herbal or dietary supplements. Early identification of human hepatotoxicity at preclinical stages remains a major challenge, in which the selection of validated in vitro systems and test drugs has a significant impact. In this systematic review, we analyzed the compounds used in hepatotoxicity assays and established a list of DILI-positive and -negative control drugs for validation of in vitro models of DILI, supported by literature and clinical evidence and endorsed by an expert committee from the COST Action ProEuroDILI Network (CA17112). METHODS: Following 2020 PRISMA guidelines, original research articles focusing on DILI which used in vitro human models and performed at least one hepatotoxicity assay with positive and negative control compounds, were included. Bias of the studies was assessed by a modified 'Toxicological Data Reliability Assessment Tool'. RESULTS: A total of 51 studies (out of 2,936) met the inclusion criteria, with 30 categorized as reliable without restrictions. Although there was a broad consensus on positive compounds, the selection of negative compounds lacked clarity. 2D monoculture, short exposure times and cytotoxicity endpoints were the most tested, although there was no consensus on drug concentrations. CONCLUSIONS: Extensive analysis highlighted the lack of agreement on control compounds for in vitro DILI assessment. Following comprehensive in vitro and clinical data analysis together with input from the expert committee, an evidence-based consensus-driven list of 10 positive and negative control drugs for validation of in vitro models of DILI is proposed. IMPACT AND IMPLICATIONS: Prediction of human toxicity early in the drug development process remains a major challenge, necessitating the development of more physiologically relevant liver models and careful selection of drug-induced liver injury (DILI)-positive and -negative control drugs to better predict the risk of DILI associated with new drug candidates. Thus, this systematic study has crucial implications for standardizing the validation of new in vitro models of DILI. By establishing a consensus-driven list of positive and negative control drugs, the study provides a scientifically justified framework for enhancing the consistency of preclinical testing, thereby addressing a significant challenge in early hepatotoxicity identification. Practically, these findings can guide researchers in evaluating safety profiles of new drugs, refining in vitro models, and informing regulatory agencies on potential improvements to regulatory guidelines, ensuring a more systematic and efficient approach to drug safety assessment.

16.
Yonago Acta Med ; 67(2): 124-134, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38803590

RESUMO

Background: Patients taking multiple drugs and various health foods often develop acute hepatitis. We hypothesized that the interaction between health foods and drug metabolism was the cause of severe liver injury in these patients. Therefore, we studied changes in the activity of the drug-metabolizing enzyme, cytochrome P450 (CYP), using slimming health food extracts and elucidated the molecular mechanism of liver injury onset through hepatotoxicity evaluation. Methods: For cytotoxicity testing, health food extract samples were added to HepG2 cells derived from hepatic parenchymal cells and culture medium, and cell viability was calculated 48 h after culture. To evaluate CYP3A4 induction, 3-1-10 cells constructed with a reporter linked to CYP3A4 gene were used, and reporter activity was measured 48 h after culture. Results: In the chronological order of the slimming health food intake history of the patient, niacinamide and Gymnema sylvestre extracts strongly inhibited HepG2 cell viability. In contrast, dietary supplements A and Coleus forskohlii extract strongly induced CYP3A4 reporter activity.To confirm CYP3A4 induction in humans, humanized CYP3A/pregnane X receptor (PXR) mice were treated with forskolin. CYP3A4 mRNA expression levels were elevated 3.9 times compared to that of the control group (P < 0.05). Conclusion: Coleus forskohlii extract showed the strongest transcriptional activation of CYP3A4 gene. In a mouse model of human-type drug metabolism, forskolin induced CYP3A4 transcription. Thus, we concluded that CYP3A4 induction by Coleus forskohlii is one of the causes of crucial hepatocellular injury, which is a type of liver injury caused by the active metabolite of acetaminophen produced by CYP3A4.

17.
Biomolecules ; 14(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38785942

RESUMO

Predicting whether a compound can cause drug-induced liver injury (DILI) is difficult due to the complexity of drug mechanism. The cysteine trapping assay is a method for detecting reactive metabolites that bind to microsomes covalently. However, it is cumbersome to use 35S isotope-labeled cysteine for this assay. Therefore, we constructed an in silico classification model for predicting a positive/negative outcome in the cysteine trapping assay. We collected 475 compounds (436 in-house compounds and 39 publicly available drugs) based on experimental data performed in this study, and the composition of the results showed 248 positives and 227 negatives. Using a Message Passing Neural Network (MPNN) and Random Forest (RF) with extended connectivity fingerprint (ECFP) 4, we built machine learning models to predict the covalent binding risk of compounds. In the time-split dataset, AUC-ROC of MPNN and RF were 0.625 and 0.559 in the hold-out test, restrictively. This result suggests that the MPNN model has a higher predictivity than RF in the time-split dataset. Hence, we conclude that the in silico MPNN classification model for the cysteine trapping assay has a better predictive power. Furthermore, most of the substructures that contributed positively to the cysteine trapping assay were consistent with previous results.


Assuntos
Simulação por Computador , Cisteína , Cisteína/metabolismo , Humanos , Aprendizado de Máquina , Redes Neurais de Computação , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Microssomos Hepáticos/metabolismo
18.
Eur J Clin Pharmacol ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809311

RESUMO

PURPOSE: To summarize the clinical and biochemical characteristics of patients with ceftriaxone-induced liver injury and guide the selection of safe medication. METHODS: Retrieved domestic and foreign databases from inception to October 2023, collected case data conforming to ceftriaxone-induced liver injury, and statistically analyzed the data. RESULTS: A total of 617 articles were retrieved, and 16 articles with 33 cases (10 children, 23 adults) were included. Males represented 60% (18/30), with a male-to-female ratio of 1.5:1. The age of onset ranged from 2 days to 96 years, with 15 of 23 adults (65%) over 55 years old. The time from ceftriaxone use to liver injury fluctuated between 0.5 and 47 days. Only 9 patients (27.3%, 9/33) had clinical symptoms, and the clinical classification was dominated by cholestatic injury (46.2%, 12/26). There was a significant difference in the clinical classification of ceftriaxone-induced liver injury between children and adults (P = 0.0126), with hepatocellular injury predominating in children and cholestatic injury predominating in adults. The severity of liver injury was mainly mild (66.7%, 12/18). Peak values of alanine aminotransferase ranging from 228.5 to 8098 U/L, aspartate aminotransferase ranging from 86.7 to 21575 U/L, alkaline phosphatase ranging from 143 to 2434 U/L, and total bilirubin ranging from 3.35 to 66.1 mg/dL. There was a significant difference in peak values of alkaline phosphatase between children and adults (P = 0.027), with a higher peak value of alkaline phosphatase in adults (1039 ± 716.4 U/L vs. 257 ± 134.9 U/L). Patients with normal imaging examinations accounted for the majority (61.5%, 7/13). The prognosis of 32 patients (97%, 32/33) was good, and one child with sickle cell anemia who developed immune hemolysis, progressive renal failure, and acute liver injury after using ceftriaxone died in the end. CONCLUSION: Ceftriaxone-induced liver injury can occur at any age, with a higher risk in the elderly, and age may be related to the clinical classification. Although the clinical manifestations are not specific, close monitoring of liver biochemical indicators during the use can detect liver injury early. Most cases have a good prognosis, but for people with concomitant sickle cell anemia, it is necessary to be vigilant about the occurrence of severe hemolytic anemia.

19.
Toxicol Sci ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676573

RESUMO

Drug-induced liver injury (DILI) represents a major issue for pharmaceutical companies, being a potential cause of black-box warnings on marketed pharmaceuticals, or drug withdrawal from the market. Lipid accumulation in the liver also referred to as steatosis, may be secondary to impaired mitochondrial fatty acid oxidation (mtFAO). However, an overall causal relationship between drug-induced mtFAO inhibition and the occurrence of steatosis in patients has not yet been established with a high number of pharmaceuticals. Hence, 32 steatogenic and 13 non-steatogenic drugs were tested for their ability to inhibit mtFAO in isolated mouse liver mitochondria. To this end, mitochondrial respiration was measured with palmitoyl-L-carnitine, palmitoyl-CoA + L-carnitine, or octanoyl-L-carnitine. This mtFAO tri-parametric assay was able to predict the occurrence of steatosis in patients with a sensitivity and positive predictive value above 88%. To get further information regarding the mechanism of drug-induced mtFAO impairment, mitochondrial respiration was also measured with malate/glutamate or succinate. Drugs such as diclofenac, methotrexate and troglitazone could inhibit mtFAO secondary to an impairment of the mitochondrial respiratory chain, while dexamethasone, olanzapine and zidovudine appeared to impair mtFAO directly. Mitochondrial swelling, transmembrane potential and production of reactive oxygen species were also assessed for all compounds. Only the steatogenic drugs amiodarone, ketoconazole, lovastatin and toremifene altered all these 3 mitochondrial parameters. In conclusion, our tri-parametric mtFAO assay could be useful in predicting the occurrence of steatosis in patients. The combination of this assay with other mitochondrial parameters could also help to better understand the mechanism of drug-induced mtFAO inhibition.

20.
Cureus ; 16(3): e55717, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38586789

RESUMO

Because of the variety of drugs, herbal, and dietary supplements used in clinical practice. Drug-induced liver injury (DILI) has become an important and common cause of acute liver injury and failure. Many drugs associated with DILI have been identified, but there remains some uncertainty about others. Cyclophosphamide is a commonly used antineoplastic medication, and its association with DILI has been reported in animals and has been established in humans with the use of high-dose IV. Oral cyclophosphamide has not been clearly shown to cause acute liver injury, thus highlighting many of the unique aspects of this manuscript. Here, we report a case of cyclophosphamide-induced DILI with the aim to alert clinicians regarding this potential association.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA