Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.014
Filtrar
1.
Cell Calcium ; 123: 102924, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38964236

RESUMO

Anoctamin 1 (ANO1/TMEM16A) encodes a Ca2+-activated Cl- channel. Among ANO1's many physiological functions, it plays a significant role in mediating nociception and itch. ANO1 is activated by intracellular Ca2+ and depolarization. Additionally, ANO1 is activated by heat above 44 °C, suggesting heat as another activation stimulus. ANO1 is highly expressed in nociceptors, indicating a role in nociception. Conditional Ano1 ablation in dorsal root ganglion (DRG) neurons results in a reduction in acute thermal pain, as well as thermal and mechanical allodynia or hyperalgesia evoked by inflammation or nerve injury. Pharmacological interventions also lead to a reduction in nocifensive behaviors. ANO1 is functionally linked to the bradykinin receptor and TRPV1. Bradykinin stimulates ANO1 via IP3-mediated Ca2+ release from intracellular stores, whereas TRPV1 stimulates ANO1 via a combination of Ca2+ influx and release. Nerve injury causes upregulation of ANO1 expression in DRG neurons, which is blocked by ANO1 antagonists. Due to its role in nociception, strong and specific ANO1 antagonists have been developed. ANO1 is also expressed in pruritoceptors, mediating Mas-related G protein-coupled receptors (Mrgprs)-dependent itch. The activation of ANO1 leads to chloride efflux and depolarization due to high intracellular chloride concentrations, causing pain and itch. Thus, ANO1 could be a potential target for the development of new drugs treating pain and itch.

2.
World Neurosurg ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986940

RESUMO

PURPOSE: This study is aimed at evaluating the efficacy of Mind-Regulating and Depression-Relieving Acupuncture in combination with radiofrequency thermocoagulation of DRG for PHN. METHODS: PHN patients who presented to the Pain Department of Affiliated Hospital of Jiaxing University from November 2021 to June 2023 were included. The participants were assigned into two groups using a random number table: Acupuncture + RFTC (Group H, n = 44) group and RFTC (Group C, n = 44) group. The pain numerical rating score (NRS), visual analogue scale scores (VAS), IL-6 , Gal-3, oral dose of tramadol and gabapentin capsules levels were recorded before and after 1, 2, 4, 8 and 12 w of the treatment. RESULTS: After treatment, NRS scores in both groups were significantly lower than pretreatment scores at each time point. Compared with before treatment, the VAS scores at all time points after treatment was increased in both groups. Compared with before treatment, the doses of oral gabapentin capsules and tramadol were reduced in both groups after treatment. Compared with group C, the doses of oral gabapentin capsules and tramadol after the end of the treatment course were significantly reduced in group H. Compared with before treatment, the blood levels of Gal-3 and IL-6 were reduced at all points after treatment in both groups. Compared with group C, the blood Gal-3 and IL-6 levels were significantly reduced in group H. CONCLUSION: Compared with RFTC alone, acupuncture combined with RFTC of DRG has a better therapeutic effect for PHN.

3.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000275

RESUMO

In tumor cells, interleukin-6 (IL-6) signaling can lead to activation of the epidermal growth factor receptor (EGFR), which prolongs Stat3 activation. In the present experiments, we tested the hypothesis that IL-6 signaling activates EGFR signaling in peripheral and spinal nociception and examined whether EGFR localization and activation coincide with pain-related behaviors in arthritis. In vivo in anesthetized rats, spinal application of the EGFR receptor blocker gefitinib reduced the responses of spinal cord neurons to noxious joint stimulation, but only after spinal pretreatment with IL-6 and soluble IL-6 receptor. Using Western blots, we found that IL-6-induced Stat3 activation was reduced by gefitinib in microglial cells of the BV2 cell line, but not in cultured DRG neurons. Immunohistochemistry showed EGFR localization in most DRG neurons from normal rats, but significant downregulation in the acute and most painful arthritis phase. In the spinal cord of mice, EGFR was highly activated mainly in the chronic phase of inflammation, with localization in neurons. These data suggest that spinal IL-6 signaling may activate spinal EGFR signaling. Downregulation of EGFR in DRG neurons in acute arthritis may limit nociception, but pronounced delayed activation of EGFR in the spinal cord may be involved in chronic inflammatory pain.


Assuntos
Receptores ErbB , Interleucina-6 , Células Receptoras Sensoriais , Medula Espinal , Animais , Feminino , Camundongos , Ratos , Artrite/metabolismo , Artrite Experimental/metabolismo , Linhagem Celular , Receptores ErbB/metabolismo , Gânglios Espinais/metabolismo , Gefitinibe/farmacologia , Interleucina-6/metabolismo , Receptores de Interleucina-6/metabolismo , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Transdução de Sinais , Medula Espinal/metabolismo , Fator de Transcrição STAT3/metabolismo
4.
Cureus ; 16(6): e62025, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38989368

RESUMO

Cerebellar strokes have high morbidity and mortality due to bleeding or edema, leading to increased pressure in the posterior fossa. This retrospective cohort study analyzed three outcomes following a cerebellar stroke: in-hospital mortality, length of hospital stay, and total hospitalization costs. It uses data from the National Inpatient Sample (NIS) and aims to identify the predictors of outcomes in cerebellar stroke patients, including 464,324 patients, 18 years of age and older, hospitalized between 2010 and 2015 in US hospitals with cerebellar strokes. In our study, for every decade age increased beyond 59 years, there was a significant increase in mortality; those aged 80+ years had 5.65 odds of mortality (95% CI: 5.32-6.00; P < 0.0001). Significant differences in patient characteristics were observed between patients who survived to discharge and those who did not, including older age (77.4 vs. 70.3 years; P < 0.0001), female sex (58% vs. 52%; P < 0.0001), and being transferred from another healthcare facility (17% vs. 10%; P < 0.0001). Patients admitted directly rather than through the emergency department were more likely to die (29% vs. 16%; P < 0.0001). The mortality rate was lower for blacks (OR: 0.75; P < 0.0001), Hispanics (OR: 0.91; P = 0.005), and Asians (OR: 0.89; P = 0.03), as compared to the white population, for females in comparison to males, and geographically, in all other areas (Midwest, South, and West) in contrast to the Northeast. Cerebellar stroke incidence and high mortality were seen in the traditional stroke belt. Mortality is also affected by the severity of the disease and increases with the Charlson Comorbidity Index (CCI), All Patient Refined Diagnosis Related Groups (APR-DRG) scores, and indirectly by place of receiving care, length of stay (LOS), cost of stay, type of insurance, and emergency department admissions. LOS increased with age, in males in the Northeast, and was less in whites compared to other races. Trend analysis showed a decrease in LOS and costs from 2010 to 2015. Increased costs were seen in non-whites, males, higher household income based on zip code, being covered under Medicaid, transfers, CCI ≥ 5, and discharges in the western US. Median household income based on the patient's zip code was well-balanced between those who lived and those who died (P = 0.091). However, payers were not evenly distributed between the two groups (P < 0.0001 for the overall comparison). A higher proportion of discharges associated with in-hospital mortality were covered under Medicare (70% vs. 65% in the died vs. lived groups, respectively). Fewer discharges were associated with death if they were covered by commercial insurance or paid for out-of-pocket (15% vs. 19% for commercial insurance and 3% vs. 5% for out-of-pocket). In-hospital mortality was associated with a longer length of hospital stay (5.6 days vs. 4.5 days; P < 0.0001) and higher costs ($16,815 vs. $11,859; P < 0.0001). Variables that were significantly associated with lower total costs were older age, having commercial insurance, paying out-of-pocket or other payers, not being admitted through the emergency department, having a lower comorbidity index (CCI = 1-2), and being discharged from a hospital that was small- or medium-sized, located in the Midwest or South, and/or was non-teaching (rural or urban).

5.
J Multidiscip Healthc ; 17: 2847-2855, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38894964

RESUMO

Objective: This study evaluates a reengineered intervention aimed at improving the clinical management of intravenous indwelling needles in geriatric patients, focusing on cost-efficiency within the Diagnosis-Related Group (DRG) payment framework. Methods: The intervention was assessed through a comparative study involving 387 elderly patients in the Geriatric Department of Xuanwu Hospital, between June 2021 and March 2022. The study contrasted outcomes between patients treated before and after implementing a new team-based management protocol in November 2021. Results: Findings indicate enhanced first-attempt venipuncture success, reduced consumable costs, and decreased complication rates in the post-intervention group (P < 0.001), compared to controls. Conclusion: The intervention demonstrates significant benefits in venipuncture efficiency, cost reduction, and patient safety, suggesting its potential for broader adoption in geriatric care.

6.
Risk Manag Healthc Policy ; 17: 1623-1637, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38904006

RESUMO

Background: Diagnosis-related group (DRG) payment policies are increasingly recognized as crucial instruments for addressing health care overprovision and escalating health care costs. The synthetic control method (SCM) has emerged as a robust tool for evaluating the efficacy of health policies worldwide. Methods: This study focused on Panzhihua city in Sichuan Province, a pilot city for DRG payment reform implementation, serving as the treatment group. In contrast, 20 nonpilot cities within the province were utilized as potential control units. A counterfactual control group was constructed to evaluate the changes in average inpatient stay duration and health care organization costs following the DRG payment reform initiated in 2018. Results: Focusing on Panzhihua, Sichuan Province, the analysis reveals that following the reform in March 2018, the average length of hospital stay in Panzhihua decreased by 1.35 days during 2019-2021. Additionally, the average cost per hospitalization dropped by 855.48 RMB, the average cost of medication per hospitalization decreased by 68.51 RMB, and the average cost of diagnostic and therapeutic procedures per hospitalization declined by 136.37 RMB. While global evidence backs DRGs for efficiency and cost reduction, challenges persist in addressing emerging issues like new conditions. Conclusion: Since its introduction in 2018, the DRG payment reform in Sichuan Province has effectively reduced both the duration of hospital stays and the operational costs of health care facilities. However, potential drawbacks include compromised service quality and an elevated risk of patient readmission, indicating a need for further refinement in the implementation of DRG payment reforms in China.

7.
Pharmacol Res ; 205: 107242, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823470

RESUMO

Targeting the CCL2/CCR2 chemokine axis has been shown to be effective at relieving pain in rodent models of inflammatory and neuropathic pain, therefore representing a promising avenue for the development of non-opioid analgesics. However, clinical trials targeting this receptor for inflammatory conditions and painful neuropathies have failed to meet expectations and have all been discontinued due to lack of efficacy. To overcome the poor selectivity of CCR2 chemokine receptor antagonists, we generated and characterized the function of intracellular cell-penetrating allosteric modulators targeting CCR2, namely pepducins. In vivo, chronic intrathecal administration of the CCR2-selective pepducin PP101 was effective in alleviating neuropathic and bone cancer pain. In the setting of bone metastases, we found that T cells infiltrate dorsal root ganglia (DRG) and induce long-lasting pain hypersensitivity. By acting on CCR2-expressing DRG neurons, PP101 attenuated the altered phenotype of sensory neurons as well as the neuroinflammatory milieu of DRGs, and reduced bone cancer pain by blocking CD4+ and CD8+ T cell infiltration. Notably, PP101 demonstrated its efficacy in targeting the neuropathic component of bone cancer pain, as evidenced by its anti-nociceptive effects in a model of chronic constriction injury of the sciatic nerve. Importantly, PP101-induced reduction of CCR2 signaling in DRGs did not result in deleterious tumor progression or adverse behavioral effects. Thus, targeting neuroimmune crosstalk through allosteric inhibition of CCR2 could represent an effective and safe avenue for the management of chronic pain.


Assuntos
Dor Crônica , Gânglios Espinais , Neuralgia , Receptores CCR2 , Animais , Receptores CCR2/antagonistas & inibidores , Receptores CCR2/metabolismo , Dor Crônica/tratamento farmacológico , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Humanos , Dor do Câncer/tratamento farmacológico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/secundário , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Masculino , Camundongos , Feminino , Camundongos Endogâmicos C57BL
8.
Int J Mol Sci ; 25(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38892000

RESUMO

Paclitaxel, a microtubule-stabilizing chemotherapy drug, can cause severe paclitaxel-induced peripheral neuropathic pain (PIPNP). The roles of transient receptor potential (TRP) ion channel vanilloid 1 (TRPV1, a nociceptor and heat sensor) and melastatin 8 (TRPM8, a cold sensor) in PIPNP remain controversial. In this study, Western blotting, immunofluorescence staining, and calcium imaging revealed that the expression and functional activity of TRPV1 were upregulated in rat dorsal root ganglion (DRG) neurons in PIPNP. Behavioral assessments using the von Frey and brush tests demonstrated that mechanical hyperalgesia in PIPNP was significantly inhibited by intraperitoneal or intrathecal administration of the TRPV1 antagonist capsazepine, indicating that TRPV1 played a key role in PIPNP. Conversely, the expression of TRPM8 protein decreased and its channel activity was reduced in DRG neurons. Furthermore, activation of TRPM8 via topical application of menthol or intrathecal injection of WS-12 attenuated the mechanical pain. Mechanistically, the TRPV1 activity triggered by capsaicin (a TRPV1 agonist) was reduced after menthol application in cultured DRG neurons, especially in the paclitaxel-treated group. These findings showed that upregulation of TRPV1 and inhibition of TRPM8 are involved in the generation of PIPNP, and they suggested that inhibition of TRPV1 function in DRG neurons via activation of TRPM8 might underlie the analgesic effects of menthol.


Assuntos
Gânglios Espinais , Neuralgia , Paclitaxel , Ratos Sprague-Dawley , Canais de Cátion TRPM , Canais de Cátion TRPV , Animais , Paclitaxel/efeitos adversos , Paclitaxel/farmacologia , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPV/metabolismo , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Ratos , Neuralgia/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/induzido quimicamente , Masculino , Hiperalgesia/metabolismo , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Capsaicina/farmacologia , Capsaicina/análogos & derivados , Neurônios/metabolismo , Neurônios/efeitos dos fármacos
9.
Inflammopharmacology ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829504

RESUMO

OBJECTIVE: To investigate whether honokiol (HNK) acted as an analgesic in connection with inhibiting the voltage-gated proton channel (Hv1). METHODS: The model of gouty arthritis was induced by injecting monosodium urate (MSU) crystals into the hind ankle joint of mice. HNK was given by intragastric administration. Ankle swelling degree and mechanical allodynia were evaluated using ankle joint circumference measurement and von Frey filaments, respectively. Hv1 current, tail current, and action potential in dorsal root ganglion (DRG) neurons were recorded with patch-clamp techniques. RESULTS: HNK (10, 20, 40 mg/kg) alleviated inflammatory response and mechanical allodynia in a dose-dependent manner. In normal DRG neurons, 50 µM Zn2+ or 2-GBI significantly inhibited the Hv1 current and the current density of Hv1 increased with increasing pH gradient. The amplitude of Hv1 current significantly increased on the 3rd after MSU treatment, and HNK dose-dependently reversed the upregulation of Hv1 current. Compared with MSU group, 40 mg/kg HNK shifted the activation curve to the direction of more positive voltage and increased reversal potential to the normal level. In addition, 40 mg/kg HNK reversed the down-regulation of tail current deactivation time constant (τtail) but did not alter the neuronal excitability of DRG neurons in gouty mice. CONCLUSION: HNK may be a potential analgesic by inhibiting Hv1 current.

10.
Front Mol Neurosci ; 17: 1160435, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38783903

RESUMO

The function of peripheral nociceptors, the neurons that relay pain signals to the brain, are frequently tuned by local and systemic modulator substances. In this context, neurohormonal effects are emerging as an important modulatory mechanism, but many aspects remain to be elucidated. Here we report that gonadotropin-releasing hormone (GnRH), a brain-specific neurohormone, can aggravate pain by acting on nociceptors in mice. GnRH and GnRHR, the receptor for GnRH, are expressed in a nociceptor subpopulation. Administration of GnRH and its analogue, localized for selectively affecting the peripheral neurons, deteriorated mechanical pain, which was reproducible in neuropathic conditions. Nociceptor function was promoted by GnRH treatment in vitro, which appears to involve specific sensory transient receptor potential ion channels. These data suggest that peripheral GnRH can positively modulate nociceptor activities in its receptor-specific manner, contributing to pain exacerbation. Our study indicates that GnRH plays an important role in neurohormonal pain modulation via a peripheral mechanism.

11.
Front Comput Neurosci ; 18: 1327986, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784679

RESUMO

Objective: Nav1.8 expression is restricted to sensory neurons; it was hypothesized that aberrant expression and function of this channel at the site of injury contributed to pathological pain. However, the specific contributions of Nav1.8 to neuropathic pain are not as clear as its role in inflammatory pain. The aim of this study is to understand how Nav1.8 present in peripheral sensory neurons regulate neuronal excitability and induce various electrophysiological features on neuropathic pain. Methods: To study the effect of changes in sodium channel Nav1.8 kinetics, Hodgkin-Huxley type conductance-based models of spiking neurons were constructed using the NEURON v8.2 simulation software. We constructed a single-compartment model of neuronal soma that contained Nav1.8 channels with the ionic mechanisms adapted from some existing small DRG neuron models. We then validated and compared the model with our experimental data from in vivo recordings on soma of small dorsal root ganglion (DRG) sensory neurons in animal models of neuropathic pain (NEP). Results: We show that Nav1.8 is an important parameter for the generation and maintenance of abnormal neuronal electrogenesis and hyperexcitability. The typical increased excitability seen is dominated by a left shift in the steady state of activation of this channel and is further modulated by this channel's maximum conductance and steady state of inactivation. Therefore, modified action potential shape, decreased threshold, and increased repetitive firing of sensory neurons in our neuropathic animal models may be orchestrated by these modulations on Nav1.8. Conclusion: Computational modeling is a novel strategy to understand the generation of chronic pain. In this study, we highlight that changes to the channel functions of Nav1.8 within the small DRG neuron may contribute to neuropathic pain.

12.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167269, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810919

RESUMO

Hyperalgesia is typified by reduced pain thresholds and heightened responses to painful stimuli, with a notable prevalence in menopausal women, but the underlying mechanisms are far from understood. ß-Aminoisobutyric acid (BAIBA), a product of valine and thymine catabolism, has been reported to be a novel ligand of the Mas-related G protein coupled receptor D (MrgprD), which mediates pain and hyperalgesia. Here, we established a hyperalgesia model in 8-week-old female mice through ovariectomy (OVX). A significant increase in BAIBA plasma level was observed and was associated with decline of mechanical withdrawal threshold, thermal and cold withdrawal latency in mice after 6 weeks of OVX surgery. Increased expression of MrgprD in dorsal root ganglion (DRG) was shown in OVX mice compared to Sham mice. Interestingly, chronic loading with BAIBA not only exacerbated hyperalgesia in OVX mice, but also induced hyperalgesia in gonadally intact female mice. BAIBA supplementation also upregulated the MrgprD expression in DRG of both OVX and intact female mice, and enhanced the excitability of DRG neurons in vitro. Knockout of MrgprD markedly suppressed the effects of BAIBA on hyperalgesia and excitability of DRG neurons. Collectively, our data suggest the involvement of BAIBA in the development of hyperalgesia via MrgprD-dependent pathway, and illuminate the mechanisms underlying hyperalgesia in menopausal women.


Assuntos
Ácidos Aminoisobutíricos , Gânglios Espinais , Hiperalgesia , Ovariectomia , Receptores Acoplados a Proteínas G , Transdução de Sinais , Animais , Feminino , Hiperalgesia/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Camundongos , Transdução de Sinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Ácidos Aminoisobutíricos/farmacologia , Ácidos Aminoisobutíricos/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
13.
Brain Behav Immun ; 119: 750-766, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38710336

RESUMO

Chronic pain is a heavily debilitating condition and a huge socio-economic burden, with no efficient treatment. Over the past decade, the gut microbiota has emerged as an important regulator of nervous system's health and disease states. Yet, its contribution to the pathogenesis of chronic somatic pain remains poorly documented. Here, we report that male but not female mice lacking Myosin1a (KO) raised under single genotype housing conditions (KO-SGH) are predisposed to develop chronic pain in response to a peripheral tissue injury. We further underscore the potential of MYO1A loss-of-function to alter the composition of the gut microbiota and uncover a functional connection between the vulnerability to chronic pain and the dysbiotic gut microbiota of KO-SGH males. As such, parental antibiotic treatment modifies gut microbiota composition and completely rescues the injury-induced pain chronicity in male KO-SGH offspring. Furthermore, in KO-SGH males, this dysbiosis is accompanied by a transcriptomic activation signature in the dorsal root ganglia (DRG) macrophage compartment, in response to tissue injury. We identify CD206+CD163- and CD206+CD163+ as the main subsets of DRG resident macrophages and show that both are long-lived and self-maintained and exhibit the capacity to monitor the vasculature. Consistently, in vivo depletion of DRG macrophages rescues KO-SGH males from injury-induced chronic pain underscoring a deleterious role for DRG macrophages in a Myo1a-loss-of function context. Together, our findings reveal gene-sex-microbiota interactions in determining the predisposition to injury-induced chronic pain and point-out DRG macrophages as potential effector cells.


Assuntos
Dor Crônica , Disbiose , Gânglios Espinais , Microbioma Gastrointestinal , Camundongos Knockout , Miosina Tipo I , Animais , Feminino , Masculino , Camundongos , Dor Crônica/metabolismo , Dor Crônica/microbiologia , Disbiose/metabolismo , Gânglios Espinais/metabolismo , Microbioma Gastrointestinal/fisiologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Miosina Tipo I/metabolismo
14.
Traffic ; 25(5): e12936, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38725127

RESUMO

Endosomal trafficking of TrkA is a critical process for nerve growth factor (NGF)-dependent neuronal cell survival and differentiation. The small GTPase ADP-ribosylation factor 6 (Arf6) is implicated in NGF-dependent processes in PC12 cells through endosomal trafficking and actin cytoskeleton reorganization. However, the regulatory mechanism for Arf6 in NGF signaling is largely unknown. In this study, we demonstrated that EFA6A, an Arf6-specific guanine nucleotide exchange factor, was abundantly expressed in PC12 cells and that knockdown of EFA6A significantly inhibited NGF-dependent Arf6 activation, TrkA recycling from early endosomes to the cell surface, prolonged ERK1/2 phosphorylation, and neurite outgrowth. We also demonstrated that EFA6A forms a protein complex with TrkA through its N-terminal region, thereby enhancing its catalytic activity for Arf6. Similarly, we demonstrated that EFA6A forms a protein complex with TrkA in cultured dorsal root ganglion (DRG) neurons. Furthermore, cultured DRG neurons from EFA6A knockout mice exhibited disturbed NGF-dependent TrkA trafficking compared with wild-type neurons. These findings provide the first evidence for EFA6A as a key regulator of NGF-dependent TrkA trafficking and signaling.


Assuntos
Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP , Endossomos , Fatores de Troca do Nucleotídeo Guanina , Fator de Crescimento Neural , Crescimento Neuronal , Receptor trkA , Animais , Camundongos , Ratos , Fatores de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/genética , Endossomos/metabolismo , Gânglios Espinais/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Camundongos Knockout , Fator de Crescimento Neural/metabolismo , Células PC12 , Transporte Proteico , Receptor trkA/metabolismo
15.
J Neurosci Methods ; 407: 110143, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38670536

RESUMO

BACKGROUND: Silicon-based micro-pillar substrates (MPS), as three-dimensional cell culture platforms with vertically aligned micro-patterned scaffolding structures, are known to facilitate high-quality growth and morphology of dorsal root ganglion (DRG) sensory neurons, promote neurite outgrowth and enhance neurite alignment. However, the electrophysiological aspects of DRG neurons cultured on silicon MPSs have not been thoroughly investigated, which is of greatest importance to ensure that such substrates do not disrupt neuronal homeostasis and function before their widespread adoption in diverse biomedical applications. NEW METHOD: We conducted whole-cell patch-clamp recordings to explore the electrophysiological properties of DRG neurons cultured on MPS arrays, utilizing a custom-made upright patch-clamp setup. RESULTS: Our findings revealed that DRG neurons exhibited similar electrophysiological responses on patterned MPS samples when compared to the control planar glass surfaces. Notably, there were no significant differences observed in the action potential parameters or firing patterns of action potentials between neurons grown on either substrate. COMPARISON WITH EXISTING METHODS: In the current study we for the first time confirmed that successful electrophysiological recordings can be obtained from the cells grown on MPS. CONCLUSION: Our results imply that, despite the potential alterations caused by the cumulative trauma of tissue harvest and cell dissociation, essential functional cell properties of DRG neurons appear to be relatively maintained on MPS surfaces. Therefore, vertically aligned silicon MPSs could be considered as a potentially effective three-dimensional system for supporting a controlled cellular environment in culture.


Assuntos
Gânglios Espinais , Técnicas de Patch-Clamp , Silício , Gânglios Espinais/fisiologia , Gânglios Espinais/citologia , Animais , Técnicas de Patch-Clamp/instrumentação , Técnicas de Patch-Clamp/métodos , Células Cultivadas , Potenciais de Ação/fisiologia , Neurônios/fisiologia , Neurônios/citologia , Ratos Sprague-Dawley , Ratos , Técnicas de Cultura de Células em Três Dimensões/métodos , Técnicas de Cultura de Células em Três Dimensões/instrumentação , Fenômenos Eletrofisiológicos/fisiologia
16.
Brain Behav Immun Health ; 38: 100757, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38590761

RESUMO

Background: A bioactive myelin basic protein (MBP) fragment, comprising MBP84-104, is released in sciatic nerve after chronic constriction injury (CCI). Intraneural injection (IN) of MBP84-104 in an intact sciatic nerve is sufficient to induce persistent neuropathic pain-like behavior via robust transcriptional remodeling at the injection site and ipsilateral dorsal root ganglia (DRG) and spinal cord. The sex (female)-specific pronociceptive activity of MBP84-104 associates with sex-specific changes in cholesterol metabolism and activation of estrogen receptor (ESR)1 signaling. Methods: In male and female normal and post-CCI rat sciatic nerves, we assessed: (i) cholesterol precursor and metabolite levels by lipidomics; (ii) MBP84-104 interactors by mass spectrometry of MBP84-104 pull-down; and (iii) liver X receptor (LXR)α protein expression by immunoblotting. To test the effect of LXRα stimulation on IN MBP84-104-induced mechanical hypersensitivity, the LXRα expression was confirmed along the segmental neuraxis, in DRG and spinal cord, followed by von Frey testing of the effect of intrathecally administered synthetic LXR agonist, GW3965. In cultured male and female rat DRGs exposed to MBP84-104 and/or estrogen treatments, transcriptional effect of LXR stimulation by GW3965 was assessed on downstream cholesterol transporter Abc, interleukin (IL)-6, and pronociceptive Cacna2d1 gene expression. Results: CCI regulated LXRα ligand and receptor levels in nerves of both sexes, with cholesterol precursors, desmosterol and 7-DHC, and oxysterol elevated in females relative to males. MBP84-104 interacted with nuclear receptor coactivator (Ncoa)1, known to activate LXRα, injury-specific in nerves of both sexes. LXR stimulation suppressed ESR1-induced IL-6 and Cacna2d1 expression in cultured DRGs of both sexes and attenuated MBP84-104-induced pain in females. Conclusion: The injury-released bioactive MBP fragments induce pronociceptive changes by selective inactivation of nuclear transcription factors, including LXRα. By Ncoa1 sequestration, bioactive MBP fragments render LXRα function to counteract pronociceptive activity of estrogen/ESR1 in sensory neurons. This effect of MBP fragments is prevalent in females due to high circulating estrogen levels in females relative to males. Restoring LXR activity presents a promising therapeutic strategy in management of neuropathic pain induced by bioactive MBP.

17.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612414

RESUMO

Patients with systemic lupus erythematosus (SLE) frequently experience chronic pain due to the limited effectiveness and safety profiles of current analgesics. Understanding the molecular and synaptic mechanisms underlying abnormal neuronal activation along the pain signaling pathway is essential for developing new analgesics to address SLE-induced chronic pain. Recent studies, including those conducted by our team and others using the SLE animal model (MRL/lpr lupus-prone mice), have unveiled heightened excitability in nociceptive primary sensory neurons within the dorsal root ganglia and increased glutamatergic synaptic activity in spinal dorsal horn neurons, contributing to the development of chronic pain in mice with SLE. Nociceptive primary sensory neurons in lupus animals exhibit elevated resting membrane potentials, and reduced thresholds and rheobases of action potentials. These changes coincide with the elevated production of TNFα and IL-1ß, as well as increased ERK activity in the dorsal root ganglion, coupled with decreased AMPK activity in the same region. Dysregulated AMPK activity is linked to heightened excitability in nociceptive sensory neurons in lupus animals. Additionally, the increased glutamatergic synaptic activity in the spinal dorsal horn in lupus mice with chronic pain is characterized by enhanced presynaptic glutamate release and postsynaptic AMPA receptor activation, alongside the reduced activity of glial glutamate transporters. These alterations are caused by the elevated activities of IL-1ß, IL-18, CSF-1, and thrombin, and reduced AMPK activities in the dorsal horn. Furthermore, the pharmacological activation of spinal GPR109A receptors in microglia in lupus mice suppresses chronic pain by inhibiting p38 MAPK activity and the production of both IL-1ß and IL-18, as well as reducing glutamatergic synaptic activity in the spinal dorsal horn. These findings collectively unveil crucial signaling molecular and synaptic targets for modulating abnormal neuronal activation in both the periphery and spinal dorsal horn, offering insights into the development of analgesics for managing SLE-induced chronic pain.


Assuntos
Dor Crônica , Lúpus Eritematoso Sistêmico , Humanos , Animais , Camundongos , Camundongos Endogâmicos MRL lpr , Dor Crônica/tratamento farmacológico , Dor Crônica/etiologia , Interleucina-18 , Proteínas Quinases Ativadas por AMP , Ácido Glutâmico , Interleucina-1beta , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Analgésicos
18.
Brain Res Bull ; 212: 110966, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670469

RESUMO

Intraoperative remifentanil administration has been linked to increased postoperative pain sensitivity. Recent studies have identified the involvement of euchromatic histone-lysine N-methyltransferase 2 (Ehmt2/G9a) in neuropathic pain associated with the transcriptional silencing of many potassium ion channel genes. This study investigates whether G9a regulates the potassium sodium-activated channel subfamily T member 1 (Slo2.2) in remifentanil-induced post-incisional hyperalgesia (RIH) in rodents. We performed remifentanil infusion (1 µg·kg-1·min-1 for 60 min) followed by plantar incision to induce RIH in rodents. Our results showed that RIH was accompanied by increased G9a and H3K9me2 production and decreased Slo2.2 expression 48 h postoperatively. Deletion of G9a rescued Slo2.2 expression in DRG and reduced RIH intensity. Slo2.2 overexpression also reversed this hyperalgesia phenotype. G9a overexpression decreased Slo2.2-mediated leak current and increased excitability in the small-diameter DRG neurons and laminal II small-diameter neurons in the spinal dorsal horn, which was implicated in peripheral and central sensitization. These results suggest that G9a contributes to the development of RIH by epigenetically silencing Slo2.2 in DRG neurons, leading to decreased central sensitization in the spinal cord. The findings may have implications for the development of novel therapeutic targets for the treatment of postoperative pain.


Assuntos
Histona-Lisina N-Metiltransferase , Hiperalgesia , Remifentanil , Células Receptoras Sensoriais , Animais , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Masculino , Remifentanil/farmacologia , Hiperalgesia/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Canais de Potássio Ativados por Sódio , Camundongos , Analgésicos Opioides/farmacologia , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Neuralgia/metabolismo , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/metabolismo , Ratos , Limiar da Dor/efeitos dos fármacos , Ratos Sprague-Dawley , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso
19.
Z Evid Fortbild Qual Gesundhwes ; 186: 43-51, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38616470

RESUMO

Facing increasing economization in the health care sector, clinicians have to adapt not only to the ever-growing economic challenges, but also to a patient-oriented health care. Treatment costs are the most important variable for optimizing success when facing scarce human resources, increasing material- and infrastructure costs in general, as well as low revenue flexibility due to flat rates per case in Germany, the so-called Diagnosis-Related Groups (DRG). University hospitals treat many patients with particularly serious illnesses. Therefore, their share of complex and expensive treatments, such as liver cirrhosis, is significantly higher. The resulting costs are not adequately reflected in the DRG flat rate per case, which is based on an average calculation across all hospitals, which increases this economic pressure. Thus, the aim of this manuscript is to review cost and revenue structures of the management of varices in patients with cirrhosis at a university center with a focus on hepatology. For this monocentric study, the data of 851 patients, treated at the Gastroenterology Department of a University Hospital between 2016 and 2020, were evaluated retrospectively and anonymously. Medical services (e.g., endoscopy, radiology, laboratory diagnostics) were analyzed within the framework of activity-based-costing. As part of the cost unit accounting, the individual steps of the treatment pathways of the 851 patients were monetarily evaluated with corresponding applicable service catalogs and compared with the revenue shares of the cost center and cost element matrix of the German (G-) DRG system. This study examines whether university-based high-performance medicine is efficient and cost-covering within the framework of the G-DRG system. We demonstrate a dramatic underfunding of the management of varicose veins in cirrhosis in our university center. It is therefore generally questionable whether and to what extent an adequate care for this patient collective is reflected in the G-DRG system.


Assuntos
Varizes Esofágicas e Gástricas , Hospitais Universitários , Cirrose Hepática , Humanos , Alemanha , Cirrose Hepática/economia , Cirrose Hepática/complicações , Hospitais Universitários/economia , Hospitais Universitários/organização & administração , Varizes Esofágicas e Gástricas/economia , Varizes Esofágicas e Gástricas/etiologia , Varizes Esofágicas e Gástricas/terapia , Masculino , Feminino , Programas Nacionais de Saúde/economia , Grupos Diagnósticos Relacionados/economia , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Gastroenterologia/economia , Gastroenterologia/organização & administração , Adulto
20.
Auton Neurosci ; 253: 103174, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38579493

RESUMO

The liver is a large organ with crucial functions in metabolism and immune defense, as well as blood homeostasis and detoxification, and it is clearly in bidirectional communication with the brain and rest of the body via both neural and humoral pathways. A host of neural sensory mechanisms have been proposed, but in contrast to the gut-brain axis, details for both the exact site and molecular signaling steps of their peripheral transduction mechanisms are generally lacking. Similarly, knowledge about function-specific sensory and motor components of both vagal and spinal access pathways to the hepatic parenchyma is missing. Lack of progress largely owes to controversies regarding selectivity of vagal access pathways and extent of hepatocyte innervation. In contrast, there is considerable evidence for glucose sensors in the wall of the hepatic portal vein and their importance for glucose handling by the liver and the brain and the systemic response to hypoglycemia. As liver diseases are on the rise globally, and there are intriguing associations between liver diseases and mental illnesses, it will be important to further dissect and identify both neural and humoral pathways that mediate hepatocyte-specific signals to relevant brain areas. The question of whether and how sensations from the liver contribute to interoceptive self-awareness has not yet been explored.


Assuntos
Interocepção , Hepatopatias , Fígado , Humanos , Interocepção/fisiologia , Animais , Hepatopatias/fisiopatologia , Hepatopatias/metabolismo , Fígado/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA