Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 698
Filtrar
1.
ACS Synth Biol ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110689

RESUMO

The engineering of enzymatic activity generally involves alteration of the protein primary sequences, which introduce structural changes that give rise to functional improvements. Mechanical forces have been used to interrogate protein biophysics, leading to deep mechanistic insights in single-molecule studies. Here, we use simple DNA springs to apply small pulling forces to perturb the active site of a thermostable alcohol dehydrogenase. Methods were developed to enable the study of different spring lengths and spring orientations under bulk catalysis conditions. Tension applied across the active site expanded the binding pocket volume and shifted the preference of the enzyme for longer chain-length substrates, which could be tuned by altering the spring length and the resultant applied force. The substrate specificity changes did not occur when the DNA spring was either severed or rotated by ∼90°. These findings demonstrate an alternative approach in protein engineering, where active site architectures can be dynamically and reversibly remodeled using applied mechanical forces.

2.
Adv Funct Mater ; 34(30)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39131199

RESUMO

Plasmonic nanomaterials bearing targeting ligands are of great interest for surface-enhanced Raman scattering (SERS)-based bioimaging applications. However, the practical utility of SERS-based imaging strategies has been hindered by the lack of a straightforward method to synthesize highly sensitive SERS-active nanostructures with high yield and efficiency. In this work, leveraging DNA origami principles, we report the first-in-class design of a SERS-based plasmonically coupled nanoprobe for targeted cancer imaging (SPECTRA). The nanoprobe harnesses a cancer cell targeting DNA aptamer sequence and vibrational tag with stretching frequency in the cell-silent Raman window. Through the integration of aptamer sequence specific for DU145 cells, we show the unique capabilities of SPECTRA for targeted imaging of DU145 cells. Our results demonstrate that the scalability, cost-effectiveness, and reproducibility of this method of fabrication of SERS nanoprobes can serve as a versatile platform for creating nanoprobes with broad applications in the fields of cancer biology and biomedical imaging.

3.
ACS Nano ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39116033

RESUMO

Monotherapy, especially the use of antibodies targeting vascular endothelial growth factor (VEGF), has shown limitations in treating choroidal neovascularization (CNV) since reactive oxygen species (ROS) also exacerbate CNV formation. Herein, we developed a combination therapy based on a DNA origami platform targeting multiple components of ocular neovascularization. Our study demonstrated that ocular neovascularization was markedly suppressed by intravitreal injection of a rectangular DNA origami sheet modified with VEGF aptamers (Ap) conjugated to an anti-VEGF antibody (aV) via matrix metalloproteinase (MMP)-cleavable peptide linkers in a mouse model of CNV. Typically, the DNA origami-based therapeutic platform selectively accumulates in neovascularization lesions owing to the dual-targeting ability of the aV and Ap, followed by the cleavage of the peptide linker by MMPs to release the antibody. Together, the released antibody and Ap inhibited VEGF activity. Moreover, the residual bare DNA origami could effectively scavenge ROS, reducing oxidative stress at CNV sites and thus maximizing the synergistic effects of inhibiting neovascularization.

4.
Chembiochem ; : e202400468, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075031

RESUMO

DNA condensates, formed by liquid-liquid phase separation (LLPS), emerge as promising soft matter assemblies for creating artificial cells. The advantages of DNA condensates are their molecular permeability through the surface due to their membrane-less structure and their fluidic property. However, they face challenges in the design of their surface, e.g., unintended fusion and less regulation of permeable molecules. Addressing them, we report surface modification of DNA condensates with DNA origami nanoparticles, employing a Pickering-emulsion strategy. We successfully constructed core-shell structures with DNA origami coatings on DNA condensates and further enhanced the condensate stability toward fusion via connecting DNA origamis by responding to DNA input strands. The 'armoring' prevented the fusion of DNA condensates, enabling the formation of multicellular-like structures of DNA condensates. Moreover, the permeability was altered through the state change from coating to armoring the DNA condensates. The armored DNA condensates have significant potential for constructing artificial cells, offering increased surface stability and selective permeability for small molecules while maintaining compartmentalized space and multicellular organization.

5.
Expert Opin Drug Deliv ; 21(6): 905-920, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38962823

RESUMO

INTRODUCTION: This review discusses novel hybrid assemblies that are based on liposomal formulations. The focus is on the hybrid constructs that are formed through the integration of liposomes/vesicles with other nano-objects such as nucleic acid nanostructures and metallic nanoparticles. The aim is to introduce some of the recent, specific examples that bridge different technologies and thus may form a new platform for advanced drug delivery applications. AREAS COVERED: We present selected examples of liposomal formulations combined with complex nanostructures either based on biomolecules like DNA origami or on metallic materials - metal/metal oxide/magnetic particles and metallic nanostructures, such as metal organic frameworks - together with their applications in drug delivery and beyond. EXPERT OPINION: Merging the above-mentioned techniques could lead to development of drug delivery vehicles with the most desirable properties; multifunctionality, biocompatibility, high drug loading efficiency/accuracy/capacity, and stimuli-responsiveness. In the near future, we believe that especially the strategies combining dynamic, triggerable and programmable DNA nanostructures and liposomes could be used to create artificial liposome clusters for multiple applications such as examining protein-mediated interactions between lipid bilayers and channeling materials between liposomes for enhanced pharmacokinetic properties in drug delivery.


Assuntos
DNA , Sistemas de Liberação de Medicamentos , Lipossomos , Nanopartículas Metálicas , Nanoestruturas , DNA/administração & dosagem , DNA/química , Nanopartículas Metálicas/química , Humanos , Nanoestruturas/química , Animais
6.
Adv Mater ; : e2405104, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014922

RESUMO

Biological nanopores crucially control the import and export of biomolecules across lipid membranes in cells. They have found widespread use in biophysics and biotechnology, where their typically narrow, fixed diameters enable selective transport of ions and small molecules, as well as DNA and peptides for sequencing applications. Yet, due to their small channel sizes, they preclude the passage of large macromolecules, e.g., therapeutics. Here, the unique combined properties of DNA origami nanotechnology, machine-inspired design, and synthetic biology are harnessed, to present a structurally reconfigurable DNA origami MechanoPore (MP) that features a lumen that is tuneable in size through molecular triggers. Controllable switching of MPs between 3 stable states is confirmed by 3D-DNA-PAINT super-resolution imaging and through dye-influx assays, after reconstitution of the large MPs in the membrane of liposomes via an inverted-emulsion cDICE technique. Confocal imaging of transmembrane transport shows size-selective behavior with adjustable thresholds. Importantly, the conformational changes are fully reversible, attesting to the robust mechanical switching that overcomes pressure from the surrounding lipid molecules. These MPs advance nanopore technology, offering functional nanostructures that can be tuned on-demand - thereby impacting fields as diverse as drug delivery, biomolecule sorting, and sensing, as well as bottom-up synthetic biology.

7.
Small ; : e2401396, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973093

RESUMO

DNA nanostructures have been utilized to study biological mechanical processes and construct artificial nanosystems. Many application scenarios necessitate nanodevices able to robustly generate large single molecular forces. However, most existing dynamic DNA nanostructures are triggered by probabilistic hybridization reactions between spatially separated DNA strands, which only non-deterministically generate relatively small compression forces (≈0.4 piconewtons (pN)). Here, an intercalator-triggered dynamic DNA origami nanostructure is developed, where large amounts of local binding reactions between intercalators and the nanostructure collectively lead to the robust generation of relatively large compression forces (≈11.2 pN). Biomolecular loads with different stiffnesses, 3, 4, and 6-helix DNA bundles are efficiently bent by the compression forces. This work provides a robust and powerful force-generation tool for building highly chemo-mechanically coupled molecular machines in synthetic nanosystems.

8.
ACS Nano ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39074854

RESUMO

The detection of a single-enzyme catalytic reaction by surfaced-enhanced Raman scattering (SERS) is presented by utilizing DNA origami-based plasmonic antennas. A single horseradish peroxidase (HRP) was accommodated on a DNA origami nanofork plasmonic antenna (DONA) containing gold nanoparticles, enabling the tracing of single-molecule SERS signals during the peroxide reduction reaction. This allows monitoring of the structure of a single enzymatic catalytic center and products under suitable liquid conditions. Herein, we demonstrate the chemical changes of HRP and the appearance of tetramethylbenzidine (TMB), which works as a hydrogen donor before and after the catalytic reaction. The results show that the iron in HRP adopts Fe4+ and low spin states with the introduction of H2O2, indicating compound-I formation. Density functional theory (DFT) calculations were performed for later catalytic steps to rationalize the experimental Raman/SERS spectra. The presented data provide several possibilities for tracking single biomolecules in situ during a chemical reaction and further developing plasmon-enhanced biocatalysis.

9.
ACS Appl Mater Interfaces ; 16(30): 38979-38988, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39029244

RESUMO

Renal ischemia-reperfusion injury (IRI) is a major contributing factor to the development of acute kidney injury (AKI) and has resulted in considerable morbidity and mortality. Persistent inflammatory responses and excessive reactive oxygen species (ROS) in the kidney following IRI can severely delay tissue repair, making it challenging to effectively promote IRI regeneration. Herein, we report an approach to enhance immunotherapy using interleukin-10 (IL-10) to promote IRI regeneration by loading IL-10 onto rectangular DNA origami nanostructures (rDON). rDON can significantly enhance the renal accumulation and retention time of IL-10, enabling it to effectively polarize type 1 macrophages into type 2 macrophages, thereby significantly reducing proinflammatory factors and increasing anti-inflammatory factors. In addition, DNA origami helps mitigate the harmful effects of ROS during renal IRI. The administration of IL-10-loaded DNA origami effectively improves kidney function, resulting in a notable reduction in blood urea nitrogen, serum uric acid, and serum creatinine levels. Our study demonstrates that the integration of anti-inflammatory cytokines within DNA origami holds promise as a strategic approach for cytokine immunotherapy in patients with AKI and other renal disorders.


Assuntos
Injúria Renal Aguda , DNA , Interleucina-10 , Traumatismo por Reperfusão , Traumatismo por Reperfusão/terapia , Traumatismo por Reperfusão/tratamento farmacológico , Animais , DNA/química , Interleucina-10/metabolismo , Camundongos , Injúria Renal Aguda/terapia , Imunoterapia , Masculino , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Rim/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Humanos
10.
Angew Chem Int Ed Engl ; : e202412294, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39030890

RESUMO

Mosaic nanoparticle vaccines with heterotypic antigens exhibit broad-spectrum antiviral capabilities, but the impact of antigen proportions and distribution patterns on vaccine-induced immunity remains largely unexplored. Here, we present a DNA nanotechnology-based strategy for spatially assembling heterotypic antigens to guide the rational design of mosaic nanoparticle vaccines. By utilizing two aptamers with orthogonal selectivity for the original SARS-CoV-2 spike trimer and Omicron receptor-binding domain (RBD), along with a DNA soccer-ball framework, we precisely manipulate the spacing, stoichiometry, and overall distribution of heterotypic antigens to create mosaic nanoparticles with average, bipolar, and unipolar antigen distributions. Systematic in vitro and in vivo immunological investigations demonstrate that 30 heterotypic antigens in equivalent proportions, with an average distribution, leads to higher production of broad-spectrum neutralizing antibodies compared to the bipolar and unipolar distributions. Furthermore, the precise assembly utilizing our developed methodology reveals that a mere increment of five Omicron RBD antigens on a nanoparticle (from 15 to 20) not only diminishes neutralization against Omicron variant but also triggers excessive inflammation. This work provides a unique perspective on the rational design of mosaic vaccines by highlighting the significance of the spatial placement and proportion of heterotypic antigens in their structure-activity mechanisms.

11.
Nano Lett ; 24(31): 9451-9458, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38976602

RESUMO

Circular dichroism (CD) spectroscopy has been extensively utilized for detecting and distinguishing the chirality of diverse substances and structures. However, CD spectroscopy is inherently weak and conventionally associated with chiral sensing, thus constraining its range of applications. Here, we report a DNA-origami-empowered metasurface sensing platform through the collaborative effect of metasurfaces and DNA origami, enabling achiral/slightly chiral sensing with high sensitivity via the enhanced ΔCD. An anapole metasurface, boasting over 60 times the average optical chirality enhancement, was elaborately designed to synergize with reconfigurable DNA origami. We experimentally demonstrated the detection of achiral/slightly chiral DNA linker strands via the enhanced ΔCD of the proposed platform, whose sensitivity was a 10-fold enhancement compared with the platform without metasurfaces. Our work presents a high-sensitivity platform for achiral/slightly chiral sensing through chiral spectroscopy, expanding the capabilities of chiral spectroscopy and inspiring the integration of multifunctional artificial nanostructures across diverse domains.

12.
J Nanobiotechnology ; 22(1): 414, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010059

RESUMO

Staphylococcus aureus (SA) poses a serious risk to human and animal health, necessitating a low-cost and high-performance analytical platform for point-of-care diagnostics. Cellulose paper-based field-effect transistors (FETs) with RNA-cleaving DNAzymes (RCDs) can fulfill the low-cost requirements, however, its high hydrophilicity and lipophilicity hinder biochemical modification and result in low sensitivity, poor mechanical stability and poor fouling performance. Herein, we proposed a controllable self-cleaning FET to simplify biochemical modification and improve mechanical stability and antifouling performance. Then, we constructed an RCD-based DNA nanotree to significantly enhance the sensitivity for SA detection. For controllable self-cleaning FET, 1 H,1 H,2 H,2 H-perfluorodecyltrimethoxysilane based-polymeric nanoparticles were synthesized to decorate cellulose paper and whole carbon nanofilm wires. O2 plasma was applied to regulate to reduce fluorocarbon chain density, and then control the hydrophobic-oleophobic property in sensitive areas. Because negatively charged DNA affected the sensitivity of semiconducting FETs, three Y-shaped branches with low-cost were designed and applied to synthesize an RCD-based DNA-Nanotree based on similar DNA-origami technology, which further improved the sensitivity. The trunk of DNA-Nanotree was composed of RCD, and the canopy was self-assembled using multiple Y-shaped branches. The controllable self-cleaning FET biosensor was applied for SA detection without cultivation, which had a wide linear range from 1 to 105 CFU/mL and could detect a low value of 1 CFU/mL.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Staphylococcus aureus , DNA Catalítico/química , DNA Catalítico/metabolismo , Técnicas Biossensoriais/métodos , Transistores Eletrônicos , RNA/metabolismo , Limite de Detecção , Celulose/química , Papel , Nanopartículas/química , Humanos
13.
Nano Lett ; 24(27): 8410-8417, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38920331

RESUMO

Nanodevices that function in specific organs or cells are one of the ultimate goals of synthetic biology. The recent progress in DNA nanotechnology such as DNA origami has allowed us to construct nanodevices to deliver a payload (e.g., drug) to the tumor. However, delivery to specific organs remains difficult due to the fragility of the DNA nanostructure and the low targeting capability of the DNA nanostructure. Here, we constructed tough DNA origami that allowed us to encapsulate the DNA origami into lipid-based nanoparticles (LNPs) under harsh conditions (low pH), harnessing organ-specific delivery of the gene of interest (GOI). We found that DNA origami-encapsulated LNPs can increase the functionality of payload GOIs (mRNA and siRNA) inside mouse organs through the contribution from different LNP structures revealed by cryogenic electron microscope (Cryo-EM). These data should be the basis for future organ-specific gene expression control using DNA origami nanodevices.


Assuntos
DNA , Nanotecnologia , DNA/química , Animais , Camundongos , Nanotecnologia/métodos , Nanoestruturas/química , Nanopartículas/química , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , RNA Mensageiro/genética , RNA Mensageiro/química , Regulação da Expressão Gênica , Especificidade de Órgãos , Conformação de Ácido Nucleico , Lipídeos/química
14.
Nano Lett ; 24(28): 8510-8517, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38856705

RESUMO

Optical emitters in hexagonal boron nitride (hBN) are promising probes for single-molecule sensing platforms. When engineered in nanoparticle form, they can be integrated as detectors in nanodevices, yet positional control at the nanoscale is lacking. Here we demonstrate the functionalization of DNA origami nanopores with optically active hBN nanoparticles (NPs) with nanometer precision. The NPs are active under three wavelengths of visible illumination and display both stable and blinking emission, enabling their accurate localization by using wide-field optical nanoscopy. Correlative opto-structural characterization reveals deterministic binding of bright, multicolor hBN NPs at the pore rim due to π-π stacking interactions at site-specific locations on the DNA origami. Our work provides a scalable, bottom-up approach toward deterministic assembly of solid-state emitters on arbitrary structural elements based on DNA origami. Such a nanoscale arrangement of optically active components can advance the development of single-molecule platforms, including optical nanopores and nanochannel sensors.


Assuntos
Compostos de Boro , DNA , Nanoporos , Compostos de Boro/química , DNA/química , Nanotecnologia/métodos , Nanopartículas/química
15.
Med Rev (2021) ; 4(3): 207-224, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38919398

RESUMO

RNA-based therapeutics have emerged as a promising approach for the treatment of various diseases, including cancer, genetic disorders, and infectious diseases. However, the delivery of RNA molecules into target cells has been a major challenge due to their susceptibility to degradation and inefficient cellular uptake. To overcome these hurdles, DNA-based nano technology offers an unprecedented opportunity as a potential delivery platform for RNA therapeutics. Due to its excellent characteristics such as programmability and biocompatibility, these DNA-based nanostructures, composed of DNA molecules assembled into precise and programmable structures, have garnered significant attention as ideal building materials for protecting and delivering RNA payloads to the desired cellular destinations. In this review, we highlight the current progress in the design and application of three DNA-based nanostructures: DNA origami, lipid-nanoparticle (LNP) technology related to frame guided assembly (FGA), and DNA hydrogel for the delivery of RNA molecules. Their biomedical applications are briefly discussed and the challenges and future perspectives in this field are also highlighted.

16.
Small ; : e2207585, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840451

RESUMO

Chemistry has the power to endow supramolecular nanostructures with new biomedically relevant functions. Here it is reported that DNA nanostructures modified with cholesterol tags disrupt bacterial membranes to cause microbial cell death. The lipidated DNA nanostructures bind more readily to cholesterol-free bacterial membranes than to cholesterol-rich, eukaryotic membranes. These highly negatively charged, lipidated DNA nanostructures cause bacterial cell death by rupturing membranes. Strikingly, killing is mediated by clusters of barrel-shaped nanostructures that adhere to the membrane without the involvement of expected bilayer-puncturing barrels. These DNA nanomaterials may inspire the development of polymeric or small-molecule antibacterial agents that mimic the principles of selective binding and rupturing to help combat antimicrobial resistance.

17.
Nano Lett ; 24(23): 6916-6923, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38829305

RESUMO

Cytochrome C, an evolutionarily conserved protein, plays pivotal roles in cellular respiration and apoptosis. Understanding its molecular intricacies is essential for both academic inquiry and potential biomedical applications. This study introduces an advanced single-molecule surface-enhanced Raman scattering (SM-SERS) system based on DNA origami nanoantennas (DONAs), optimized to provide unparalleled insights into protein structure and interactions. Our system effectively detects shifts in the Amide III band, thereby elucidating protein dynamics and conformational changes. Additionally, the system permits concurrent observations of oxidation processes and Amide bands, offering an integrated view of protein structural and chemical modifications. Notably, our approach diverges from traditional SM-SERS techniques by de-emphasizing resonance conditions for SERS excitation, aiming to mitigate challenges like peak oversaturation. Our findings underscore the capability of our DONAs to illuminate single-molecule behaviors, even within aggregate systems, providing clarity on molecular interactions and behaviors.


Assuntos
Citocromos c , DNA , Análise Espectral Raman , Análise Espectral Raman/métodos , DNA/química , Citocromos c/química , Nanoestruturas/química
18.
Adv Sci (Weinh) ; 11(26): e2401617, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38713753

RESUMO

DNA nanostructures exhibit versatile geometries and possess sophisticated capabilities not found in other nanomaterials. They serve as customizable nanoplatforms for orchestrating the spatial arrangement of molecular components, such as biomolecules, antibodies, or synthetic nanomaterials. This is achieved by incorporating oligonucleotides into the design of the nanostructure. In the realm of drug delivery to cancer cells, there is a growing interest in active targeting assays to enhance efficacy and selectivity. The active targeting approach involves a "key-lock" mechanism where the carrier, through its ligand, recognizes specific receptors on tumor cells, facilitating the release of drugs. Various DNA nanostructures, including DNA origami, Tetrahedral, nanoflower, cruciform, nanostar, nanocentipede, and nanococklebur, can traverse the lipid layer of the cell membrane, allowing cargo delivery to the nucleus. Aptamers, easily formed in vitro, are recognized for their targeted delivery capabilities due to their high selectivity for specific targets and low immunogenicity. This review provides a comprehensive overview of recent advancements in the formation and modification of aptamer-modified DNA nanostructures within drug delivery systems.


Assuntos
Aptâmeros de Nucleotídeos , DNA , Sistemas de Liberação de Medicamentos , Nanoestruturas , Nanoestruturas/química , Aptâmeros de Nucleotídeos/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , DNA/química
19.
Biotechnol J ; 19(5): e2300734, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38719571

RESUMO

Self-assembly of biological elements into biomimetic cargo carriers for targeting and delivery is a promising approach. However, it still holds practical challenges. We developed a functionalization approach of DNA origami (DO) nanostructures with neuronal growth factor (NGF) for manipulating neuronal systems. NGF bioactivity and its interactions with the neuronal system were demonstrated in vitro and in vivo models. The DO elements fabricated by molecular self-assembly have manipulated the surrounding environment through static spatially and temporally controlled presentation of ligands to the cell surface receptors. Our data showed effective bioactivity in differentiating PC12 cells in vitro. Furthermore, the DNA origami NGF (DON) affected the growth directionality and spatial capabilities of dorsal root ganglion neurons in culture by introducing a chemotaxis effect along a gradient of functionalized DO structures. Finally, we showed that these elements provide enhanced axonal regeneration in a rat sciatic nerve injury model in vivo. This study is a proof of principle for the functionality of DO in neuronal manipulation and regeneration. The approach proposed here, of an engineered platform formed out of programmable nanoscale elements constructed of DO, could be extended beyond the nervous system and revolutionize the fields of regenerative medicine, tissue engineering, and cell biology.


Assuntos
DNA , Gânglios Espinais , Fator de Crescimento Neural , Regeneração Nervosa , Animais , Ratos , Células PC12 , DNA/química , Gânglios Espinais/citologia , Fator de Crescimento Neural/química , Fator de Crescimento Neural/farmacologia , Nanoestruturas/química , Neurônios , Nervo Isquiático , Alicerces Teciduais/química , Ratos Sprague-Dawley
20.
Nano Lett ; 24(22): 6480-6487, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38771966

RESUMO

The metal plasmonic nanostructure has the optical property of plasmon resonance, which holds great potential for development in nanophotonics, bioelectronics, and molecular detection. However, developing a general and straightforward method to prepare metal plasmonic nanostructures with a controllable size and morphology still poses a challenge. Herein, we proposed a synthesis strategy that utilized a customizable self-assembly template for shape-directed growth of metal structures. We employed gold nanoparticles (AuNPs) as connectors and DNA nanotubes as branches, customizing gold nanoparticle-DNA origami composite nanostructures with different branches by adjusting the assembly ratio between the connectors and branches. Subsequently, various morphologies of plasmonic metal nanostructures were created using this template shape guided strategy, which exhibited enhancement of surface-enhanced Raman scattering (SERS) signals. This strategy provides a new approach for synthesizing metallic nanostructures with multiple morphologies and opens up another possibility for the development of customizable metallic plasmonic structures with broader applications.


Assuntos
DNA , Ouro , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , DNA/química , Ressonância de Plasmônio de Superfície , Análise Espectral Raman , Nanotecnologia/métodos , Tamanho da Partícula , Nanoestruturas/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA