Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Microorganisms ; 12(6)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38930554

RESUMO

Malaria parasites increase their host erythrocyte's permeability to obtain essential nutrients from plasma and facilitate intracellular growth. In the human Plasmodium falciparum pathogen, this increase is mediated by the plasmodial surface anion channel (PSAC) and has been linked to CLAG3, a protein integral to the host erythrocyte membrane and encoded by a member of the conserved clag multigene family. Whether paralogs encoded by other clag genes also insert at the host membrane is unknown; their contributions to PSAC formation and other roles served are also unexplored. Here, we generated transfectant lines carrying epitope-tagged versions of each CLAG. Each paralog is colocalized with CLAG3, with concordant trafficking via merozoite rhoptries to the host erythrocyte membrane of newly invaded erythrocytes. Each also exists within infected cells in at least two forms: an alkaline-extractable soluble form and a form integral to the host membrane. Like CLAG3, CLAG2 has a variant region cleaved by extracellular proteases, but CLAG8 and CLAG9 are protease resistant. Paralog knockout lines, generated through CRISPR/Cas9 transfection, exhibited uncompromised growth in PGIM, a modified medium with higher physiological nutrient levels; this finding is in marked contrast to a recently reported CLAG3 knockout parasite. CLAG2 and CLAG8 knockout lines exhibited compensatory increases in the transcription of the remaining clags and associated rhoph genes, yielding increased PSAC-mediated uptake for specific solutes. We also report on the distinct transport properties of these knockout lines. Similar membrane topologies at the host membrane are consistent with each CLAG paralog contributing to PSAC, but other roles require further examination.

2.
ACS Appl Mater Interfaces ; 16(2): 2110-2119, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38141015

RESUMO

RNA and DNA delivery technologies using lipid nanoparticles (LNPs) have advanced significantly, as demonstrated by their successful application in mRNA vaccines. To date, commercially available RNA therapeutics include Onpattro, a 21 bp siRNA, and mRNA vaccines comprising 4300 nucleotides for COVID-19. However, a significant challenge remains in achieving efficient transfection, as the size of the delivered RNA and DNA increases. In contrast to RNA transfection, plasmid DNA (pDNA) transfection requires multiple steps, including cellular uptake, endosomal escape, nuclear translocation, transcription, and translation. The low transfection efficiency of large pDNA is a critical limitation in the development of artificial cells and their cellular functionalization. Here, we introduce polymer-lipid hybrid nanoparticles designed for efficient, large-sized pDNA transfection. We demonstrated that LNPs loaded with positively charged pDNA-polycation core nanoparticles exhibited a 4-fold increase in transfection efficiency for 15 kbp pDNA compared with conventional LNPs, which encapsulate a negatively charged pDNA-polycation core. Based on assessments of the size and internal structure of the polymer-lipid nanoparticles as well as hemolysis and cellular uptake analysis, we propose a strategy to enhance large-sized pDNA transfection using LNPs. This approach holds promise for accelerating the in vivo delivery of large-sized pDNA and advancing the development of artificial cells.


Assuntos
Lipossomos , Nanopartículas , Polieletrólitos , Polímeros , Vacinas de mRNA , Transfecção , DNA/química , Plasmídeos/genética , Nanopartículas/química , RNA , Lipídeos/química
3.
ACS Appl Mater Interfaces ; 15(43): 50015-50033, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37853502

RESUMO

Cell transfection plays a crucial role in the study of gene function and regulation of gene expression. The existing gene transfection methods, such as chemical carriers, viruses, electroporation, and microinjection, suffer from limitations, including cell type dependence, reliance on cellular endocytosis, low efficiency, safety concerns, and technical complexity. Nanopore-coupled electroporation offers a promising approach to localizing electric fields for efficient cell membrane perforation and nucleic acid transfection. However, the applicability of nanopore electroporation technology across different cell types lacks a systematic investigation. In this study, we explore the potential of nanopore electroporation for transfecting DNA plasmids into various cell types. Our nanopore electroporation device employs track-etched membranes as the core component. We find that nanopore electroporation efficiently transfects adherent cells, including well-spreading epithelial-like HeLa cells, cardiomyocyte-like HL-1 cells, and dendritic-cell-like DC2.4 cells. However, it shows a limited transfection efficiency in weakly spreading macrophages (RAW264.7) and suspension cells (Jurkat). To gain insights into these observations, we develop a COMSOL model, revealing that nanopore electroporation better localizes the electric field on adherent and well-spreading cells, promoting favorable membrane poration conditions. Our findings provide valuable references for advancing nanopore electroporation as a high-throughput, safe, and efficient gene transfection platform.


Assuntos
Nanoporos , Humanos , Células HeLa , Eletroporação/métodos , Transfecção , DNA/genética , DNA/metabolismo , Plasmídeos/genética
4.
Vaccines (Basel) ; 11(6)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37376404

RESUMO

We highlight the significant progress in developing DNA vaccines during the SARS-CoV-2 pandemic. Specifically, we provide a comprehensive review of the DNA vaccines that have progressed to Phase 2 testing or beyond, including those that have received authorization for use. DNA vaccines have significant advantages with regard to the rapidity of production, thermostability, safety profile, and cellular immune responses. Based on user needs and cost, we compare the three devices used in the SARS-CoV-2 clinical trials. Of the three devices, the GeneDerm suction device offers numerous benefits, particularly for international vaccination campaigns. As such, DNA vaccines represent a promising option for future pandemics.

5.
Pharmaceutics ; 15(3)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36986873

RESUMO

Cellular delivery of plasmid DNA (pDNA) specifically into dendritic cells (DCs) has provoked wide attention in various applications. However, delivery tools that achieve effective pDNA transfection in DCs are rare. Herein, we report that tetrasulphide bridged mesoporous organosilica nanoparticles (MONs) have enhanced pDNA transfection performance in DC cell lines compared to conventional mesoporous silica nanoparticles (MSNs). The mechanism of enhanced pDNA delivery efficacy is attributed to the glutathione (GSH) depletion capability of MONs. Reduction of initially high GSH levels in DCs further increases the mammalian target of rapamycin complex 1 (mTORc1) pathway activation, enhancing translation and protein expression. The mechanism was further validated by showing that the increased transfection efficiency was apparent in high GSH cell lines but not in low GSH ones. Our findings may provide a new design principle of nano delivery systems where the pDNA delivery to DCs is important.

6.
Methods Mol Biol ; 2464: 187-202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35258834

RESUMO

The protocol outlined in this chapter describes a detailed procedure for protoplast isolation and transformation using polyethylene glycol (PEG)-mediated transfection and DNA microinjection, highlighting also the critical steps associated with the method. Briefly, we will describe the efficient isolation of protoplasts from 3-month-old suspension calli collected at 14 days after cultured. Digestion of the calli with an optimal composition of enzyme solution yielded over 2 × 106 protoplasts/mL with the viability of more than 80%. The concentrations of DNA, PEG, and magnesium chloride and application of heat shock treatment are the crucial determinants for efficient PEG-mediated transfection. Using the optimal PEG transfection conditions, a transfection efficiency of more than 20% could be obtained. At the same time, protoplasts embedded in alginate layer cultured for 3 days and injected with 100 ng/µL of total DNA solution are the optimal factors for microinjection. We successfully regenerated the injected protoplasts to calli expressing green fluorescent protein (GFP) signals when cultured in optimal medium and cultivation procedures.


Assuntos
Polietilenoglicóis , Protoplastos , DNA/genética , DNA/metabolismo , Microinjeções , Polietilenoglicóis/metabolismo , Protoplastos/metabolismo , Transfecção
7.
Neurosci Res ; 180: 99-107, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35283247

RESUMO

Amyloid fibril deposits are a main source of pathology in neurodegenerative diseases. Normal proteins such as tau, alpha-synuclein, TDP-43 and others could form specific conformational fibrils called amyloid, which deposited in the brains of neurodegenerative diseases. Although the pathological roles of amyloids in cell death have been discussed a lot, their other functions have not been investigated well. Here, we studied the effect of amyloids on DNA transfection in vivo. We injected quantum dot labeled or non-labeled amyloid-preformed fibrils (PFFs) and a green fluorescent protein (EGFP) expression vector into organs including brain, testis, liver and calf muscle. GFP expression patterns were examined by immunohistochemistry and western blotting. At 24 h after injection, EGFP was predominantly expressed in the neurons in the cortex and the striatum, Leydig cells in testis, hepatocytes in the liver and muscle cells. EGFP expression was inhibited by an endocytosis inhibitor, sertraline in the brain and testis. The amyloid-PFFs potentiated Ca2+ transients shown by calcium imaging and EGFP expression in the brain was blocked by Ca blocker, cilnidipine. Our results show that amyloid-PFFs facilitate DNA transfection and can be used for a new gene delivery system in vivo.


Assuntos
Amiloide , alfa-Sinucleína , DNA/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Masculino , Neurônios/metabolismo , Transfecção , alfa-Sinucleína/metabolismo
8.
J Gene Med ; 24(3): e3401, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34856643

RESUMO

BACKGROUND: Delivery systems, including peptide-based ones, that destabilize endosomes in a pH-dependent manner are increasingly used to deliver cargoes of therapeutic interest, such as nucleic acids and proteins into mammalian cells. METHODS: The negatively charged amphipathic alpha-helicoidal forming peptide named HELP (Helical Erythrocyte Lysing Peptide) is a derivative from the bee venom melittin and was shown to have a pH-dependent activity with the highest lytic activity at pH 5.0 at the same time as becoming inactive when the pH is increased. The present study aimed to determine whether replacement in the HELP peptide of the glutamic acid residues by histidines, for which the protonation state is sensitive to the pH changes that occur during endosomal acidification, can transform this fusogenic peptide into a carrier able to deliver different nucleic acids into mammalian cells. RESULTS: The resulting HELP-4H peptide displays high plasmid DNA, small interfering RNA and mRNA delivery capabilities. Importantly, in contrast to other cationic peptides, its transfection activity was only marginally affected by the presence of serum. Using circular dichroism, we found that acidic pH did not induce significant conformational changes for HELP-4H. CONCLUSIONS: In summary, we were able to develop a new cationic histidine rich peptide able to efficiently deliver various nucleic acids into cells.


Assuntos
Peptídeos Penetradores de Células , Animais , Cátions , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/genética , DNA/genética , Histidina/genética , Concentração de Íons de Hidrogênio , Mamíferos/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Transfecção
9.
Genes Dis ; 8(3): 298-306, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33997177

RESUMO

Plasmid DNA (pDNA) isolation from bacterial cells is one of the most common and critical steps in molecular cloning and biomedical research. Almost all pDNA purification involves disruption of bacteria, removal of membrane lipids, proteins and genomic DNA, purification of pDNA from bulk lysate, and concentration of pDNA for downstream applications. While many liquid-phase and solid-phase pDNA purification methods are used, the final pDNA preparations are usually contaminated with varied degrees of host RNA, which cannot be completely digested by RNase A. To develop a simple, cost-effective, and yet effective method for RNA depletion, we investigated whether commercially available size selection magnetic beads (SSMBs), such as Mag-Bind® TotalPure NGS Kit (or Mag-Bind), can completely deplete bacterial RNA in pDNA preparations. In this proof-of-principle study, we demonstrated that, compared with RNase A digestion and two commercial plasmid affinity purification kits, the SSMB method was highly efficient in depleting contaminating RNA from pDNA minipreps. Gene transfection and bacterial colony formation assays revealed that pDNA purified from SSMB method had superior quality and integrity to pDNA samples cleaned up by RNase A digestion and/or commercial plasmid purification kits. We further demonstrated that the SSMB method completely depleted contaminating RNA in large-scale pDNA samples. Furthermore, the Mag-bind-based SSMB method costs only 5-10% of most commercial plasmid purification kits on a per sample basis. Thus, the reported SSMB method can be a valuable and inexpensive tool for the removal of bacterial RNA for routine pDNA preparations.

10.
Biochem Biophys Res Commun ; 549: 207-213, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33684697

RESUMO

DNA transfection is routinely used for delivering expression of gene of interest to target cells. Transfected DNA has been known to activate cellular DNA sensor(s) and innate immune responses, but the effects of such responses on transfected DNA are not fully understood. STING (stimulator of interferon genes) is an important adaptor protein in cellular innate immune response to various DNA and RNA stimuli and upon activation induces significant type I interferon responses. In this work, we characterized the effects of STING on gene expression driven by transfected double-stranded DNA. We observed that gene expression from transfected DNA was repressed in the presence of overexpressed STING, but increased if endogenous STING was knocked down through RNA interference. Endogenous chromosomal genes and chromosome-integrated exogenous genes were not affected by such STING-mediated restriction, which did not depend on DNA circularity or linearity, promoter used, or bacterial sequences in transfected DNA. Mechanistically, STING-mediated repression of transfected DNA correlates with reduced mRNA levels, and partially involves the induction of interferon ß production by STING. Collectively, these data indicate that episomal double-stranded DNA is targeted by STING-mediated cell defense.


Assuntos
DNA/metabolismo , Proteínas de Membrana/metabolismo , Sequência de Bases , Cromossomos Humanos/genética , Regulação da Expressão Gênica , Células HEK293 , Humanos , Interferon beta/metabolismo , Transfecção
11.
Eur J Pharm Biopharm ; 161: 56-65, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33582186

RESUMO

Efficient and non-toxic DNA delivery is still a major limiting factor for non-viral gene therapy. Among the large diversity of non-viral vectors, the cationic polymer polyethylenimine (PEI) plays a prominent role in nucleic acid delivery. Since higher molecular weight of PEI is beneficial for transfection efficacy, but also leads to higher cytotoxicity, the biodegradable cross-linking of low-molecular PEIs, e.g. through disulfide-groups, has been introduced. Another promising strategy is the chemical modification of PEI, for example with amino acids like tyrosine. In the case of small RNA molecules, this PEI grafting has been found to enhance transfection efficacies and improve biocompatibility. In this paper, we report on the combination of these two strategies for improving DNA delivery: the (i) cross-linking of very small 2 kDa PEI ("P2") molecules through biodegradable disulfide-groups ("SS"), in combination with (ii) tyrosine-modification ("Y"). We demonstrate a surprisingly substantial, synergistic enhancement of transfection efficacies of these SSP2Y/DNA complexes over their non- or mono-modified polymer counterparts, accompanied by high biocompatibility as well as favorable physicochemical and biological properties. Beyond various cell lines, high biological activity of the SSP2Y-based complexes is also seen in an ex vivo tissue slice model, more closely mimicking in vivo conditions. The particularly high transfection efficacy SSP2Y/DNA complexes in 2D and 3D models, based on their optimized complex stability and DNA release, as well as their high biocompatibility thus provides the basis for their further exploration for therapeutic application.


Assuntos
DNA/administração & dosagem , Técnicas de Transferência de Genes , Polietilenoimina/química , Transfecção , Animais , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas/química , Dissulfetos/química , Terapia Genética/métodos , Humanos , Camundongos , Camundongos Nus , Peso Molecular , Tirosina/química , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Curr Gene Ther ; 21(4): 349-360, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33573550

RESUMO

BACKGROUND: Successful delivery of gene-editing tools using nano-carriers is dependent on the ability of nanoparticles to pass through the cellular membrane, move through the cytoplasm, and cross the nuclear envelope to enter the nucleus. It is critical that intracellular nanoparticles interact with the cytoskeletal network to move toward the nucleus, and must escape degradation pathways including lysosomal digestion. Without efficient intracellular transportation and nuclear entry, nanoparticles-based gene-editing cannot be effectively used for targeted genomic modification. OBJECTIVE: We have developed nanoparticles with a low molecular weight branched polyethylenimine lipid shell and a PLGA core that can effectively deliver plasmid DNA to macrophages for gene editing while limiting toxicity. METHODS: Core-shell nanoparticles were synthesized by a modified solvent evaporation method and were loaded with plasmid DNA. Confocal microscopy was used to visualize the internalization, intracellular distribution and cytoplasmic transportation of plasmid DNA loaded nanoparticles (pDNA-NPs) in bone marrow-derived macrophages. RESULTS: Core-shell nanoparticles had a high surface charge of +56 mV and narrow size distribution. When loaded with plasmid DNA for transfection, the nanoparticles increased in size from 150 nm to 200 nm, and the zeta potential decreased to +36 mV, indicating successful encapsulation. Further, fluorescence microscopy revealed that pDNA-NPs crossed the cell membrane and interacted with actin filaments. Intracellular tracking of pDNA-NPs showed successful separation of pDNA- NPs from lysosomes, allowing entry into the nucleus at 2 hours, with further nuclear ingress up to 5 hours. Bone marrow-derived macrophages treated with pDNA/GFP-NPs exhibited high GFP expression with low cytotoxicity. CONCLUSION: Together, this data suggests pDNA-NPs are an effective delivery system for macrophage gene-editing.


Assuntos
Edição de Genes , Nanopartículas , Citoplasma/genética , DNA/genética , Macrófagos , Plasmídeos/genética , Polietilenoimina , Transfecção
13.
Cancer Metastasis Rev ; 39(4): 1023-1028, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32728828

RESUMO

The name of the oncogene, ras, has its origin in studies of murine leukemia viruses in the 1960s by Jenny Harvey (H-ras) and by Werner Kirsten (K-ras) which, at high doses, produced sarcomas in rats. Transforming retroviruses were isolated, and its oncogene was named ras after rat sarcoma. From 1979, cellular ras sequences with transforming properties were identified by transfection of tumor DNA initially by Robert Weinberg from rodent tumors, and the isolation of homologous oncogenes from human tumors soon followed, including HRAS and KRAS, and a new member of the family named NRAS. I review these discoveries, placing emphasis on the pioneering research of Christopher Marshall and Alan Hall, who subsequently made immense contributions to our understanding of the functions of RAS and related small GTPases to signal transduction pathways, cell structure, and the behavior of normal and malignant cells.


Assuntos
Genes ras , Genética/história , Neoplasias/genética , Animais , Genes Supressores de Tumor , História do Século XX , História do Século XXI , Humanos
14.
Colloids Surf B Biointerfaces ; 189: 110817, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32045842

RESUMO

Gemini surfactants (GS) have been highlighted as attractive gene carriers for a few years now; however, key aspects of the role of the GS chemical structure on the DNA-GS complexation and subsequent biological activity remain to be determined. Aiming to elucidate the effects of the GS spacer hydrophobicity, this work was focused on the biophysical characterization of the self-assembly, DNA complexation, cytocompatibility, and DNA transfection of a series of bis-quaternary ammonium GS with fixed side alkyl chains of 14 carbons and varying head-to-head alkyl chain spacers of 4, 6, and 14 carbons (referred to as GS4, GS6, and GS14, respectively). The characterization was carried out by a battery of experimental techniques including UV-vis and fluorescence sprectroscopies, ζ potential, dynamic light scattering (DLS), isothermal titration calorimetry (ITC), and flow cytometry, among others. Overall, the spectroscopic results showed that the self-assembly of the GS was favored with the spacer hydrophobicity since lower values of critical micelle concentration (CMC) were observed for samples with longer spacer chains. On the other hand, the ITC results revealed that the DNA-GS complexation was driven by an initial electrostatic attraction between DNA and GS monomers/micelles followed by complementary hydrophobic interactions which strengthen the DNA-GS binding, the latter being more pronounced for GS with longer spacers. Finally, the biological tests demonstrated that while GS with moderate hydrophobicity (GS4 and GS6) yielded outstanding levels of cytocompatibility and DNA transfection over a range of concentrations, the most hydrophobic sample (GS14) proved to be cytotoxic upon administration to cultured HeLa cells (p < 0.05). In our opinion, the fundamental information here presented might be pivotal not only for understanding the DNA-GS complexation mechanism, but also for developing efficient GS-based carriers for gene therapy.


Assuntos
DNA/química , Terapia Genética , Compostos de Amônio Quaternário/química , Tensoativos/química , DNA/genética , DNA/metabolismo , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células Tumorais Cultivadas
15.
Biochim Biophys Acta Biomembr ; 1862(2): 183149, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31816324

RESUMO

Viral protein R (Vpr) is a small accessory protein of 96 amino acids that is present in Human and simian immunodeficiency viruses. Among the very different properties that Vpr possesses we can find cell penetrating capabilities. Based on this and on its capacity to interact with nucleic acids we previously investigated the DNA transfection properties of Vpr and subfragments thereof. We found that fragments of the C-terminal helical domain of Vpr are able to deliver efficiently plasmid DNA into different cell lines. As the amphipathic helix may play a role in the interactions with membranes, we investigated whether insertion of a proline residue in the α-helix modifies the transfection properties of Vpr. Unexpectedly, we found that the resulting Vpr55-82 Pro70 peptide was even more efficient than wild type Vpr55-82 in the gene delivery assays. Using circular dichroism, light scattering and solid-state NMR techniques, we characterized the secondary structure and interactions of Vpr and several mutants with model membranes. A model is proposed where the proline shifts the dissociation equilibrium of the peptide-cargo complex and thereby its endosomal release.


Assuntos
Peptídeos Penetradores de Células/química , Técnicas de Transferência de Genes , Bicamadas Lipídicas/química , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/química , Substituição de Aminoácidos , Peptídeos Penetradores de Células/genética , Peptídeos Penetradores de Células/metabolismo , Células HEK293 , HIV-1/química , Humanos , Isoleucina/química , Isoleucina/genética , Prolina/química , Prolina/genética , Ligação Proteica , Conformação Proteica em alfa-Hélice , Multimerização Proteica , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo
16.
ACS Appl Bio Mater ; 3(2): 986-996, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35019300

RESUMO

Calcium phosphate (CP) nanoparticles (NPs) have been used in various applications for delivery of nucleic acid (NA) cargos with ideal biocompatibility and safety. However, some critical issues such as poor stability and aggregation in water solution hinder the industrial application of CP NPs. To further utilize CP NPs for NA delivery, this study specifically focused on the modification of CP NPs to achieve a rapid synthesis and improvement on dispersibility and colloidal stability by using a bisphosphonate (BP) and BSA (named as BCP NPs). Compared with CP NPs, BCP NPs show better stability and dispersity in the cell culture medium, higher efficiency in cellular uptake, and faster dissolution in acidic environments, which are essential requirements for NA vaccine delivery. The cell viability (MTT) assay indicates that BCP NPs have a similar or lower cytotoxicity than free alendronate and Lipofectamine 2000 reagent (L2K) to macrophages (MΦs), a type of typical antigen-presenting cells (APCs). Furthermore, BCP NPs exhibited 85% plasmid DNA (pDNA) loading efficiency and a good endosome escape property. Using a plasmid expressing enhanced green fluorescent protein (pEGFP) as a model system, we showed that BCP NP transfection resulted in a high-level EGFP expression in MΦs, which was even greater than the commercial L2K and electroporation method. This is the first application of a low amount of BP and BSA to modify CP-based NPs with low MΦ cytotoxicity and favorable dispersity, and our data suggest these BCP NPs are an excellent delivery platform for pDNA to MΦs.

17.
Polymers (Basel) ; 11(8)2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31390761

RESUMO

Polyethylene glycol (PEG) functionalization of non-viral vectors represents a powerful tool through the formation of an overall surface charge shielding ability, which is fundamental for efficient nucleic acid delivery systems. The degree of non-viral vector PEGylation and the molecular weight of utilized PEG is crucial since the excessive use of PEG units may lead to a considerable reduction of the DNA-binding capacity and, subsequently, in a reduction of in vitro transfection efficiency. Herein, we report a detailed study on a series of dynamic combinatorial frameworks (DCFs) containing PEGylated squalene, poly-(ethyleneglycol)-bis(3-aminopropyl) of different lengths, and branched low molecular weight polyethylenimine components, reversibly connected in hyperbranched structures, as efficient dynamic non-viral vectors. The obtained frameworks were capable of forming distinct supramolecular amphiphilic architectures, shown by transmission electron microscopy (TEM) and dynamic light scattering (DLS), with sizes and stability depending on the length of PEG units. The interaction of PEGylated DCFs with nucleic acids was investigated by agarose gel retardation assay and atomic force microscopy (AFM), while their transfection efficiency (using pCS2+MT-Luc DNA as a reporter gene) and cytotoxicity were evaluated in HeLa cells. In addition, the data on the influence of the poly-(ethyleneglycol)-bis(3-aminopropyl) length in composition of designed frameworks over transfection efficiency and tolerance in human cells were analyzed and compared.

20.
Int J Pharm ; 559: 58-67, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30654063

RESUMO

Linear Polyethylenimine (lPEI) is an efficient cationic polymer for transfecting cells, both in vitro and in vivo, but poses concerns regarding cytotoxicity. Histidinylated lPEI (His-lPEI) exhibits also high transfection efficiency but lower cytotoxicity than lPEI. For the first time, we tested polyfection efficiency of polyplexes comprising both lPEI and His-lPEI. A series of pDNA polyplexes was prepared with mixtures of lPEI and His-lPEI and the amount of each polymer within His-lPEI/lPEI polyplexes was determined by flow cytometry. We show that His-lPEI/lPEI polyplexes exhibit properties similar to lPEI polyplexes in terms of size, morphology, assembly with pDNA, and polyplex stability while His-lPEI/lPEI polyplexes exhibit properties similar to His-lPEI polyplexes in terms of buffering capacity. Compared to polyplexes consisting only of lPEI or His-lPEI, the transfection profile reveals that His-lPEI/lPEI polyplexes containing 30% to 57% lPEI strongly increase polyfection efficiency of NIH3T3 fibroblasts and murine, as well as human skeletal muscle cell lines without cytotoxicity. Importantly, improved transfection of human dystrophin deficient skeletal muscle cell lines was obtained. These results indicate that His-lPEI/lPEI polyplexes are an improved non-viral vector for efficient transfection of dystrophin deficient skeletal muscle cell lines that should be tested on animals.


Assuntos
DNA , Histidina/química , Células Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Polietilenoimina/administração & dosagem , Polietilenoimina/química , Animais , Linhagem Celular , Citotoxinas/administração & dosagem , Citotoxinas/química , DNA/química , Técnicas de Transferência de Genes , Histidina/administração & dosagem , Humanos , Camundongos , Células NIH 3T3 , Polímeros/química , Transfecção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA