Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Microbiol Spectr ; : e0036524, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283089

RESUMO

Reactive oxygen species (ROS) pose a lethal risk for all life forms by causing damage to cell processes, genome-wide DNA damage-driving mutation, replicative instability, and death. Thus, the development of mechanisms to resist or repair ROS-induced DNA damage is critical for the reliable replication of nucleic acids. DNA repair and protection mechanisms have been discovered in all forms of life. However, the vast array of microbes that may harbor novel repair or protection mechanisms, especially bacterial viruses, have not been adequately assessed. Here, we screened a microbial gene library composed primarily of phage open reading frames (ORFs) to uncover elements that overcome a DNA damage blockade. We report the discovery of one such protein, termed F21, which promotes bacterial survival by possibly repairing or protecting DNA in the face of ROS-induced DNA damage.IMPORTANCEDiscovery of proteins that promote DNA damage repair and protection in the face of reactive oxygen species (ROS) is of vital importance. Our group is in possession of a unique microbial DNA library with which we can screen for undiscovered genes that encode novel proteins with DNA damage repair and protective functions. This library is composed of diverse DNA from a variety of sources, namely bacteriophages, which must be assessed for their novel functions. This work focuses on the discovery of DNA damage repair and protection, but the possibilities for discovery are endless, thus highlighting the significance of this work.

3.
N Biotechnol ; 79: 60-70, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38145650

RESUMO

After the decline of the COVID-19 pandemic, health systems were challenged by the simultaneous prevalence of different respiratory viruses causing a wide overlap in symptoms. This increased the demand for multi-virus diagnostic tests which require suitable pre-analytical workflow solutions in order to receive valid diagnostic results. In this context, the effects of specimen storage duration and temperature on the RNA/DNA copy number stability of influenza A/B, RSV A/B, SARS-CoV-2 and adenovirus were examined for four commercially available transport swab systems and saliva collection devices. The respiratory viruses were more stable in the saliva collection devices than in the transport swab systems when stored at RT or 37 °C for up to 96 h. Moreover, no differences between viral nucleic acid stability of enveloped and non-enveloped viruses were observed. The infectivity of all enveloped viruses could be inactivated by the saliva collection device from PreAnalytiX. The Norgen saliva device completely inactivated influenza A/B, while RSV A/B were partially inactivated. The non-enveloped adenovirus was inactivated by a reduction factor of 10E+ 4 in both saliva collection devices. All respiratory viruses remained infectious in the transport swab systems. Two possible transport medium additives were tested which inactivated or strongly reduced viral replication of tested enveloped viruses but had no effect on the non-enveloped adenovirus. Finally the implementation of multi-target detection procedures involving a direct amplification approach was successfully tested by spike-in of all enveloped viruses simultaneously into transport swab systems. This fast and reproducible setup presents a valuable solution for future implementations in multi-virus testing strategies.


Assuntos
Influenza Humana , Vírus , Humanos , Influenza Humana/diagnóstico , Pandemias , Vírus/genética , Manejo de Espécimes/métodos , Reação em Cadeia da Polimerase
4.
Antioxidants (Basel) ; 12(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36979008

RESUMO

Obesity causes genetic instability, which plays a key-role in the etiology of cancer and aging. We investigated the impact of bariatric surgery (BS) on DNA repair, oxidative DNA damage, telomere lengths, alterations of antioxidant enzymes and, selected proteins which reflect inflammation. The study was realized with BS patients (n = 35). DNA damage, base oxidation, BER, and NER were measured before and 1 month and 6 months after surgery with the single-cell gel electrophoresis technique. SOD and GPx were quantified spectrophotometrically, malondealdehyde (MDA) was quantified by HPLC. Telomere lengths were determined with qPCR, and plasma proteome profiling was performed with high-resolution mass spectrophotometry. Six months after the operations, reduction of body weight by 27.5% was observed. DNA damage decreased after this period, this effect was paralleled by reduced formation of oxidized DNA bases, a decline in the MDA levels and of BER and NER, and an increase in the telomere lengths. The activities of antioxidant enzymes were not altered. Clear downregulation of certain proteins (CRP, SAA1) which reflect inflammation and cancer risks was observed. Our findings show that BS causes reduced oxidative damage of DNA bases, possibly as a consequence of reduction of inflammation and lipid peroxidation, and indicate that the surgery has beneficial long-term health effects.

5.
Toxics ; 11(3)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36977048

RESUMO

Cerium oxide engineered nanoparticles (nCeO2) are widely used in various applications and are, also, increasingly being detected in different environmental matrixes. However, their impacts on the aquatic environment remain poorly quantified. Hence, there is a need to investigate their effects on non-target aquatic organisms. Here, we evaluated the cytotoxic and genotoxic effects of <25 nm uncoated-nCeO2 on algae Pseudokirchneriella subcapitata. Apical (growth and chlorophyll a (Chl a) content) and genotoxic effects were investigated at 62.5-1000 µg/L after 72 and 168 h. Results demonstrated that nCeO2 induced significant growth inhibition after 72 h and promotion post 96-168 h. Conversely, nCeO2 induced enhanced Chl a content post 72 h, but no significant changes were observed between nCeO2-exposed and control samples after 168 h. Hence, the results indicate P. subcapitata photosynthetic system recovery ability to nCeO2 effects under chronic-exposure conditions. RAPD-PCR profiles showed the appearance and/or disappearance of normal bands relative to controls; indicative of DNA damage and/or DNA mutation. Unlike cell recovery observed post 96 h, DNA damage persisted over 168 h. Thus, sub-lethal nCeO2-induced toxicological effects may pose a more serious threat to algae than at present anticipated.

6.
Vaccines (Basel) ; 11(3)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36992261

RESUMO

DNA integrity is a key issue in gene therapy and genetic vaccine approaches based on plasmid DNA. In contrast to messenger RNA that requires a controlled cold chain for efficacy, DNA molecules are considered to be more stable. In this study, we challenged this concept by characterizing the immunological response induced by a plasmid DNA vaccine delivered using electroporation. As a model, we used COVID-eVax, a plasmid DNA-based vaccine that targets the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Increased nicked DNA was produced by using either an accelerated stability protocol or a lyophilization protocol. Surprisingly, the immune response induced in vivo was only minimally affected by the percentage of open circular DNA. This result suggests that plasmid DNA vaccines, such as COVID-eVax that have recently completed a phase I clinical trial, retain their efficacy upon storage at higher temperatures, and this feature may facilitate their use in low-/middle-income countries.

7.
Int J Legal Med ; 137(5): 1569-1581, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36773088

RESUMO

BACKGROUND: The out-of-hospital cardiac arrest (OHCA) in the young may be associated with a genetic predisposition which is relevant even for genetic counseling of relatives. The identification of genetic variants depends on the availability of intact genomic DNA. DNA from autopsy may be not available due to low autopsy frequencies or not suitable for high-throughput DNA sequencing (NGS). The emergency medical service (EMS) plays an important role to save biomaterial for subsequent molecular autopsy. It is not known whether the DNA integrity of samples collected by the EMS is better suited for NGS than autopsy specimens. MATERIAL AND METHODS: DNA integrity was analyzed by standardized protocols. Fourteen blood samples collected by the EMS and biomaterials from autopsy were compared. We collected 172 autopsy samples from different tissues and blood with postmortem intervals of 14-168 h. For comparison, DNA integrity derived from blood stored under experimental conditions was checked against autopsy blood after different time intervals. RESULTS: DNA integrity and extraction yield were higher in EMS blood compared to any autopsy tissue. DNA stability in autopsy specimens was highly variable and had unpredictable quality. In contrast, collecting blood samples by the EMS is feasible and delivered comparably the highest DNA integrity. CONCLUSIONS: Isolation yield and DNA integrity from blood samples collected by the EMS is superior in comparison to autopsy specimens. DNA from blood samples collected by the EMS on scene is stable at room temperature or even for days at 4 °C. We conclude that the EMS personnel should always save a blood sample of young fatal OHCA cases died on scene to enable subsequent genetic analysis.


Assuntos
Reanimação Cardiopulmonar , Serviços Médicos de Emergência , Parada Cardíaca Extra-Hospitalar , Humanos , Autopsia , Serviços Médicos de Emergência/métodos , Morte
8.
Curr Protoc ; 2(9): e501, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36073858

RESUMO

Antisense oligonucleotide (ASO) therapeutics target the pathogenic mRNA directly and modulate protein expression. Novel chemical modifications help to improve the action of ASOs with better thermal stability and resistance against nucleases. Oligodeoxynucleotides (ODNs) containing 4'-C-(aminoethyl)thymidine modifications exhibit efficient and stable hybridization with complementary DNA as well as RNA strands showing remarkably improved resistance against nucleolytic hydrolysis, which makes them promising candidates for antisense therapeutics. This article describes the synthesis of a novel nucleoside analog, 4'-C-[(N-methyl)aminoethyl]-thymidine (4'-MAE-T), 3, and previously reported 4'-C-aminoethyl-thymidine (4'-AE-T), 2, through a newly designed synthetic route to obtain a high overall yield. This has been established by changing the starting material from thymidine to diacetone-D-glucofuranose and synthesizing the known 4-C-hydroxyethyl pentofuranose. Conversion of the hydroxy group to an azide functional group through Mitsunobu azidation and performing acetolysis, provide the common intermediate 4-C-(2-azidoethyl)-ribofuranose. Subsequent coupling of the thymine nucleobase with the common intermediate under Vorbrüggen glycosylation conditions provides the corresponding modified nucleoside in high yield. It was subjected for conversion of the azide to an amine by Staudinger reaction and 2'-deoxygenation using Barton-McCombie conditions. Debenzylation with Lewis acid and mono-dimethoxytritylation of the 5'-OH afforded a fully protected 3'-OH intermediate for phosphitylation to give the corresponding phosphoramidites. In the case of 4'-MAE-T, benzyloxymethyl protection of the N3 -position and methylation were carried out prior to debenzylation. These phosphoramidite monomers were suitable with conventional oligonucleotide synthesis, and imparted ameliorated nuclease resistance, and competent RNase H activity, suggesting its potential utilization in ASO drugs. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Preparation of 4-C-(2-azidoethyl)-ribofuranose (6) Basic Protocol 2: Synthesis of 4'-C-aminoethyl thymidine phosphoramidite (15) Basic Protocol 3: Synthesis of 4'-C-(N-methyl)aminoethyl thymidine phosphoramidite (20).


Assuntos
Azidas , Nucleosídeos , DNA Complementar , Oligonucleotídeos , Oligonucleotídeos Antissenso , Timidina
9.
Cell Biol Int ; 46(10): 1625-1636, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35771585

RESUMO

Maintaining DNA stability in induced pluripotent stem cells (iPSCs) and iPSCs-derived neurons is a challenge in their clinical application. In the present study, we compared DNA stability between primary retinal neurons and differentiated neurons. We found that the basal level of γ-H2AX phosphorylation, a specific marker of DNA breaks, was notably higher (~26-folds) in human iPSCs compared to iPSCs-derived neurons. However, iPSCs-derived neurons are more sensitive to UV treatment compared to primary rat retinal neurons (postnatal Day 1). UV treatment induced a significantly decreasing in the cell viability of iPSCs-derived neurons by ~76.1%, whereas ~20.8% in primary retinal neurons. After analyzing the expression levels of genes involved in DNA stability, such as Brca1, Ligase IV, Ku80, and Mre11, we found that Ku80 and its heterodimeric partner, Ku70 were positive in iPSCs-derived neurons. However, both Ku80 and Ku70 are not expressed in primary retinal neurons and cerebellar neurons. Similarly, both Ku80 and Ku70 are also expressed in 3D retinal organoids from human embryonic stem cells (ESCs), except for a few Map2-negative cells and the hyaloid vessels of mice E12.5 retinas. Hence, Ku80, and Ku70 are specifically expressed in stem cell-derived neurons. Moreover, using the Ku80 inhibitor Compound L, our data showed that Ku80 promotes the DNA stability and cell viability of iPSCs-derived neurons. Thus, our results demonstrated that iPSCs-, ESCs-derived neurons have specific characteristics of DNA stability. This study provides new insights into the neural differentiation of stem cells but might also warrant the future clinical application of stem cells in neurodegenerative diseases.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neurônios Retinianos , Animais , Diferenciação Celular , DNA , Células-Tronco Embrionárias , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Ratos
10.
Cell Tissue Res ; 388(2): 259-271, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35260935

RESUMO

Thrombospondin-1 (Tsp-1), a matricellular protein, could protect retinal neurons from endogenous or exogenous insults; however, its underlying mechanism remains unclear. Thus, this study aimed to investigate Tsp-1-mediated neuron-protection effect in retinal cells. Our data showed that Tsp-1 downregulation would aggravate UV irradiation-induced DNA damage in 661 W cells and cone photoreceptor cells. The increasing levels of poly (ADP ribose) polymer (PAR) and γ-H2AX in Tsp-1-silenced 661 W cells indicate severe DNA single-strand breaks (SSBs) and double-strand breaks (DSBs). By utilizing an error-prone substrate, Tsp-1 silencing significantly increased deleted DNA end joining in 661 W cells with spontaneous DNA damage (SDD). Moreover, Tsp-1 is indirectly involved in DNA stability in 661 W cells as UV treatment caused a significant Tsp-1 decreasing in cytoplasm, but no obvious Tsp-1 alteration in cell nuclear of 661 W cells. Furthermore, our data indicate that Tgf-ß1 activation domain in Tsp-1 plays a critical role in DNA stability in 661 W cells through expressing mutated exogenous Tsp-1 and Tgf-ß inhibitor, LSKL. Therefore, this study provides new insights into the mechanism of the neuroprotective action positively mediated by Tsp-1, which might be a therapeutic target for the treatment of retinal pathology.


Assuntos
Células Fotorreceptoras Retinianas Cones , Fator de Crescimento Transformador beta1 , Regulação para Baixo , Células Fotorreceptoras Retinianas Cones/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
11.
Small ; 18(15): e2107381, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35218608

RESUMO

Using DNA as a durable, high-density storage medium with eternal format relevance can address a future data storage deficiency. The proposed storage format incorporates dehydrated particle spots on glass, at a theoretical capacity of more than 20 TB per spot, which can be efficiently retrieved without significant loss of DNA. The authors measure the rapid decay of dried DNA at room temperature and present the synthesis of encapsulated DNA in silica nanoparticles as a possible solution. In this form, the protected DNA can be readily applied to digital microfluidics (DMF) used to handle retrieval operations amenable to full automation. A storage architecture is demonstrated, which can increase the storage capacity of today's archival storage systems by more than three orders of magnitude: A DNA library containing 7373 unique sequences is encapsulated and stored under accelerated aging conditions (4 days at 70 °C, 50% RH) corresponding to 116 years at room temperature and the stored information is successfully recovered.


Assuntos
DNA , Microfluídica , Vidro , Armazenamento e Recuperação da Informação , Temperatura
12.
Nutrients ; 13(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34960018

RESUMO

Although a very-low-calorie diet (VLCD) is considered safe and has demonstrated benefits among other types of diets, data are scarce concerning its effects on improving health and weight loss in severely obese patients. As part of the personalized weight loss program developed at the Duga Resa Special Hospital for Extended Treatment, Croatia, we evaluated anthropometric, biochemical, and permanent DNA damage parameters (assessed with the cytochalasin B-blocked micronucleus cytome assay-CBMN) in severely obese patients (BMI ≥ 35 kg m-2) after 3-weeks on a 567 kcal, hospital-controlled VLCD. This is the first study on the permanent genomic (in)stability in such VLCD patients. VLCDs caused significant decreases in weight (loss), parameters of the lipid profile, urea, insulin resistance, and reduced glutathione (GSH). Genomic instability parameters were lowered by half, reaching reference values usually found in the healthy population. A correlation was found between GSH decrease and reduced DNA damage. VLCDs revealed susceptible individuals with remaining higher DNA damage for further monitoring. In a highly heterogeneous group (class II and III in obesity, differences in weight, BMI, and other categories) consisting of 26 obese patients, the approach demonstrated its usefulness and benefits in health improvement, enabling an individual approach to further monitoring, diagnosis, treatment, and risk assessment based on changing anthropometric/biochemical VLCD parameters, and CBMN results.


Assuntos
Restrição Calórica , Dieta Redutora/métodos , Obesidade Mórbida/dietoterapia , Adulto , Idoso , Ingestão de Energia , Feminino , Hospitais , Humanos , Masculino , Pessoa de Meia-Idade , Programas de Redução de Peso
13.
Diagn Cytopathol ; 49(11): 1173-1178, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34339108

RESUMO

BACKGROUND: Liquid based cytology (LBC) specimens are increasingly utilized for molecular analysis, as results are comparable to molecular analysis performed on traditional specimens (biopsy or cell block). However, there are few studies demonstrating the long-term viability of DNA in LBC samples. METHODS: In this study, a 50-gene next generation sequencing (NGS) panel was performed on DNA isolated from post-centrifuged supernatant LBC samples of cases of non-small-cell lung carcinoma. Comparison was made to results of an identical NGS panel performed on a concurrent clinical sample (biopsy or cell block). Quality parameters including DNA concentration, total reads, amplicons with reads under 450 and 350, and variant allele fraction were also compared. For a subset of LBC samples, DNA was isolated after being held for varying extended lengths of time after collection (up to 41 days) at 5°C and results compared. RESULTS: Results of NGS mutation analysis were concordant between LBC samples and clinical samples. DNA concentration was on average higher in the LBC samples compared to the clinical samples. The remaining metrics were more variable, but illustrated the adequacy of LBC samples for NGS testing. DNA isolated from LBC samples held for longer periods of time was of good concentration. NGS analysis was successfully performed on all samples, with concordance with results of clinical samples. CONCLUSION: DNA isolated directly from LBC fluid is suitable for NGS analysis. DNA is also stable in LBC preservative for extended periods of time before isolation and NGS analysis can subsequently be successfully performed.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Biópsia/métodos , Citodiagnóstico/métodos , Análise Mutacional de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutação/genética
14.
Mol Cell Probes ; 56: 101707, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33609730

RESUMO

BACKGROUND: DNA mismatches can affect the efficiency of PCR techniques if the intended target has mismatches in primer or probe regions. The accepted rule is that mismatches are detrimental as they reduce the hybridization temperatures, yet a more quantitative assessment is rarely performed. METHODS: We calculate the hybridization temperatures of primer/probe sets after aligning to SARS-CoV-2, SARS-CoV-1 and non-SARS genomes, considering all possible combinations of single, double and triple consecutive mismatches. We consider the mismatched hybridization temperature within a range of 5 ∘C to the fully matched reference temperature. RESULTS: We obtained the alignments of 19 PCR primers sets that were recently reported for the detection of SARS-CoV-2 and to 21665 SARS-CoV-2 genomes as well as 323 genomes of other viruses of the coronavirus family of which 10 are SARS-CoV-1. We find that many incompletely aligned primers become fully aligned to most of the SARS-CoV-2 when mismatches are considered. However, we also found that many cross-align to SARS-CoV-1 and non-SARS genomes. CONCLUSIONS: Some primer/probe sets only align substantially to most SARS-CoV-2 genomes if mismatches are taken into account. Unfortunately, by the same mechanism, almost 75% of these sets also align to some SARS-CoV-1 and non-SARS viruses. It is therefore recommended to consider mismatch hybridization for the design of primers whenever possible, especially to avoid undesired cross-reactivity.


Assuntos
Pareamento Incorreto de Bases , Primers do DNA/metabolismo , Sondas de DNA/metabolismo , DNA Viral/metabolismo , Hibridização de Ácido Nucleico , Reação em Cadeia da Polimerase/métodos , SARS-CoV-2/genética , Genoma Viral , Alinhamento de Sequência , Temperatura
15.
J Mol Med (Berl) ; 99(3): 415-423, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33474647

RESUMO

REV3L encodes a catalytic subunit of DNA polymerase zeta (Pol zeta) which is essential for the tolerance of DNA damage by inducing translesion synthesis (TLS). So far, the only Mendelian disease associated with REV3L was Moebius syndrome (3 patients with dominant REV3L mutations causing monoallelic loss-of-function were reported). We describe a homozygous ultra-rare REV3L variant (T2753R) identified with whole exome sequencing in a child without Moebius syndrome but with developmental delay, hypotrophy, and dysmorphic features who was born to healthy parents (heterozygous carriers of the variant). The variant affects the amino acid adjacent to functionally important KKRY motif. By introducing an equivalent mutation (S1192R) into the REV3 gene in yeasts, we showed that, whereas it retained residual function, it caused clear dysfunction of TLS in the nucleus and instability of mitochondrial genetic information. In particular, the mutation increased UV sensitivity measured by cell survival, decreased both the spontaneous (P < 0.005) and UV-induced (P < 0.0001) mutagenesis rates of nuclear DNA and increased the UV-induced mutagenesis rates of mitochondrial DNA (P < 0.0005). We propose that our proband is the first reported case of a REV3L associated disease different from Moebius syndrome both in terms of clinical manifestations and inheritance (autosomal recessive rather than dominant). KEY MESSAGES: First description of a human recessive disorder associated with a REV3L variant. A study in yeast showed that the variant affected the enzymatic function of the protein. In particular, it caused increased UV sensitivity and abnormal mutagenesis rates.


Assuntos
Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , Deficiências do Desenvolvimento/genética , Mutação de Sentido Incorreto , Neoplasias Primárias Múltiplas/genética , Síndromes Neoplásicas Hereditárias/genética , Nevo Pigmentado/genética , Mutação Puntual , Neoplasias Cutâneas/genética , Aldose-Cetose Isomerases/genética , Domínio Catalítico/genética , Pré-Escolar , DNA/metabolismo , DNA Fúngico/genética , DNA Mitocondrial/genética , DNA Mitocondrial/efeitos da radiação , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/fisiologia , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/fisiologia , Deficiências do Desenvolvimento/patologia , Feminino , Homozigoto , Humanos , Masculino , Síndrome de Möbius/genética , Modelos Moleculares , Mutagênese/efeitos da radiação , Linhagem , Fenótipo , Conformação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos da radiação , Proteínas de Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade , Raios Ultravioleta/efeitos adversos , Sequenciamento do Exoma
16.
AIMS Microbiol ; 7(4): 399-414, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35071939

RESUMO

Rapid advances in the development of sequencing technologies, numbers of commercial providers and diminishing costs have made DNA-based identification and diagnostics increasingly accessible to doctors and laboratories, eliminating the need for local investments in expensive technology and training or hiring of skilled technicians. However, reliable and comparable molecular analyses of bacteria in stool samples are dependent on storage and workflow conditions that do not introduce post-sampling bias, the most important factor being the need to keep the DNA at a stable detectable level. For that reason, there may remain other prohibitively costly requirements for cooling or freezing equipment or special chemical additives. This study investigates the diagnostic detectability of Salmonella and Campylobacter DNA in human, pig and chicken stool samples, stored at different temperatures and with different preservation methods. Stool samples were spiked with 106 CFU/mL of both Salmonella and Campylobacter strains stored at -20 °C, 5 °C and 20 °C (Room temperature, RT) and treated with either RNAlater, EDTA or Silica/ethanol. DNA was extracted at 9 different time points within 30 days and quantified by Qubit (total DNA) and qPCR (Salmonella and Campylobacter DNA). We found no statistically significant differences among the different preservation methods, and DNA from both species was easily detected at all time points and at all temperatures, both with and without preservation. This suggests that infections by these bacteria can be diagnosed and possibly also analysed in further detail simply by taking a stool sample in any suitable sealed container that can be transported to laboratory analysis without special storage or preservation requirements. We briefly discuss how this finding can benefit infection control in both developed and developing countries.

17.
Virchows Arch ; 478(3): 507-516, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32869115

RESUMO

Liquid-based cytology (LBC) specimens of lung adenocarcinoma have the potential to be widely used for genetic analysis. However, formaldehyde contained in some LBC preservation solutions can cause DNA fragmentation during specimen storage, rendering the samples unsuitable for molecular analysis. To investigate a novel preservation technique for improved DNA stability, which was evaluated by mutation analysis of epidermal growth factor receptor (EGFR) gene in human lung adenocarcinoma cell lines. Cells were fixed in CytoRich Red preservation solution. After 30 min of fixation, cells were either stored using the conventional method (suspended in preservation solution) or washed in phosphate-buffered saline and stored as a cell pellet (newly proposed method). The effect of storage was evaluated after 5, 7, and 9 days of storage at ambient temperature. The cell pellet group was also tested after 14 and 28 days. Specifically, we evaluated the DNA stability, DNA yield, and sample suitability for polymerase chain reaction (PCR), and EGFR mutation detection. The DNA yields and degree of stability from the cell pellet group were higher than those from the suspension group at every time point examined. PCR amplification from the cell pellet group was successful up to day 28. Mutation detection using the Cycleave PCR method indicated that the Ct values of the cell pellet group were significantly lower than those of the suspension group. Storing LBC specimens as a cell pellet post-fixation can maintain the DNA quality for a longer period than the conventional method, making it a promising strategy for molecular analysis.


Assuntos
Adenocarcinoma de Pulmão/genética , Biomarcadores Tumorais/genética , Fragmentação do DNA , DNA de Neoplasias/genética , Neoplasias Pulmonares/genética , Fixação de Tecidos , Adenocarcinoma de Pulmão/patologia , Linhagem Celular Tumoral , Análise Mutacional de DNA , DNA de Neoplasias/isolamento & purificação , Receptores ErbB/genética , Humanos , Biópsia Líquida , Neoplasias Pulmonares/patologia , Mutação , Reação em Cadeia da Polimerase , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Fatores de Tempo
18.
Avian Pathol ; 50(1): 78-84, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33059461

RESUMO

General diagnosis of poultry viruses primarily relies on detection of viruses in samples, but many farms are located in remote areas requiring logistic transportation. Filter paper cards are a useful technology that offer an alternative for collecting and preserving samples without hazardous exposure. The goal of this study was to compare three filter papers: the Flinders Technology Associates filter (FTA®) card, dried blood spot (DBS) card and qualitative filter paper (FP) grade 2 to collect poultry samples. In particular, we have used Newcastle disease virus (NDV) to evaluate safety and a Marek's disease virus (MDV) attenuated vaccine (CVI988) to evaluate stability of viral DNA. This experiment was divided into two parts. The first part was to determine the DNA stability and detection limit of CVI988 in samples collected in different paper supports after four storage times (3, 7, 14 and 30 days post spot). The second part was to determine the safety of papers by evaluating the viral inactivation efficacy using NDV as a representative virus. Results showed that all papers could preserve CVI988 DNA at all times, with a detection limit of 0.5 PFU/5 µl for FTA® and DBS cards, and 5 PFU/5 µl for FP. Our results showed that the NDV remained viable and infectious on the DBS card and FP, while no viable virus was detected on the FTA® card, suggesting that the FTA® card was safest to use. Therefore, the use of the DBS card and FP for infectious sample collection should be discouraged and reconsidered. RESEARCH HIGHLIGHTS The detection limits of the FTA® card, DBS card and FP for CVI988 detection were 0.5, 0.5 and 5 PFU/5 µl, respectively. All three filter papers could preserve viral DNA for at least 30 days of post spot. The DBS card and FP are not suitable for collecting NDV samples, which is one of the major economical threats for the poultry industry worldwide.


Assuntos
Herpesvirus Galináceo 2/isolamento & purificação , Doença de Marek/virologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/isolamento & purificação , Doenças das Aves Domésticas/virologia , Manejo de Espécimes/veterinária , Animais , DNA Viral/genética , Herpesvirus Galináceo 2/genética , Limite de Detecção , Vírus da Doença de Newcastle/genética , Aves Domésticas , Inativação de Vírus
19.
Mutat Res Rev Mutat Res ; 786: 108343, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33339574

RESUMO

The percentage of people affected by overweight, obesity and/or diabetes drastically increased within the last decades. This development is still ongoing, which puts a large part of our society at increased risk for diseases, such as cancer, cardiovascular diseases and cognitive impairment. Especially the development of type 2 diabetes and overweight/obesity could theoretically be prevented. The loss of DNA and genome stability is associated with the above-mentioned metabolic diseases. Insulin resistance, high blood glucose levels or increased body fat are linked to a chronically elevated inflammatory state. This amplifies oxidative stress, might lead to oxidative DNA damage, impairs the cellular proliferation process and results in mutations; all of which increase the possibility for the development of dysfunctional cells, tissue and organs. An established method to measure chromosomal damage is the cytokinesis block micronucleus (CBMN) cytome assay. The aim of this systematic review and meta-analysis is to collect and analyse the current literature of diabetic, obese and overweight patients and their link to cellular mutations measured by the CBMN assay. A clear trend towards increased genome damage in these metabolic diseases was observed. Significantly increased frequencies of chromosomal aberrations were seen in type 2 diabetic subjects (micronuclei frequency: SMD: 1.18, 95% CI: 0.76, 1.60; I2 = 84%). In both, type 1 and type 2 diabetics, disease progression as well as medical quality and quantity were linked to further elevated genome instability. In type 1 diabetic and overweight/obese subjects the number of studies is small and for valid and reliable results more data are needed. Besides the traditionally used material for this method, PBMCs, we extended our analysis to buccal cells in order to qualitatively compare the two cell types. Finally, we discuss knowledge as well as technical/methodical gaps of the CBMN cytome assay and its usability for clinical practice in these metabolic diseases.


Assuntos
Disfunção Cognitiva/genética , Citocinese/genética , Diabetes Mellitus Tipo 2/genética , Micronúcleos com Defeito Cromossômico , Obesidade/genética , Proliferação de Células/genética , Aberrações Cromossômicas , Dano ao DNA/genética , Humanos , Testes para Micronúcleos , Estresse Oxidativo/genética
20.
Mar Pollut Bull ; 156: 111276, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32510415

RESUMO

Effects of zinc pyrithione (ZnPT) and inorganic Zn (ZnCl2) were evaluated on a marine polychaete at sublethal concentrations for 14 days. ZnPT decreased the burrowing activity and AChE activity with higher acute toxicities, implying its cholinergic effect. Both ZnPT and ZnCl2 increased MDA levels at higher concentrations, suggesting lipid peroxidation and oxidative stress. In the ZnPT-treated polychaete, enzymatic activities of CAT and SOD were elevated with an increase in DNA damage, whereas the levels of GSH, GPx, GR, and GST were decreased. However, in the ZnCl2-treated polychaete, the level of GSH and enzymatic activities of CAT, SOD, GPx, GR, and GST were significantly elevated to resist cellular damage. During 97 days depuration experiment, significant mortality and growth retardation were observed in the ZnPT-exposed polychaete. Overall, ZnPT was found to be more toxic than ZnCl2 with the harmful impact on antioxidant defense system and DNA stability in marine polychaete.


Assuntos
Compostos Organometálicos , Poluentes Químicos da Água , Antioxidantes , Dano ao DNA , Peroxidação de Lipídeos , Estresse Oxidativo , Piridinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA