Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
ACS Nano ; 18(26): 16743-16751, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38888092

RESUMO

Oriented attachment (OA) occurs when nanoparticles in solution align their crystallographic axes prior to colliding and subsequently fuse into single crystals. Traditional colloidal theories such as DLVO provide a framework for evaluating OA but fail to capture key particle interactions due to the atomistic details of both the crystal structure and the interfacial solution structure. Using zinc oxide as a model system, we investigated the effect of the solvent on short-ranged and long-ranged particle interactions and the resulting OA mechanism. In situ TEM imaging showed that ZnO nanocrystals in toluene undergo long-range attraction comparable to 1kT at separations of 10 nm and 3kT near particle contact. These observations were rationalized by considering non-DLVO interactions, namely, dipole-dipole forces and torques between the polar ZnO nanocrystals. Langevin dynamics simulations showed stronger interactions in toluene compared to methanol solvents, consistent with the experimental results. Concurrently, we performed atomic force microscopy measurements using ZnO-coated probes for the short-ranged interaction. Our data are relevant to another type of non-DLVO interaction, namely, the repulsive solvation force. Specifically, the solvation force was stronger in water compared to ethanol and methanol, due to the stronger hydrogen bonding and denser packing of water molecules at the interface. Our results highlight the importance of non-DLVO forces in a general framework for understanding and predicting particle aggregation and attachment.

2.
Sci Total Environ ; 927: 172311, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599416

RESUMO

Flotation technology is widely utilized to remove emulsified oil droplets from Produced water. Organic acid adsorption on the oil droplet surface affects bubble attachment, reducing oil removal efficiency. This investigation exploited the principle of similar dissolution to synthesize condensate bubbles (CB). The surface properties of oil droplets and CB and air bubbles (AB) were appraised using FTIR, zeta potential, interfacial tension, and contact angle measurements. The research also investigated the effects of acetic acids (AA) on the adhesion of oil droplets to AB and CB along with the underlying mechanism via the Extended Derjaguin-Landau-Verwey-Overbeek (EDLVO) interaction theory and the Stefan-Reynolds model of liquid film thinning, integrated with adhesion times. Flotation efficiency and kinetic dissimilarities between AB and CB were also examined. The results indicated that CB exhibits superior lipophilic hydrophobicity compared to AB, reduced induction and spreading times upon oil droplet attachment, and maximized oil removal efficiency. Furthermore, CB could mitigate the impact of AA on adhesion. The interaction barriers between CB and oil droplets were minimal, and the thinning rate of the hydration film was quicker than in AB. The conventional first-order model proved effective in fitting the AB flotation, whereas a delay constant was applied to the model of the CB flotation rate.

3.
Environ Technol ; : 1-15, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38549515

RESUMO

Recently, there has been a growing concern regarding the increased contamination of water by bacteria. As a result, more attention has been paid to the potential benefits of utilizing nano adsorbents and photocatalysis for water purification. In order to better manipulate the physicochemical properties, it is crucial to gain a comprehensive understanding of the molecular behaviour between nanoparticles and pathogens. This article investigates the various interactions that can occur between Fe3O4-SiO2-TiO2 (FST) nanoparticles and bacterial cells. Moreover, it explores the impact of the SiO2 mid-layer and the governing interaction in the adhesion and degradation processes. In this regard, FST nanoparticles were prepared, and their adhesion behaviour to E. coli bacterial cells was evaluated using extended DLVO (Derjaguin-Landau-Verwey-Overbeek) theory. The following results revealed that the presence of silica transformed FST into a more hydrophobic material with a positively charged surface, thereby enhancing its affinity for bacterial adsorption. Additionally, SiO2 prevented electron/hole recombination. Amongst the various interactions, Lewis acid-base interactions had the greatest influence on the total energy and lacking energy barriers led to irreversible adhesion. Moreover, the presence of an increased number of ·OH groups on the surface resulted in enhanced bactericidal properties of FST, leading to severe damage of E. coli cells through the formation of a greater number of hydrogen bonds on the bacterial surface, which is the basis of the proposed mechanism for destruction of the bacterial structure.

4.
J Environ Sci (China) ; 141: 51-62, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38408834

RESUMO

Conversion of labile Pb species into chloropyromorphite (CPY) using phosphorus-bearing amendments was considered to be an ideal strategy in soil passivation remediation. However, the fate and transport of CPY in the soil are poorly understood. This study aims to fill the knowledge gap by evaluating the fate and transport of CPY under environmentally relevant conditions of humic acid (HA), pH, electrolyte concentration, and species through the saturated sandy medium. Results showed that bare CPY colloids are basically immobile in sandy porous media while the co-existence of HA made the transport of CPY improved by 30%-93.5%. Facilitated transport of CPY was attributed to the increased stability of CPY and the repulsive interaction between CPY particles and sands due to HA adsorption. The mobility of CPY was also increased with increasing pH from 5.0 to 9.0. When the pH was 9 with a 10 mmol/L NaCl background solution, the stronger energy barrier between CPY and sand led to enhanced transport behavior. The divalent Ca2+ had a more dramatic effect than monovalent Na+ on the aggregation and sedimentation of CPY colloids due to its effectivescreening of the surface charge of CPY and bridging interaction with CPY particles. Derjaguin-Landau-Verwey-Overbeek theory and attachment efficiency calculation indicated that high energy barriers were responsible for the high mobility of CPY colloids, while the retention of CPY in sands was mainly caused by secondary energy minimum and physically straining. The findings of this work can help to evaluate the fate of soil passivation remediation products in natural water and soil.


Assuntos
Substâncias Húmicas , Minerais , Fosfatos , Solo , Substâncias Húmicas/análise , Areia , Porosidade , Coloides
5.
J Hazard Mater ; 465: 133413, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38228006

RESUMO

To investigate the adsorption effects of aged microplastics (MPs) on Pb(II) and their co-transport properties in homogeneous (quartz sand) and heterogeneous (quartz sand with apple branches biochar) porous media, we explored the co-transport of UV-irradiated aged MPs and coexisting Pb(II) along with their interaction mechanisms. The UV aging process increased the binding sites and electronegativity of the aged MPs' surface, enhancing its adsorption capacity for Pb(II). Aged MPs significantly improved Pb(II) transport through homogeneous media, while Pb(II) hindered the transport of aged MPs by reducing electrostatic repulsion between these particles and the quartz sand. When biochar, with its loose and porous structure, was used as a porous medium, it effectively inhibited the transport capacity of both contaminants. In addition, since the aged MPs cannot penetrate the column, a portion of Pb(II) adsorbed by the aged MPs will be co-deposited with the aged MPs, hindering Pb(II) transport to a greater extent. The transport experiments were simulated and interpreted using two-point kinetic modeling and the DLVO theory. The study results elucidate disparities in the capacity of MPs and aged MPs to transport Pb(II), underscoring the potential of biochar application as an effective strategy to impede the dispersion of composite environmental pollutants.

6.
Environ Sci Pollut Res Int ; 30(56): 118693-118705, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37917261

RESUMO

The possible adverse effects of engineered iron oxide nanoparticles, especially magnetite (Fe3O4 NP), on human health and the environment, have raised concerns about their transport and behavior in soil and water systems. Accumulating these NPs in the environment can substantially affect soil and water quality and the well-being of aquatic and terrestrial organisms. Therefore, it is essential to examine the factors that affect Fe3O4 NP transportation and behavior in soil and water systems to determine their possible environmental fate. In this work, experiments were conducted in aqueous and porous media using an environmentally relevant range of pH (5, 7, 9), ionic strength (IS) (10, 50, 100 mM), and humic acid (HA) (0.1, 1, 10 mg L-1) concentrations. Fe3O4 NPs exhibited severe colloidal instability at pH 7 (⁓ = pHPZC) and showed an improvement in apparent colloidal stability at pH 5 and 9 in aquatic and terrestrial environments. HA in the background solutions promoted the overall transport of Fe3O4 NPs by enhancing the colloidal stability. The increased ionic strength in aqueous media hindered the transport by electron double-layer compression and electrostatic repulsion; however, in porous media, the transport was hindered by ionic compression. Furthermore, the transport behavior of Fe3O4 NPs was investigated in different natural waters such as rivers, lakes, taps, and groundwater. The interaction energy pattern in aquatic systems was estimated using the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. This study showed the effects of various physical-chemical conditions on Fe3O4 NP transport in aqueous and porous (sand) media.


Assuntos
Nanopartículas , Humanos , Porosidade , Nanopartículas/química , Solo , Substâncias Húmicas/análise , Areia , Soluções
7.
J Colloid Interface Sci ; 652(Pt B): 1620-1630, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37666194

RESUMO

Two-dimensional montmorillonite nanosheet (MMTNS) is desirable building block for fabricating multifunctional materials as due to its extraordinary properties. In practical applications, however, the concentration of MMTNS prepared by exfoliation is normally too low to be used for material assembling. The general thermal-concentration method is effective, however, it can be time-consuming and require a lot of energy. In this case, the remarkable dispersion stability of MMTNS is worth noting. Herein, the extraordinary dispersion stability of MMTNS derived from electrostatic and hydration repulsion was firstly revealed by molecular dynamics (MD) simulation, which caused the poor dewatering of MMTNS. Further, based on the surface and structural chemistry of MMTNS, a series of strategies, involving charge and cross-linked structure regulation on the edge surface, as well as electrical double-layer modulation and calcification modification based on the electrolytes, were proposed to inhibit the dispersion and enhance the aggregation of MMTNS. Intriguingly, a novel chemical, Tetraethylenepentamine (TEPA) was applied in the dewatering of MMTNS. The TEPA not only act as a cross-linker to bond with MMTNS into an easy-to-dewatering 3D network structure, but also act as a switch for effortless viscosity tuning. Meanwhile, the dual function of electrolytes for electrical double layer compression and calcification modification of MMTNS was investigated by DLVO theory and structural analyses. This work offers explicit directions for improving the dewatering performance of MMTNS to meet the requirements of practical implementation.

8.
Chemosphere ; 342: 140147, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37716557

RESUMO

Aggregation is a crucial process determining the fate, mobility and ecological risks of nanomaterials. Chlorapatite nanoparticles (nClAP) exhibit widely applications in environmental remediation and consequently will inevitably enter aquatic systems. However, the aggregation characteristics of nClAP are still mostly uncovered. This study investigated the aggregation kinetics and colloidal stability of nClAP as a function of pH, humic acid (HA), Cr(VI) oxyanions, monovalent and divalent electrolytes. Results showed that pH values from 5 to 9 had a notable impact on the aqueous behaviors of nClAP. The addition of HA made the zeta potential (ZP) of nClAP more negative and thus enhanced nClAP stability through electrostatic and steric effects. Similarly, the adsorption of Cr(VI) on the surface of nClAP created a physical barrier and negative charge, improving the stability of nClAP by inducing steric force. Lower ZP and hydrodynamic diameter (HDD) reflected that the enhanced stability of nClAP by HA was more significant than Cr(VI). In comparison, the presence of Ca2+ ions were more effective than monovalent Na + ions in promoting the aggregation of nClAP. The classical DLVO theory incorporating the steric repulsion were used to interpret the aggregation and dispersion of nClAP, making it was easier to overcome energy barriers and agglomerate. This study provides new mechanistic insights which could help better understand the effects of Cr(VI) oxyanions and HA on nClAP's colloidal stability.


Assuntos
Substâncias Húmicas , Nanopartículas , Substâncias Húmicas/análise , Cromo
9.
ACS Appl Mater Interfaces ; 15(36): 42293-42303, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37651748

RESUMO

Colorimetric biosensors based on gold nanoparticle (AuNP) aggregation are often challenged by matrix interference in biofluids, poor specificity, and limited utility with clinical samples. Here, we propose a peptide-driven nanoscale disassembly approach, where AuNP aggregates induced by electrostatic attractions are dissociated in response to proteolytic cleavage. Initially, citrate-coated AuNPs were assembled via a short cationic peptide (RRK) and characterized by experiments and simulations. The dissociation peptides were then used to reversibly dissociate the AuNP aggregates as a function of target protease detection, i.e., main protease (Mpro), a biomarker for severe acute respiratory syndrome coronavirus 2. The dissociation propensity depends on peptide length, hydrophilicity, charge, and ligand architecture. Finally, our dissociation strategy provides a rapid and distinct optical signal through Mpro cleavage with a detection limit of 12.3 nM in saliva. Our dissociation peptide effectively dissociates plasmonic assemblies in diverse matrices including 100% human saliva, urine, plasma, and seawater, as well as other types of plasmonic nanoparticles such as silver. Our peptide-enabled dissociation platform provides a simple, matrix-insensitive, and versatile method for protease sensing.


Assuntos
COVID-19 , Nanopartículas Metálicas , Humanos , Ouro , Peptídeos , Peptídeo Hidrolases
10.
ACS Nano ; 17(16): 15556-15567, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37556761

RESUMO

Predicting nanoparticle aggregation and attachment phenomena requires a rigorous understanding of the interplay among crystal structure, particle morphology, surface chemistry, solution conditions, and interparticle forces, yet no comprehensive picture exists. We used an integrated suite of experimental, theoretical, and simulation methods to resolve the effect of solution pH on the aggregation of boehmite nanoplatelets, a case study with important implications for the environmental management of legacy nuclear waste. Real-time observations showed that the particles attach preferentially along the (010) planes at pH 8.5 and the (101) planes at pH 11. To rationalize these results, we established the connection between key physicochemical phenomena across the relevant length scales. Starting from molecular-scale simulations of surface hydroxyl reactivity, we developed an interfacial-scale model of the corresponding electrostatic potentials, with subsequent particle-scale calculations of the resulting driving forces allowing successful prediction of the attachment modes. Finally, we scaled these phenomena to understand the collective structure at the aggregate-scale. Our results indicate that facet-specific differences in surface chemistry produce heterogeneous surface charge distributions that are coupled to particle anisotropy and shape-dependent hydrodynamic forces, to play a key role in controlling aggregation behavior.

11.
Sci Total Environ ; 897: 165387, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37423289

RESUMO

This study explores the transport and retention of CdSe/ZnS quantum dot (QD) nanoparticles in water-saturated sand columns as a function of electrolytes (Na+ and Ca2+), ionic strength, organic ligand citrate, and Suwannee River natural organic matter (SRNOM). Numerical simulations were carried out to understand the mechanisms that govern the transport and interactions of QDs in porous media and to assess how environmental parameters impact these mechanisms. An increase in the ionic strength of NaCl and CaCl2 increased QDs retention in porous media. The reduction of the electrostatic interactions screened by dissolved electrolyte ions and the increase of divalent bridging effect are the causes for this enhanced retention behavior. Citrate or SRNOM enhanced QDs transport in NaCl and CaCl2 systems by either increasing the repulsion energy barrier or inducing the steric interactions between QDs and the quartz sand collectors. A non-exponential decay characterized the retention profiles of QDs along the distance to the inlet. The modeling results indicated the four models containing the attachment, detachment, and straining terms - Model 1: M1-attachment, Model 2: M2-attachment and detachment, Model 3: M3-straining, and Model 4: M4-attachment, detachment, and straining - closely simulated the observed breakthrough curves (BTCs) but inadequately described the retention profiles.

12.
Small ; 19(44): e2303310, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37415522

RESUMO

The stability and transformation of nanomaterial aqueous suspensions are essential for their applications. Preparation of high-concentration carbon nanomaterials suspensions remains challenging due to their nonpolar nature. Herein, 200 mg mL-1 carbon nanomaterial aqueous suspensions are achieved by using graphite-like crystalline nanosheets (GCNs) with high hydrophilicity. Furthermore, these high-concentration GCN aqueous suspensions spontaneously transform into gels when induced by mono-, di-, and trivalent metal salt electrolytes at room temperature. Theoretical calculation of potential energy by DLVO theory reveals that the gelatinized GCNs is a new and metastable state between two usual forms of solution and coagulation. It is shown that the gelation of GCNs is due to the preferential orientation of nanosheets in an edge-edge arrangement, which differs from the case of solution and coagulation. High-temperature treatment of GCN gels produces metal/carbon materials with pore structures. This work provides a promising opportunity to create various metal/carbon functional materials.

13.
Environ Technol ; : 1-12, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37260168

RESUMO

Carbon fibres (CF) are commonly used as carriers in biofilm-based wastewater treatment. The surface properties of the CF are herein modified using a combination of nitric acid oxidation and urea to optimise the carrier to immobilise bacterial cells. The capacity of the CF carriers to immobilise bacterial cells and activated sludge is evaluated using bacterial cell adhesion and sludge immobilisation tests. The total interaction energy profiles between the CF supports and bacterial cells were calculated according to the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory to explain the mechanism by which these modifications enhance this immobilisation capacity. CF-U has a high capacity for immobilising bacterial cells and activated sludge (3.7 g-sludge/g-CF supports) owing to its low total interaction energy. Nitric acid oxidation reduced the diiodomethane contact angle of CF from 55.1° to 38.5°, which reduced the Lifshitz-van der Waals interaction energy, while urea modification further increased the zeta potential of CF from 12.8 mV to -0.7 mV, thereby reducing the electrostatic interaction energy. Experiments and DLVO theory both determined that a combination of nitric acid oxidation and urea modification significantly enhanced the ability of CF to immobilise microorganisms.

14.
J Colloid Interface Sci ; 638: 733-742, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36780852

RESUMO

HYPOTHESIS: The classical Schulze-Hardy rule states that the critical coagulation concentration (CCC) of colloidal particles is inversely proportional to the counter-ionic valence at powers ranging from 2 to 6. However, the inverse Schulze-Hardy rule has recently been proposed, suggesting that the CCC can also be inversely proportional to the co-ionic valence. Previous studies on these rules did not consider the effect of flow on aggregation kinetics and the CCC. This study aims to investigate the effect of multivalent counter-ions and co-ions on aggregation kinetics and the CCCs in systems with and without a mixing flow. EXPERIMENTS: We measured the aggregation rate coefficients of polystyrene sulfate latex particles as a function of the salt concentration with different ionic species. Furthermore, we analyzed these measurements using theoretical models based on hydrodynamic pair-diffusion in a random flow and trajectory analysis in two steady flows. The analysis was conducted using zeta potentials determined through electrophoretic measurements. FINDINGS: Although the trajectory analysis underestimates the CCCs, the hydrodynamic pair-diffusion model can capture the shift of critical coagulation concentrations in the mixing flow to higher values than those in Brownian aggregation and also shows a better agreement with the experimental results. This result suggests that combining random flow and Brownian diffusion is crucial for developing a consistent framework for predicting both Brownian aggregation and aggregation in a mixing flow.

15.
Sci Total Environ ; 869: 161897, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36709891

RESUMO

Anaerobic ammonium oxidation (anammox) has been widely used for the sustainable removal of nitrogen from wastewater. Extracellular DNA (exDNA), as one of the main components of biofilms, not only determines the initial formation process, but also allows the three-dimensional structure to be maintained. Since the effects of exDNA on anammox biofilm formation are still poorly understood, this study elucidated the effects of exDNA on different stages of anammox biofilm establishment and maintenance under static conditions and its mechanism. The results revealed that exDNA mainly affected the maintenance stage of anammox biofilm formation. Compared with the absence of exDNA, nitrogen removal efficiency in the presence of exDNA was 6.17 % higher; the number of bacteria cells attached to the carrier was 2.23 times that in the absence of exDNA. The spatiotemporal distribution of bacteria was revealed by fluorescence in situ hybridization. After 30 days, the relative abundances of anammox in biofilms were 6.19 % and 0.4 % in the presence and absence of exDNA, respectively, indicating its positive role in anammox bacteria (AnAOB) adhesion and biofilm formation. The presence of exDNA in extracellular polymeric substances (EPS) promotes the synthesis of proteins and soluble microbial products. According to the extended Derjaguin-Landau-Verwey-Overbeek (X - DLVO) theory, the presence of exDNA also reduced the Lewis acid-base interaction energy and created favorable thermodynamic conditions for AnAOB adhesion. These findings advance our understanding of the role of exDNA in anammox-mediated biofilm formation and offer insights into the mechanism of exDNA in the establishment and maintenance stages.


Assuntos
Compostos de Amônio , Oxidação Anaeróbia da Amônia , Hibridização in Situ Fluorescente , Reatores Biológicos/microbiologia , Biofilmes , DNA , Oxirredução , Nitrogênio/metabolismo , Esgotos/microbiologia , Anaerobiose , Compostos de Amônio/metabolismo , Desnitrificação
16.
Cancers (Basel) ; 15(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36672471

RESUMO

Currently, no numerical model for low-intensity pulsed ultrasound (LIPUS)-triggered anticancer drug release from gold nanoparticle (GNP) drug carriers exists in the literature. In this work, LIPUS-induced doxorubicin (DOX) release from GNPs was achieved in an ex vivo tissue model. Transmission electronic microscopy (TEM) imaging was performed before and after LIPUS exposure, and significant aggregation of the GNPs was observed upon DOX release. Subsequently, GNP surface potential was determined before and after LIPUS-induced DOX release, using a Zetasizer. A numerical model was then created to predict GNP aggregation, and the subsequent DOX release, via combining a thermal field simulation by solving the bioheat transfer equation (in COMSOL) and the Derjaguin, Landau, Verwey, and Overbeek (DLVO) total interaction potential (in MATLAB). The DLVO model was applied to the colloidal DOX-loaded GNPs by summing the attractive van der Waals and electrostatic repulsion interaction potentials for any given GNP pair. DLVO total interaction potential was found before and after LIPUS exposure, and an energy barrier for aggregation was determined. The DLVO interaction potential peak amplitude was found to drop from 1.36 kBT to 0.24 kBT after LIPUS exposure, translating to an 82.4% decrease in peak amplitude value. It was concluded that the interaction potential energy threshold for GNP aggregation (and, as a result, DOX release) was equal to 0.24 kBT.

17.
Chemosphere ; 310: 136805, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36223821

RESUMO

Natural inorganic colloids (NICs) are the most common and dominant existence in the ecosystem, with high concentration and wide variety. In spite of the low toxicity, they can alter activity and mobility of hazardous engineered nanoparticles (ENPs) through different interactions, which warrants the necessity to understand and predict the fate and transport of NICs in aquatic ecosystems. Here, this review summarized NICs properties and behaviors, interaction mechanisms and environmental factors at the first time. Various representative NICs and their physicochemical properties were introduced across the board. Then, the aggregation and sedimentation behaviors were discussed systematically, mainly concerning the heteroaggregation between NICs and ENPs. To speculate their fate and elucidate the corresponding mechanisms, the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) and extended DLVO (X-DLVO) theories were focused. Furthermore, a range of intrinsic and extrinsic factors was presented in different perspective. Last but not the least, this paper pointed out theoretical and analytical gaps in current researches, and put forward suggestions for further research, aiming to provide a more comprehensive and original perspective in the fields of natural occurring colloids.


Assuntos
Ecossistema , Nanopartículas , Cinética , Nanopartículas/química , Coloides/química
18.
Environ Sci Pollut Res Int ; 30(10): 26256-26269, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36355238

RESUMO

Nanoplastics can be produced directly from some artificial products, such as cosmetics, or indirectly from the breakup of large pieces of plastic waste. They have a small particle size, large specific surface area, and stable structure and can concentrate toxic compounds in water. The discharge of nanoplastics into the water environment through urban piping systems or surface runoff may lead to the contamination of surface water resources, which poses a great threat to the safety of drinking water. As a common adsorbent, granular activated carbon (GAC) is widely used in the advanced treatment of drinking water. However, most of the studies focused on the transport ability of nanoplastics in quartz sand, and there is a lack of research on the migration behavior of nanoplastics in activated carbon media. In this study, the stability and pore characteristics of GAC were studied, and its regeneration efficiency was investigated. The transport curves of PSNPs, which have a particle size of 98 ± 9 nm and specific surface area of about 67 m2/g, were compared under different ionic strengths, ionic species, flow rates, pH, and humic acid (HA) concentrations. And DLVO theory was used to analyze the transport behavior of nanoplastics in activated carbon column. All experiments were performed at room temperature to make the results generalizable. The results showed that GAC had stable pore structure and excellent adsorption capacity. The surface area and pore volume of GAC are 759 m2/g and 0.357 cm3/g, respectively. And the regeneration rate of GAC can reach 90% and 83.3% after the first two regeneration cycles. On the other hand, at high ionic strength and low pH, the repulsive barrier between PSNPs and activated carbon gradually disappeared; then, more PSNPs were deposited in the activated carbon media, and the concentration of PSNPs in the effluent water was lower. Both the flow rate and HA promoted the transport of PSNPs, but the breakthrough curves of PSNPs did not change significantly when the HA concentration was further increased. At the same ion concentration, PSNPs tend to deposit on the surface of activated carbon in the background solution of Ca2+ compared with Na+. This study reveals the migration mechanism of PSNPs in the activated carbon filter column, which is of great importance to ensure the safety of drinking water and human health.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Humanos , Carvão Vegetal/química , Microplásticos , Poluentes Químicos da Água/química , Plásticos , Purificação da Água/métodos , Adsorção
19.
Environ Int ; 170: 107628, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36395559

RESUMO

Nanoplastics are inevitably ingested into human gastric environment, wherein their aggregation kinetics and interactions with gastric constituents remain unclear. This study investigated the early-stage (20 min) and long-term (1-6 h) aggregation kinetics of four commonly-found polystyrene nanoplastics (PSNPs) including NP100 (100-nm), A-NP100 (100-nm, amino-modified), C-NP100 (100-nm, carboxyl-modified), and NP500 (500-nm) under gastric conditions. Five simulated human gastric fluids (SGFs) including SGF1-3 (0-3.2 g/L pepsin and 34.2 mM NaCl), SGF4 (400 mM glycine), and SGF5 (nine constituents), three pH (2, fasted state; 3.5, late-fed state; and 5, early-fed state), and 1-100 mg/L PSNPs were examined. Aggregation rates ranked NP100 > A-NP100 ≈ C-NP100 > NP500, SGF5 > SGF4 > SGF3 > SGF2 > SGF1, and pH 2 > 3.5 > 5. Increasing PSNP concentration enhanced aggregation rate up to 13.82 nm/s. Aggregation behavior generally followed the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Pepsin, glycine, and proteose-peptone strongly influenced PSNP stability via electrostatic interaction and steric hindrance imparted by protein corona. Freundlich isotherm suggested that PSNPs adsorbed organic constituents following lysozyme > porcine bile > proteose-peptone > pepsin > glycine > D-glucose, inducing changes in constituent structure and PSNP properties. These findings provide insights on the transport of nanoplastics in the gastric environments.


Assuntos
Poliestirenos , Humanos , Animais , Suínos
20.
Materials (Basel) ; 15(21)2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36363030

RESUMO

Numerous approaches have been developed to control the crystalline and morphology of calcium carbonate. In this paper, nanobubbles were studied as a novel aid for the structure transition from vaterite to calcite. The vaterite particles turned into calcite (100%) in deionized water containing nanobubbles generated by high-speed shearing after 4 h, in comparison to a mixture of vaterite (33.6%) and calcite (66.3%) by the reaction in the deionized water in the absence of nanobubbles. The nanobubbles can coagulate with calcite based on the potential energy calculated and confirmed by the extended DLVO (Derjaguin-Landau-Verwey-Overbeek) theory. According to the nanobubble bridging capillary force, nanobubbles were identified as the binder in strengthening the coagulation between calcite and vaterite and accelerated the transformation from vaterite to calcite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA