Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Drug Target ; : 1-11, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38864378

RESUMO

Nowadays, the pharmacological management of visceral hypersensitivity associated with colitis is ineffective. In this context, targeting purinergic P2X4 receptor (P2X4R), which can modulate visceral pain transmission, could represent a promising therapeutic strategy. Herein, we tested the pain-relieving effect of two novel and selective P2X4R antagonists (NC-2600 and NP-1815-PX) in a murine model of DNBS-induced colitis and investigated the mechanisms underlying their effect. Tested drugs and dexamethasone (DEX) were administered orally, two days after colitis induction. Treatment with tested drugs and DEX improved tissue inflammatory parameters (body weight, spleen weight, macroscopic damage, TNF and IL-1ß levels) in DNBS-rats. In addition, NC-2600 and NP-1815-PX attenuated visceral pain better than DEX and prevented the reduction of occludin expression. In in vitro studies, treatment of CaCo2 cells with supernatant from THP-1 cells, previously treated with LPS plus ATP, reduced the expression of tight junctions protein. By contrast, CaCo2 cells treated with supernatant from THP-1 cells, previously incubated with tested drugs, counteracted the reduction of tight junctions due to the inhibition of P2X4R/NLRP3/IL-1ß axis. In conclusion, these results suggest that the direct and selective inhibition of P2X4R represents a viable approach for the management of visceral pain associated with colitis via NLRP3/IL-1ß axis inhibition.

2.
Inflamm Bowel Dis ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478397

RESUMO

BACKGROUND: Transient receptor potential vanilloid 1 (TRPV1) cation channels, expressed on nociceptors, are well established as key contributors to abdominal pain in inflammatory bowel disease (IBD). Previous attempts at blocking these channels have been riddled with side effects. Here, we propose a novel treatment strategy, utilizing the large pore of TRPV1 channels as a drug delivery system to selectively inhibit visceral nociceptors. METHODS: We induced colitis in rats using intrarectal dinitrobenzene sulfonic acid. Visceral hypersensitivity, spontaneous pain, and responsiveness of the hind paws to noxious heat stimuli were examined before and after the intrarectal application of membrane-impermeable sodium channel blocker (QX-314) alone or together with TRPV1 channel activators or blockers. RESULTS: Intrarectal co-application of QX-314 with TRPV1 channel activator capsaicin significantly inhibited colitis-induced gut hypersensitivity. Furthermore, in the model of colitis, but not in naïve rats, QX-314 alone was sufficient to reverse gut hypersensitivity. The blockade of TRPV1 channels prevented this effect of QX-314. Finally, applying QX-314 alone to the inflamed gut inhibited colitis-induced ongoing pain. CONCLUSIONS: Selective silencing of gut nociceptors by a membrane-impermeable sodium channel blocker entering via exogenously or endogenously activated TRPV1 channels diminishes IBD-induced gut hypersensitivity. The lack of effect on naïve rats suggests a selective analgesic effect in the inflamed gut. Our results suggest that in the colitis model, TRPV1 channels are tonically active. Furthermore, our results emphasize the role of TRPV1-expressing nociceptive fibers in colitis-induced pain. These findings provide proof of concept for using charged activity blockers for the blockade of IBD-associated abdominal pain.


Here, we show that the selective silencing of a specific subtype of nociceptive neurons innervating the gut mitigates colitis-induced visceral hypersensitivity and pain. Our results provide a basis for developing effective and selective treatments for inflammatory bowel disease pain.

3.
Front Microbiol ; 14: 1270974, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38094624

RESUMO

Introduction: The aim of this work was to characterize a new strain of Ligilactobacillus salivarius (CNCM I-4866) (CNCM I-4866) to address its potential as probiotic with a special focus on intestinal inflammation. Potential anti-inflammatory abilities of this strain were evaluated through in vivo and in vitro experiments. Methods: Firstly, the strain was tested in a murine acute inflammation colitis model induced by DNBS. In vitro characterization was then performed with diverse tests: modulation capability of intestinal permeability; study of the impact on immunity profile through cytokines dosage; capacity to inhibit pathogens and adhere to intestinal cells lines. Production of metabolites, antibiotic resistance and survival to gastro-intestinal tract conditions were also tested. Results: In vitro assay has shown a reduction of colonic damage and markers of inflammation after treatment with CNCM I-4866. Transcriptomic analysis performed on colons showed the capacity of the strain to down-regulate pro-inflammatory cytokines. L. salivarius CNCM I-4866 exerted anti-inflammatory profile by reducing IL-8 production by TNF-α stimulated cell and modulated cytokines profile on peripheral blood mononuclear cells (PBMC). It protected intestinal integrity by increasing trans-epithelial electrical resistance (TEER) on Caco-2 TNF-α inflamed cells. Additionally, L. salivarius CNCM I-4866 displayed inhibition capacity on several intestinal pathogens and adhered to eukaryotic cells. Regarding safety and technical concerns, CNCM I-4866 was highly resistant to 0.3% of bile salts and produced mainly L-lactate. Finally, strain genomic characterization allowed us to confirm safety aspect of our strain, with no antibiotic gene resistance found. Discussion: Taken together, these results indicate that L. salivarius CNCM I-4866 could be a good probiotic candidate for intestinal inflammation, especially with its steady anti-inflammatory profile.

4.
Lipids Health Dis ; 22(1): 63, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37189092

RESUMO

BACKGROUND: Gut microbiota are involved in the onset and development of chronic intestinal inflammation. The recently described endocannabinoidome (eCBome), a diverse and complex system of bioactive lipid mediators, has been reported to play a role in various physio-pathological processes such as inflammation, immune responses and energy metabolism. The eCBome and the gut microbiome (miBIome) are closely linked and form the eCBome - miBIome axis, which may be of special relevance to colitis. METHODS: Colitis was induced in conventionally raised (CR), antibiotic-treated (ABX) and germ-free (GF) mice with dinitrobenzene sulfonic acid (DNBS). Inflammation was assessed by Disease Activity Index (DAI) score, body weight change, colon weight-length ratio, myeloperoxidase (MPO) activity and cytokine gene expression. Colonic eCBome lipid mediator concentrations were measured by HPLC-MS /MS. RESULTS: GF mice showed increased levels of anti-inflammatory eCBome lipids (LEA, OEA, DHEA and 13- HODE-EA) in the healthy state and higher MPO activity. DNBS elicited reduced inflammation in GF mice, having lower colon weight/length ratios and lower expression levels of Il1b, Il6, Tnfa and neutrophil markers compared to one or both of the other DNBS-treated groups. Il10 expression was also lower and the levels of several N-acyl ethanolamines and 13-HODE-EA levels were higher in DNBS-treated GF mice than in CR and ABX mice. The levels of these eCBome lipids negatively correlated with measures of colitis and inflammation. CONCLUSIONS: These results suggest that the depletion of the gut microbiota and subsequent differential development of the gut immune system in GF mice is followed by a compensatory effect on eCBome lipid mediators, which may explain, in part, the observed lower susceptibility of GF mice to develop DNBS-induced colitis.


Assuntos
Colite , Dinitrobenzenos , Camundongos , Animais , Dinitrobenzenos/efeitos adversos , Colite/induzido quimicamente , Colite/genética , Colite/metabolismo , Inflamação , Lipídeos
5.
Brief Funct Genomics ; 22(4): 366-374, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-36787234

RESUMO

As a dynamical system, complex disease always has a sudden state transition at the tipping point, which is the result of the long-term accumulation of abnormal regulations. This paper proposes a novel approach to detect the early-warning signals of influenza A (H3N2 and H1N1) outbreaks by dysregulated dynamic network biomarkers (dysregulated DNBs) for individuals. The results of cross-validation show that our approach can detect early-warning signals before the symptom appears successfully. Unlike the traditional DNBs, our dysregulated DNBs are anchored and very few, which is essential for disease early diagnosis in clinical practice. Moreover, the genes of dysregulated DNBs are significantly enriched in the influenza-related pathways. The source code of this paper can be freely downloaded from https://github.com/YanhaoHuo/dysregulated-DNBs.git.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Humanos , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H3N2/metabolismo , Influenza Humana/diagnóstico , Influenza Humana/genética , Biomarcadores/metabolismo
6.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38189541

RESUMO

There generally exists a critical state or tipping point from a stable state to another in the development of colorectal cancer (CRC) beyond which a significant qualitative transition occurs. Gut microbiome sequencing data can be collected non-invasively from fecal samples, making it more convenient to obtain. Furthermore, intestinal microbiome sequencing data contain phylogenetic information at various levels, which can be used to reliably identify critical states, thereby providing early warning signals more accurately and effectively. Yet, pinpointing the critical states using gut microbiome data presents a formidable challenge due to the high dimension and strong noise of gut microbiome data. To address this challenge, we introduce a novel approach termed the specific network information gain (SNIG) method to detect CRC's critical states at various taxonomic levels via gut microbiome data. The numerical simulation indicates that the SNIG method is robust under different noise levels and that it is also superior to the existing methods on detecting the critical states. Moreover, utilizing SNIG on two real CRC datasets enabled us to discern the critical states preceding deterioration and to successfully identify their associated dynamic network biomarkers at different taxonomic levels. Notably, we discovered certain 'dark species' and pathways intimately linked to CRC progression. In addition, we accurately detected the tipping points on an individual dataset of type I diabetes.


Assuntos
Neoplasias Colorretais , Diabetes Mellitus Tipo 1 , Microbioma Gastrointestinal , Humanos , Filogenia , Simulação por Computador , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética
7.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38203336

RESUMO

Improving clinical outcomes and delaying disease recrudescence in Ulcerative Colitis (UC) patients is crucial for clinicians. In addition to traditional and new pharmacological therapies that utilize biological drugs, the development of medical devices that can ameliorate UC and facilitate the remission phase should not be overlooked. Drug-based therapy requires time to be personalized and to evaluate the benefit/risk ratio. However, the increasing number of diagnosed UC cases worldwide necessitates the exploration of new strategies to enhance clinical outcomes. By incorporating medical devices alongside pharmacological treatments, clinicians can provide additional support to UC patients, potentially improving their condition and slowing down the recurrence of symptoms. Chemically identified as an azelaic acid derivative and palmitoylethanolamide (PEA) analog, adelmidrol is a potent anti-inflammatory and antioxidant compound. In this study, we aimed to evaluate the effect of an intrarectal administration of 2% adelmidrol (Ade) and 0.1% hyaluronic acid (HA) gel formulation in both the acute and resolution phase of a mouse model of colitis induced via DNBS enema. We also investigated its activity in cultured human colon biopsies isolated from UC patients in the remission phase at follow-up when exposed in vitro to a cytomix challenge. Simultaneously, with its capacity to effectively alleviate chronic painful inflammatory cystitis when administered intravesically to urological patients such as Vessilen, the intrarectal administration of Ade/HA gel has shown remarkable potential in improving the course of colitis. This treatment approach has demonstrated a reduction in the histological damage score and an increase in the expression of ZO-1 and occludin tight junctions in both in vivo studies and human specimens. By acting independently on endogenous PEA levels and without any noticeable systemic absorption, the effectiveness of Ade/HA gel is reliant on a local antioxidant mechanism that functions as a "barrier effect" in the inflamed gut. Building on the findings of this preliminary study, we are confident that the Ade/HA gel medical device holds promise as a valuable adjunct in supporting traditional anti-UC therapies.


Assuntos
Colite Ulcerativa , Colite , Cistite , Ácidos Dicarboxílicos , Ácidos Palmíticos , Humanos , Animais , Camundongos , Colite Ulcerativa/tratamento farmacológico , Ácido Hialurônico , Antioxidantes , Biópsia
8.
Biology (Basel) ; 11(11)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36358275

RESUMO

BACKGROUND: IBD is a spectrum of pathologies characterized by dysregulated immune activation leading to uncontrolled response against the intestine, thus resulting in chronic gut inflammation and tissue damage. Due to its complexity, the molecular mechanisms responsible for disease onset and progression are still elusive, thus requiring intense research effort. In this context, the development of models replicating the etiopathology of IBD and allowing the testing of new potential therapies is critical. METHODS: Colon from C57BL/6 or BALB/c mice was cultivated in a Gut-Ex-Vivo System (GEVS), exposed for 5 h to DNBS 1.5 or 2.5 mg/mL, in presence or absence of two probiotic formulations (P1 = Bifidobacterium breve BR03 (DSM16604) and B632 (DSM24706); P2 = Lacticaseibacillus rhamnosus LR04 (DSM16605), Lactiplantibacillus plantarum LP14 (DSM33401) and Lacticaseibacillus paracasei LPC09), and the main hallmarks of IBD were evaluated. RESULTS: Gene expression analysis revealed the following DNBS-induced effects: (i) compromised tight junction organization, responsible for tissue permeability dysregulation; (ii) induction of ER stress, and (iii) tissue inflammation in colon of C57BL/6 mice. Moreover, the concomitant DNBS-induced apoptosis and ferroptosis pathways were evident in colon from both BALB/c and C57BL/6 mice. Finally, the co-administration of probiotics completely prevented the detrimental effects of DNBS. CONCLUSIONS: Overall, we have provided results demonstrating that GEVS is a consistent, reliable, and cost-effective system for modeling DNBS-induced IBD, useful for studying the onset and progression of human disease at the molecular level, while also reducing animal suffering. Moreover, we have confirmed the beneficial effect of probiotics administration in promoting the remission of IBD.

9.
J Adv Res ; 38: 201-212, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35572406

RESUMO

Metagenomic next-generation sequencing (mNGS) has changed the diagnosis landscape of lower respiratory tract infections (LRIs). With the development of newer sequencing assays, it is now possible to assess all microorganisms in a sample using a single mNGS analysis. The applications of mNGS for LRIs span a wide range of areas including LRI diagnosis, airway microbiome analyses, human host response analyses, and prediction of drug resistance. mNGS is currently in an exciting transitional period; however, before implementation in a clinical setting, there are several barriers to overcome, such as the depletion of human nucleic acid, discrimination between colonization and infection, high costs, and so on. Aim of Review: In this review, we summarize the potential applications and challenges of mNGS in the diagnosis of LRIs to promote the integration of mNGS into the management of patients with respiratory tract infections in a clinical setting. Key Scientific Concepts of Review: Once its analytical validation, clinical validation and clinical utility been demonstrated, mNGS will become an important tool in the field of infectious disease diagnosis.


Assuntos
Microbiota , Infecções Respiratórias , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metagenoma , Metagenômica , Microbiota/genética , Infecções Respiratórias/diagnóstico
10.
Inflammation ; 45(4): 1829-1847, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35338432

RESUMO

The pharmacological blockade of P2X4 receptors has shown potential benefits in the management of several immune/inflammatory diseases. However, data regarding the involvement of P2X4 receptors in the pathophysiological mechanisms of action in intestinal inflammation are not well defined. We aimed to evaluate the anti-inflammatory effects of two novel and selective P2X4 receptor antagonists, NC-2600 and NP-1815-PX, and characterize the molecular mechanisms of their action in a murine model of 2,4-dinitrobenzene sulfonic acid (DNBS)-induced colitis. These two drugs and dexamethasone (DEX) were administered orally for 6 days, immediately after the manifestation of DNBS. The body weight decrease, resulting from colitis, was attenuated by NC-2600 and NP-1815-PX, but not DEX. However, all three drugs attenuated the increase in spleen weight and ameliorated macroscopic and microscopic colonic tissue damage. Furthermore, all three compounds decreased tissue IL-1ß levels and caspase-1 expression and activity. Colonic tissue increase of tumor necrosis factor was downregulated by DEX, while both NC-2600 and NP-1815-PX were ineffective. The reduction of occludin associated with colitis was ameliorated by NC-2600 and NP-1815-PX, but not DEX. In THP-1 cells, lipopolysaccharide and ATP upregulated IL-1ß release and NLRP3, caspase-1, caspase-5, and caspase-8 activity, but not of caspase-4. These changes were prevented by NC-2600 and NP-1815-PX treatment. For the first time, the above findings show that the selective inhibition of P2X4 receptors represents a viable approach to manage bowel inflammation via the inhibition of NLRP3 inflammasome signaling pathways.


Assuntos
Colite , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Azepinas , Caspase 1 , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Modelos Animais de Doenças , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos , Oxidiazóis , Antagonistas do Receptor Purinérgico P2X
11.
Pathogens ; 10(8)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34451458

RESUMO

Two experimental paradigms were adopted to explore host-helminth interactions involved in the regulation of colitis and to understand if colitis affects the outcome of helminth infection. First, male BALB/c mice infected with H. diminuta were challenged 4 days later with dinitrobenzene sulphonic acid (DNBS) and necropsied 3 days later. Second, mice were infected with H. diminuta 3 days after DNBS treatment and necropsied 11 or 14 days post-DNBS. Mice were assessed for colitic disease severity and infectivity with H. diminuta upon necropsy. Supporting the concept of helminth therapy, mice are protected from DNBS-colitis when infected with H. diminuta only 4 days previously, along with parallel increases in splenic production of Th2 cytokines. In the treatment regimen, H. diminuta infection produced a subtle, statistically significant, enhanced recovery from DNBS. Mice regained body weight quicker, had normalized colon lengths, and showed no overt signs of disease, in comparison to the DNBS-only mice, some of which displayed signs of mild disease at 14 days post-DNBS. Unexpectedly, colitis did not affect the hosts' anti-worm response. The impact of inflammatory disease on helminth infection is deserving of study in a variety of models as auto-inflammatory diseases emerge in world regions where parasitic helminths are endemic.

12.
Int J Mol Sci ; 22(12)2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199160

RESUMO

Acadesine (ACA), a pharmacological activator of AMP-activated protein kinase (AMPK), showed a promising beneficial effect in a mouse model of colitis, indicating this drug as an alternative tool to manage IBDs. However, ACA displays some pharmacodynamic limitations precluding its therapeutical applications. Our study was aimed at evaluating the in vitro and in vivo effects of FA-5 (a novel direct AMPK activator synthesized in our laboratories) in an experimental model of colitis in rats. A set of experiments evaluated the ability of FA5 to activate AMPK and to compare the efficacy of FA5 with ACA in an experimental model of colitis. The effects of FA-5, ACA, or dexamethasone were tested in rats with 2,4-dinitrobenzenesulfonic acid (DNBS)-induced colitis to assess systemic and tissue inflammatory parameters. In in vitro experiments, FA5 induced phosphorylation, and thus the activation, of AMPK, contextually to the activation of SIRT-1. In vivo, FA5 counteracted the increase in spleen weight, improved the colon length, ameliorated macroscopic damage score, and reduced TNF and MDA tissue levels in DNBS-treated rats. Of note, FA-5 displayed an increased anti-inflammatory efficacy as compared with ACA. The novel AMPK activator FA-5 displays an improved anti-inflammatory efficacy representing a promising pharmacological tool against bowel inflammation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Benzofuranos/uso terapêutico , Desenvolvimento de Medicamentos , Ativadores de Enzimas/farmacologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Animais , Benzofuranos/farmacologia , Peso Corporal/efeitos dos fármacos , Linhagem Celular , Colo/efeitos dos fármacos , Colo/patologia , Dinitrofluorbenzeno/análogos & derivados , Eletroforese em Gel Bidimensional , Ontologia Genética , Doenças Inflamatórias Intestinais/patologia , Interleucina-10/metabolismo , Masculino , Malondialdeído/metabolismo , Camundongos , Tamanho do Órgão/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ratos Sprague-Dawley , Baço/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
13.
Biology (Basel) ; 10(7)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209277

RESUMO

Inflammatory bowel disease (IBD) is a complex, chronic, and dysregulated inflammatory condition which etiology is still largely unknown. Its prognosis and disease progression are highly variable and unpredictable. IBD comprises several heterogeneous inflammatory conditions ranging from Ulcerative Colitis (UC) to Crohn's Disease (CD). Importantly, a definite, well-established, and effective clinical treatment for these pathologies is still lacking. The urgent need for treatment is further supported by the notion that patients affected by UC or CD are also at risk of developing cancer. Therefore, a deeper understanding of the molecular mechanisms at the basis of IBD development and progression is strictly required to design new and efficient therapeutic regimens. Although the development of animal models has undoubtedly facilitated the study of IBD, such in vivo approaches are often expensive and time-consuming. Here we propose an organ ex vivo culture (Gut-Ex-Vivo system, GEVS) based on colon from Balb/c mice cultivated in a dynamic condition, able to model the biochemical and morphological features of the mouse models exposed to DNBS (5-12 days), in 5 h. Indeed, upon DNBS exposure, we observed a dose-dependent: (i) up-regulation of the stress-related protein transglutaminase 2 (TG2); (ii) increased intestinal permeability associated with deregulated tight junction protein expression; (iii) increased expression of pro-inflammatory cytokines, such as TNFα, IFNγ, IL1ß, IL6, IL17A, and IL15; (iv) down-regulation of the anti-inflammatory IL10; and (v) induction of Endoplasmic Reticulum stress (ER stress), all markers of IBD. Altogether, these data indicate that the proposed model can be efficiently used to study the pathogenesis of IBD, in a time- and cost-effective manner.

14.
Saudi Pharm J ; 29(4): 291-304, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33994824

RESUMO

In the present study, we have investigated and/or compared the role of glibenclamide, G as cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor, and lubiprostone, L as chloride channel-2 (ClC-2) activator in the 2,4-dinitrobenzene sulfonic acid (DNBS)-induced gastrointestinal inflammation. GI inflammation was induced by intrarectal administration of DNBS. Rats were randomly allocated in 5 groups as sham control, distilled water + DNBS, sulfasalazine (S) + DNBS, G + DNBS, and L + DNBS. All the groups were pre-treated successively for five days before the induction of colitis. One day before and the first four days after DNBS administration various parameters were studied. Later, blood chemistry, colon's gross structure, histology, and the antioxidant load was examined. Pre-treatment with G significantly protected the change induced by DNBS concerning the change in body weight, food intake, diarrhea, occult blood in the feces, wet weight of the colon, and spleen. G because of its anti-inflammatory property down-regulated the neutrophil and WBC count and up-regulated the lymphocyte number. Moreover, G efficiently ameliorates the oxidative stress in the colon and declines the level of myeloperoxidase and malondialdehyde and up-regulated the level of superoxide dismutase and glutathione. Lubiprostone has not shown any promising effects, in fact, it causes an increase in diarrheal frequency. Our findings from this study represent that G has good potential to ameliorate GI inflammation induced by DNBS by its multiple actions including CFTR blockage and reducing the release of inflammatory markers from the MCs, anti-inflammatory and free radical scavenging property.

15.
Front Microbiol ; 12: 641483, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897648

RESUMO

Protists are a normal component of mammalian intestinal ecosystems that live alongside, and interact with, bacterial microbiota. Blastocystis, one of the most common intestinal eukaryotes, is reported as a pathogen that causes inflammation and disease, though health consequences likely vary depending on host health, the gut ecosystem, and genetic diversity. Accumulating evidence suggests that Blastocystis is by and large commensal. Blastocystis is more common in healthy individuals than those with immune mediated diseases such as Inflammatory Bowel Diseases (IBD). Blastocystis presence is also associated with altered composition and higher richness of the bacterial gut microbiota. It is not clear whether Blastocystis directly promotes a healthy gut and microbiome or is more likely to colonize and persist in a healthy gut environment. We test this hypothesis by measuring the effect of Blastocystis ST3 colonization on the health and microbiota in a rat experimental model of intestinal inflammation using the haptenizing agent dinitrobenzene sulfonic acid (DNBS). We experimentally colonized rats with Blastocystis ST3 obtained from a healthy, asymptomatic human donor and then induced colitis after 3 weeks (short term exposure experiment) or after 13 weeks (long term exposure experiment) and compared these colonized rats to a colitis-only control group. Across experiments Blastocystis ST3 colonization alters microbiome composition, but not richness, and induces only mild gut inflammation but no clinical symptoms. Our results showed no effect of short-term exposure to Blastocystis ST3 on gut inflammation following colitis induction. In contrast, long-term Blastocystis exposure appears to promote a faster recovery from colitis. There was a significant reduction in inflammatory markers, pathology 2 days after colitis induction in the colonized group, and clinical scores also improved in this group. Blastocystis colonization resulted in a significant reduction in tumor necrosis factor alpha (TNFα) and IL-1ß relative gene expression, while expression of IFNγ and IL17re/17C were elevated. We obtained similar results in a previous pilot study. We further found that bacterial richness rebounded in rats colonized by Blastocystis ST3. These results suggest that Blastocystis sp. may alter the gut ecosystem in a protective manner and promote faster recovery from disturbance.

16.
Int J Mol Sci ; 21(12)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560291

RESUMO

The management of chronic visceral pain related to Inflammatory Bowel Diseases or Irritable Bowel Syndrome is still a clinical problem and new therapeutic strategies continue to be investigated. In the present study, the efficacy of a pomegranate decoction and of its polysaccharide and ellagitannin components in preventing the development of colitis-induced abdominal pain in rats was evaluated. After colitis induction by 2,4-dinitrobenzenesulfonic acid (DNBS), the pomegranate decoction (300 mg kg-1), polysaccharides (300 mg kg-1), and ellagitannins (45 mg kg-1) were orally administered for 14 days. Repeated treatment with decoction reduced visceral hypersensitivity in the colitic animals both at 7 and 14 days. Similar efficacy was shown by polysaccharides, but with lower potency. Ellagitannins administered at dose equivalent to decoction content showed higher efficacy in reducing the development of visceral pain. Macroscopic and microscopic evaluations performed on the colon 14 days after the damage showed that all three preparations reduced the overall amount of mast cells, the number of degranulated mast cells, and the density of collagen fibers in the mucosal stroma. Although ellagitannins seem to be responsible for most of the beneficial effects of pomegranate on DNBS-induced colitis, the polysaccharides support and enhance its effect. Therefore, pomegranate mesocarp preparations could represent a complementary approach to conventional therapies for promoting abdominal pain relief.


Assuntos
Anti-Inflamatórios/farmacologia , Colite/complicações , Extratos Vegetais/farmacologia , Punica granatum/química , Dor Visceral/etiologia , Animais , Anti-Inflamatórios/química , Biomarcadores , Modelos Animais de Doenças , Imuno-Histoquímica , Extratos Vegetais/química , Ratos , Retratamento , Resultado do Tratamento , Dor Visceral/diagnóstico , Dor Visceral/tratamento farmacológico
17.
Cells ; 9(6)2020 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-32575844

RESUMO

The pharmacological activation of A3 receptors has shown potential usefulness in the management of bowel inflammation. However, the role of these receptors in the control of visceral hypersensitivity in the presence of intestinal inflammation has not been investigated. The effects of AR170, a potent and selective A3 receptor agonist, and dexamethasone (DEX) were tested in rats with 2,4-dinitrobenzene sulfonic acid (DNBS)-induced colitis to assess their tissue inflammatory parameters. The animals received AR170, DEX, or a vehicle intraperitoneally for 6 days, starting 1 day before the induction of colitis. Visceral pain was assessed by recording the abdominal responses to colorectal distension in animals with colitis. Colitis was associated with a decrease in body weight and an increase in spleen weight. The macroscopic damage score and tissue tumor necrosis factor (TNF), interleukin 1ß (IL-1ß), and myeloperoxidase (MPO) levels were also enhanced. AR170, but not DEX, improved body weight. Both drugs counteracted the increase in spleen weight, ameliorated macroscopic colonic damage, and decreased TNF, IL-1ß, and MPO tissue levels. The enhanced visceromotor response (VMR) in rats with colitis was decreased via AR170 administration. In rats with colitis, AR170 counteracted colonic inflammatory cell infiltration and decreased pro-inflammatory cytokine levels, thereby relieving visceral hypersensitivity.


Assuntos
Anti-Inflamatórios/uso terapêutico , Colite/tratamento farmacológico , Agonistas do Receptor Purinérgico P1/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças , Humanos , Masculino , Agonistas do Receptor Purinérgico P1/farmacologia , Ratos , Ratos Sprague-Dawley
18.
Cell Mol Gastroenterol Hepatol ; 10(2): 287-307, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32298841

RESUMO

BACKGROUND & AIMS: Mitochondria exist in a constantly remodelling network, and excessive fragmentation can be pathophysiological. Mitochondrial dysfunction can accompany enteric inflammation, but any contribution of altered mitochondrial dynamics (ie, fission/fusion) to gut inflammation is unknown. We hypothesized that perturbed mitochondrial dynamics would contribute to colitis. METHODS: Quantitative polymerase chain reaction for markers of mitochondrial fission and fusion was applied to tissue from dextran sodium sulfate (DSS)-treated mice. An inhibitor of mitochondrial fission, P110 (prevents dynamin related protein [Drp]-1 binding to mitochondrial fission 1 protein [Fis1]) was tested in the DSS and di-nitrobenzene sulfonic acid (DNBS) models of murine colitis, and the impact of DSS ± P110 on intestinal epithelial and macrophage mitochondria was assessed in vitro. RESULTS: Analysis of colonic tissue from mice with DSS-colitis revealed increased mRNA for molecules associated with mitochondrial fission (ie, Drp1, Fis1) and fusion (optic atrophy factor 1) and increased phospho-Drp1 compared with control. Systemic delivery of P110 in prophylactic or treatment regimens reduced the severity of DSS- or DNBS-colitis and the subsequent hyperalgesia in DNBS-mice. Application of DSS to epithelial cells or macrophages caused mitochondrial fragmentation. DSS-evoked perturbation of epithelial cell energetics and mitochondrial fragmentation, but not cell death, were ameliorated by in vitro co-treatment with P110. CONCLUSIONS: We speculate that the anti-colitic effect of systemic delivery of the anti-fission drug, P110, works at least partially by maintaining enterocyte and macrophage mitochondrial networks. Perturbed mitochondrial dynamics can be a feature of intestinal inflammation, the suppression of which is a potential novel therapeutic direction in inflammatory bowel disease.


Assuntos
Colite Ulcerativa/imunologia , Colo/patologia , GTP Fosfo-Hidrolases/farmacologia , Mucosa Intestinal/patologia , Dinâmica Mitocondrial/imunologia , Fragmentos de Peptídeos/farmacologia , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colo/citologia , Colo/efeitos dos fármacos , Colo/imunologia , Sulfato de Dextrana/administração & dosagem , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , GTP Fosfo-Hidrolases/uso terapêutico , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/imunologia , Fragmentos de Peptídeos/uso terapêutico
19.
Ecotoxicol Environ Saf ; 194: 110378, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32146194

RESUMO

The primary purpose of this study was to systematically explore the complete metabolic pathway and tolerance mechanism of strain DNB-S1 to dibutyl phthalate (DBP), and the effect of DBP on energy metabolism of DNB-S1. Here, DNB-S1, a strain of Pseudomonas sp. that was highly effective in degrading DBP, was identified, and differentially expressed metabolites and metabolic networks of DBP were studied. The results showed that the differentially expressed metabolites were mainly aromatic compounds and lipid compounds, with only a few toxic intermediate metabolites. It speculated that phthalic acid, salicylic acid, 3-hydroxybenzoate acid, 3-Carboxy-cis, cis-muconate, fumarypyravate were intermediate metabolites of DBP. Their up-regulation indicated that there were two metabolic pathways in the degradation of DBP (protocatechuate pathway and gentisate pathway), which had been verified by peak changes at 290 nm, 320 nm, 330 nm, and 375 nm in the enzymatic method. Also, aspartate, GSH, and other metabolites were up-regulation, indicating that DNB-S1 had a high tolerance to DBP and maintained cell homeostasis, which was also one of the essential reasons to ensure the efficient degradation of DBP. Altogether, this study firstly proposed two pathways to degrade DBP and comprehensively explored the effect of DBP on the metabolic function of DNB-S1, which enriched the study of microbial metabolism of organic pollutants, and which provided a basis for the application of metabolomics.


Assuntos
Dibutilftalato/metabolismo , Poluentes Ambientais/metabolismo , Pseudomonas/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Biodegradação Ambiental , Dibutilftalato/toxicidade , Metabolismo Energético/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Pseudomonas/efeitos dos fármacos , Pseudomonas/crescimento & desenvolvimento
20.
FASEB J ; 34(1): 1576-1590, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914614

RESUMO

Inflammatory bowel diseases (IBDs) are characterized by an inflammatory and oxidative stress condition in the intestinal tissue. In this study, we evaluated the effect of plumericin, one of the main bioactive components of Himatanthus sucuuba (Woodson) bark, on intestinal inflammation and oxidative stress, both in vitro and in vivo. The effect of plumericin (0.5-2 µM) in vitro was evaluated in rat intestinal epithelial cells (IEC-6) treated with lipopolysaccharides from E. coli (10 µg/mL) plus interferon-γ (10 U/mL). Moreover, a 2,4,6-dinitrobenzene sulfonic acid (DNBS)-induced colitis model was used to evaluate the anti-inflammatory and antioxidant activity of plumericin (3 mg/kg) in vivo. The results showed that plumericin significantly reduces intestinal inflammatory factors such as tumor necrosis factor-α, cyclooxygenase-2 and inducible nitric oxide synthase expression, and nitrotyrosine formation. Plumericin also inhibited nuclear factor-κB translocation, reactive oxygen species (ROS) release, and inflammasome activation. Moreover, plumericin activated the nuclear factor erythroid-derived 2 pathway in IEC-6. Using the DNBS-induced colitis model, a significant reduction in the weight loss and in the development of the macroscopic and histologic signs of colon injury, together with a reduced inflammatory and oxidative stress state, were observed in plumericin-treated mice. These results indicate that plumericin exerts a strong anti-inflammatory and antioxidant activity. Thus, it might be a candidate for the development of a new pharmacologic approach for IBDs treatment.


Assuntos
Anti-Inflamatórios/farmacologia , Colo/efeitos dos fármacos , Indenos/farmacologia , Inflamação/tratamento farmacológico , Iridoides/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Linhagem Celular , Colite/tratamento farmacológico , Colite/metabolismo , Colo/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Masculino , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA