Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 267
Filtrar
1.
Front Mol Neurosci ; 17: 1391564, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114642

RESUMO

Down syndrome is a genetic-based disorder that results from the triplication of chromosome 21, leading to an overexpression of many triplicated genes, including the gene encoding Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A (DYRK1A). This protein has been observed to regulate numerous cellular processes, including cell proliferation, cell functioning, differentiation, and apoptosis. Consequently, an overexpression of DYRK1A has been reported to result in cognitive impairment, a key phenotype of individuals with Down syndrome. Therefore, downregulating DYRK1A has been explored as a potential therapeutic strategy for Down syndrome, with promising results observed from in vivo mouse models and human clinical trials that administered epigallocatechin gallate. Current DYRK1A inhibitors target the protein function directly, which tends to exhibit low specificity and selectivity, making them unfeasible for clinical or research purposes. On the other hand, antisense oligonucleotides (ASOs) offer a more selective therapeutic strategy to downregulate DYRK1A expression at the gene transcript level. Advances in ASO research have led to the discovery of numerous chemical modifications that increase ASO potency, specificity, and stability. Recently, several ASOs have been approved by the U.S. Food and Drug Administration to address neuromuscular and neurological conditions, laying the foundation for future ASO therapeutics. The limitations of ASOs, including their high production cost and difficulty delivering to target tissues can be overcome by further advances in ASO design. DYRK1A targeted ASOs could be a viable therapeutic approach to improve the quality of life for individuals with Down syndrome and their families.

2.
Dis Model Mech ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136051

RESUMO

Skeletal insufficiency affects all individuals with Down syndrome (DS) or Trisomy 21 (Ts21) and may alter bone strength throughout development due to a reduced period of bone formation and early attainment of peak bone mass compared to typically developing individuals. Appendicular skeletal deficits also appear in males before females with DS. In femurs of male Ts65Dn DS model mice, cortical deficits were pronounced throughout development, but trabecular deficits and Dyrk1a overexpression were transitory until postnatal day (P) 30 when there were persistent trabecular and cortical deficits and Dyrk1a was trending overexpression. Correction of DS-related skeletal deficits by a purported DYRK1A inhibitor or through genetic means beginning at P21 was not effective at P30, but germline normalization of Dyrk1a improved male bone structure by P36. Trabecular and cortical deficits in female Ts65Dn mice were evident at P30 but subsided by P36, typifying periodic developmental skeletal normalizations that progressed to more prominent bone deficiencies. Sex-dependent differences in skeletal deficits with a delayed impact of trisomic Dyrk1a are important to find temporally specific treatment periods for bone and other phenotypes associated with Ts21.

3.
Insect Mol Biol ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167296

RESUMO

The brain of adult honeybee (Apis mellifera) workers is larger than that of queens, facilitating behavioural differentiation between the castes. This brain diphenism develops during the pharate-adult stage and is driven by a caste-specific gene expression cascade in response to unique hormonal milieus. Previous molecular screening identified minibrain (mnb; DYRK1A) as a potential regulator in this process. Here, we used RNAi approach to reduce mnb transcript levels and test its role on brain diphenism development in honeybees. White-eyed unpigmented cuticle worker pupae were injected with dsRNA for mnb (Mnb-i) or gfp, and their phenotypes were assessed two and 8 days later using classic histological and transcriptomic analyses. After 2 days of the injections, Mnb-i bees showed 98% of downregulation of mnb transcripts. After 8 days, the brain of Mnb-i bees showed reduction in total volume and in the volume of the mushroom bodies (MB), antennal, and optic lobes. Additionally, signs of apoptosis were observed in the Kenyon cells region of the MB, and the cohesion of the brain tissues was affected. Our transcriptomic analyses revealed that 226 genes were affected by the knockdown of mnb transcripts, most of which allowing axonal fasciculation. These results suggest the evolutionary conserved mnb gene has been co-opted for promoting hormone-mediated developmental brain morphological plasticity generating caste diphenism in honeybees.

4.
Neurogenetics ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976082

RESUMO

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with considerable genetic heterogeneity. The disorder is clinically diagnosed based on DSM-5 criteria, featuring deficits in social communication and interaction, along with restricted and repetitive behaviours. Here, we performed whole-genome sequencing (WGS) on four individuals with ASD from two multiplex families (MPX), where more than one individual is affected, to identify potential single nucleotide variants (SNVs) and structural variants (SVs) in coding and non-coding regions. A rigorous bioinformatics pipeline was employed for variant detection, followed by segregation analysis. Our investigation revealed an unreported splicing variant in the DYRK1A gene (c.-77 + 2T > C; IVS1 + 2T > C; NM_001396.5), in heterozygote form in two affected children in one of the families (family B), which was absent in the healthy parents and siblings. This finding suggests the presence of gonadal mosaicism in one of the parents, representing the first documented instance of such inheritance for a variant in the DYRK1A gene associated with ASD. Furthermore, we identified a 50 bp deletion in intron 9 of the DLG2 gene in two affected patients from the same family, confirmed by PCR and Sanger sequencing. In Family A, we identified potential candidate variants associated with ASD shared by the two patients. These findings enhance our understanding of the genetic landscape of ASD, particularly in MPX families, and highlight the utility of WGS in uncovering novel genetic contributions to neurodevelopmental disorders.

5.
Bioorg Chem ; 151: 107676, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39068716

RESUMO

Dual-specificity tyrosine phosphorylation-regulated kinase A (DYRK1A) is a potential drug target for diabetes. The DYRK1A inhibitor can promote ß cells proliferation, increase insulin secretion and reduce blood sugar in diabetes. In this paper, a series ß-carboline-cinnamic acid skeletal derivatives were designed, synthesized and evaluated to inhibit the activity of DYRK1A and promote pancreatic islet ß cell proliferation. Pharmacological activity showed that all of the compounds could effectively promote pancreatic islet ß cell proliferation at a concentration of 1 µM, and the cell viability of compound A1, A4 and B4 reached to 381.5 %, 380.2 % and 378.5 %, respectively. Compound A1, A4 and B4 could also inhibit the expression of DYRK1A better than positive drug harmine. Further mechanistic studies showed that compound A1, A4 and B4 could inhibit DYRK1A protein expression via promoting its degradation and thus enhancing the expression of proliferative proteins PCNA and Ki67. Molecular docking showed that ß-carboline scaffold of these three compounds was fully inserted into the ATP binding site and formed hydrophobic interactions with the active pocket. Besides, these three compounds were predicted to possess better drug-likeness properties using SwissADME. In conclusion, compounds A1, A4 and B4 were potent pancreatic ß cell proliferative agents as DYRK1A inhibitors and might serve as promising candidates for the treatment of diabetes.

6.
Future Med Chem ; 16(12): 1239-1254, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38989990

RESUMO

Aim: Chemoresistance in cancer challenges the classical therapeutic strategy of 'one molecule-one target'. To combat this, multi-target therapies that inhibit various cancer-relevant targets simultaneously are proposed. Methods & results: We introduce 5-hydroxybenzothiophene derivatives as effective multi-target kinase inhibitors, showing notable growth inhibitory activity across different cancer cell lines. Specifically, compound 16b, featuring a 5-hydroxybenzothiophene hydrazide scaffold, emerged as a potent inhibitor, displaying low IC50 values against key kinases and demonstrating significant anti-cancer effects, particularly against U87MG glioblastoma cells. It induced G2/M cell cycle arrest, apoptosis and inhibited cell migration by modulating apoptotic markers. Conclusion: 16b represents a promising lead for developing new anti-cancer agents targeting multiple kinases with affinity to the hydroxybenzothiophene core.


[Box: see text].


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Proteínas Quinases , Tiofenos , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Tiofenos/farmacologia , Tiofenos/química , Tiofenos/síntese química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Estrutura Molecular
7.
Elife ; 122024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023520

RESUMO

Dormancy in cancer is a clinical state in which residual disease remains undetectable for a prolonged duration. At a cellular level, rare cancer cells cease proliferation and survive chemotherapy and disseminate disease. We created a suspension culture model of high-grade serous ovarian cancer (HGSOC) dormancy and devised a novel CRISPR screening approach to identify survival genes in this context. In combination with RNA-seq, we discovered the Netrin signaling pathway as critical to dormant HGSOC cell survival. We demonstrate that Netrin-1, -3, and its receptors are essential for low level ERK activation to promote survival, and that Netrin activation of ERK is unable to induce proliferation. Deletion of all UNC5 family receptors blocks Netrin signaling in HGSOC cells and compromises viability during the dormancy step of dissemination in xenograft assays. Furthermore, we demonstrate that Netrin-1 and -3 overexpression in HGSOC correlates with poor outcome. Specifically, our experiments reveal that Netrin overexpression elevates cell survival in dormant culture conditions and contributes to greater spread of disease in a xenograft model of abdominal dissemination. This study highlights Netrin signaling as a key mediator HGSOC cancer cell dormancy and metastasis.


High-grade serous ovarian cancer (or HGSOC for short) is the fifth leading cause of cancer-related deaths in women. It is generally diagnosed at an advanced stage of disease when the cancer has already spread to other parts of the body. Surgical removal of tumors and subsequent treatment with chemotherapy often reduces the signs and symptoms of the disease for a time but some cancer cells tend to survive so that patients eventually relapse. The HGSOC cells typically spread from the ovaries by moving through the liquid surrounding organs in the abdomen. The cells clump together and enter an inactive state known as dormancy that allows them to survive chemotherapy and low-nutrient conditions. Understanding how to develop new drug therapies that target dormant cancer cells is thought to be an important step in prolonging the life of HGSOC patients. Cancer cells are hardwired to multiply and grow, so Perampalam et al. reasoned that becoming dormant poses challenges for HGSOC cells, which may create unique vulnerabilities not shared by proliferating cancer cells. To find out more, the researchers used HGSOC cells that had been isolated from patients and grown in the laboratory. The team used a gene editing technique to screen HGSOC cells for genes required by the cells to survive when they are dormant. The experiments found that genes involved in a cell signaling pathway, known as Netrin signaling, were critical for the cells to survive. Previous studies have shown that Netrin signaling helps the nervous system form in embryos and inhibits a program of controlled cell death in some cancers. Perampalam et al. discovered that Netrins were present in the environment immediately surrounding dormant HGSOC cells. Human HGSOC patients with higher levels of Netrin gene expression had poorer prognoses than patients with lower levels of Netrin gene expression. Further experiments demonstrated that Netrins help dormant HGSOC cells to spread around the body. These findings suggest that Netrin signalling may provide useful targets for future drug therapies against dormant cells in some ovarian cancers. This could include repurposing drugs already in development or creating new inhibitors of this pathway.


Assuntos
Carcinoma Epitelial do Ovário , Sobrevivência Celular , Netrinas , Neoplasias Ovarianas , Transdução de Sinais , Humanos , Feminino , Animais , Linhagem Celular Tumoral , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Netrinas/metabolismo , Netrinas/genética , Camundongos , Netrina-1/metabolismo , Netrina-1/genética , Proliferação de Células , Receptores de Netrina/metabolismo , Receptores de Netrina/genética
8.
Autism Res ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080977

RESUMO

This preliminary study sought to assess biomarkers of attention using electroencephalography (EEG) and eye tracking in two ultra-rare monogenic populations associated with autism spectrum disorder (ASD). Relative to idiopathic ASD (n = 12) and neurotypical comparison (n = 49) groups, divergent attention profiles were observed for the monogenic groups, such that individuals with DYRK1A (n = 9) exhibited diminished auditory attention condition differences during an oddball EEG paradigm whereas individuals with SCN2A (n = 5) exhibited diminished visual attention condition differences noted by eye gaze tracking when viewing social interactions. Findings provide initial support for alignment of auditory and visual attention markers in idiopathic ASD and neurotypical development but not monogenic groups. These results support ongoing efforts to develop translational ASD biomarkers within the attention domain.

9.
Mol Divers ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833123

RESUMO

Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is implicated in accumulation of amyloid ß-protein (Aß) and phosphorylation of Tau proteins, and thus represents an important therapeutic target for neurodegenerative diseases. Though many DYRK1A inhibitors have been discovered, there is still no marketed drug targeting DYRK1A. This is partly due to the lack of effective and safe chemotypes. Therefore, it is still necessary to identify new classes of DYRK1A inhibitors. By performing virtual screening with the workflow mainly composed of pharmacophore modeling and molecular docking as well as the following DYRK1A inhibition assay, we identified compound L9, ((Z)-1-(((5-phenyl-1H-pyrazol-4-yl)methylene)-amino)-1H-tetrazol-5-amine), as a moderately active DYRK1A inhibitor (IC50: 1.67 µM). This compound was structurally different from the known DYRK1A inhibitors, showed a unique binding mode to DYRK1A. Furthermore, compound L9 showed neuroprotective activity against okadaic acid (OA)-induced injury in the human neuroblastoma cell line SH-SY5Y by regulating the expression of Aß and phosphorylation of Tau protein. This compound was neither toxic to the SH-SY5Y cells nor to the human normal liver cell line HL-7702 (IC50: >100 µM). In conclusion, we have identified a novel DYRK1A inhibitor with neuroprotective activity through virtual screening and in vitro biological evaluation, which holds the promise for further study.

10.
Cancers (Basel) ; 16(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38893153

RESUMO

Numerous studies have reported that Dyrk1A, Dyrk1B, and Clk1 are overexpressed in multiple cancers, suggesting a role in malignant disease. Here, we introduce a novel class of group-selective kinase inhibitors targeting Dyrk1A, Dyrk1B, and Clk1. This was achieved by modifying our earlier selective Clk1 inhibitors, which were based on the 5-methoxybenzothiophene-2-carboxamide scaffold. By incorporating a 5-hydroxy group, we increased the potential for additional hydrogen bond interactions that broadened the inhibitory effect to include Dyrk1A and Dyrk1B kinases. Within this series, compounds 12 and 17 emerged as the most potent multi-kinase inhibitors against Dyrk1A, Dyrk1B, and Clk1. Furthermore, when assessed against the most closely related kinases also implicated in cancer, the frontrunner compounds revealed additional inhibitory activity against Haspin and Clk2. Compounds 12 and 17 displayed high potency across various cancer cell lines with minimal effect on non-tumor cells. By examining the effect of these inhibitors on cell cycle distribution, compound 17 retained cells in the G2/M phase and induced apoptosis. Compounds 12 and 17 could also increase levels of cleaved caspase-3 and Bax, while decreasing the expression of the antiapoptotic Bcl-2 protein. These findings support the further study and development of these compounds as novel anticancer therapeutics.

11.
bioRxiv ; 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38826419

RESUMO

Skeletal insufficiency affects all individuals with Down syndrome (DS) or Trisomy 21 (Ts21) and may alter bone strength throughout development due to a reduced period of bone formation and early attainment of peak bone mass compared to typically developing individuals. Appendicular skeletal deficits also appear in males before females with DS. In femurs of male Ts65Dn DS model mice, cortical deficits were pronounced throughout development, but trabecular deficits and Dyrk1a overexpression were transitory until postnatal day (P) 30 when there were persistent trabecular and cortical deficits and Dyrk1a was trending overexpression. Correction of DS-related skeletal deficits by a purported DYRK1A inhibitor or through genetic means beginning at P21 was not effective at P30, but germline normalization of Dyrk1a improved male bone structure by P36. Trabecular and cortical deficits in female Ts65Dn mice were evident at P30 but subsided by P36, typifying periodic developmental skeletal normalizations that progressed to more prominent bone deficiencies. Sex-dependent differences in skeletal deficits with a delayed impact of trisomic Dyrk1a are important to find temporally specific treatment periods for bone and other phenotypes associated with Ts21.

12.
Pharmacol Rep ; 76(4): 665-678, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38758470

RESUMO

Neurodegenerative diseases (NDDs) encompass a range of conditions characterized by the specific dysfunction and continual decline of neurons, glial cells, and neural networks within the brain and spinal cord. The majority of NDDs exhibit similar underlying causes, including oxidative stress, neuroinflammation, and malfunctioning of mitochondria. Elevated levels of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), alongside decreased expression of brain-derived neurotrophic factor (BDNF) and glutamate transporter subtype 1 (GLT-1), constitute significant factors contributing to the pathogenesis of NDDs. Additionally, the dual-specificity tyrosine phosphorylation-regulated kinase 1 A (DYRK1A) gene has emerged as a significant target for the treatment of NDDs at the preclinical level. It significantly contributes to developmental brain defects, early onset neurodegeneration, neuronal loss, and dementia in Down syndrome. Moreover, an impaired ubiquitin-proteosome system (UPS) also plays a pathological role in NDDs. Malfunctioning of UPS leads to abnormal protein buildup or aggregation of α-synuclein. α-Synuclein is a highly soluble unfolded protein that accumulates in Lewy bodies and Lewy neurites in Parkinson's disease and other synucleinopathies. Recent research highlights the promising potential of natural products in combating NDDs relative to conventional therapies. Alkaloids have emerged as promising candidates in the fight against NDDs. Harmine is a tricyclic ß-carboline alkaloid (harmala alkaloid) with one indole nucleus and a six-membered pyrrole ring. It is extracted from Banisteria caapi and Peganum harmala L. and exhibits diverse pharmacological properties, encompassing neuroprotective, antioxidant, anti-inflammatory, antidepressant, etc. Harmine has been reported to mediate its neuroprotective via reducing the level of inflammatory mediators, NADPH oxidase, AChE, BChE and reactive oxygen species (ROS). Whereas, it has been observed to increase the levels of BDNF, GLT-1 and anti-oxidant enzymes, along with protein kinase-A (PKA)-mediated UPS activation. This review aims to discuss the mechanistic interplay of various mediators involved in the neuroprotective effect of harmine.


Assuntos
Harmina , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Humanos , Harmina/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Animais , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Estresse Oxidativo/efeitos dos fármacos
13.
Int J Biol Macromol ; 269(Pt 1): 132024, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704072

RESUMO

Dual-specificity tyrosine phosphorylation-regulated kinase 1 A (DYRK1A) plays an essential role in Tau and Aß pathology closely related to Alzheimer's disease (AD). Accumulative evidence has demonstrated DYRK1A inhibition is able to reduce the pathological features of AD. Nevertheless, there is no approved DYRK1A inhibitor for clinical use as anti-AD therapy. This is somewhat due to the lack of effective and safe chemotypes of DYRK1A inhibitors. To address this issue, we carried out in silico screening, in vitro assays and in vivo efficacy evaluation with the aim to discover a new class of DYRK1A inhibitors for potential treatment of AD. By in silico screening, we selected and purchased 16 potential DYRK1A inhibitors from the Specs chemical library. Among them, compound Q17 (Specs ID: AO-476/40829177) potently inhibited DYRK1A. The hydrogen bonds between compound Q17 and two amino acid residues named GLU239 and LYS188, were uncovered by molecular docking and molecular dynamics simulation. The cell-based assays showed that compound Q17 could protect the SH-SY5Y human neuroblastoma cell line from okadaic acid (OA)-induced injury by targeting DYRK1A. More importantly, compound Q17 significantly improved cognitive dysfunction of 3 × Tg-AD mice, ameliorated pathological changes, and attenuated Tau hyperphosphorylation as well as Aß deposition. In summary, our computational modeling strategy is effective to identify novel chemotypes of DYRK1A inhibitors with great potential to treat AD, and the identified compound Q17 in this study is worthy of further study.


Assuntos
Doença de Alzheimer , Quinases Dyrk , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Animais , Camundongos , Simulação de Dinâmica Molecular , Linhagem Celular Tumoral , Proteínas tau/metabolismo , Descoberta de Drogas , Simulação por Computador , Modelos Animais de Doenças
14.
J Neurodev Disord ; 16(1): 15, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622540

RESUMO

BACKGROUND: Neurodevelopmental conditions such as intellectual disability (ID) and autism spectrum disorder (ASD) can stem from a broad array of inherited and de novo genetic differences, with marked physiological and behavioral impacts. We currently know little about the psychiatric phenotypes of rare genetic variants associated with ASD, despite heightened risk of psychiatric concerns in ASD more broadly. Understanding behavioral features of these variants can identify shared versus specific phenotypes across gene groups, facilitate mechanistic models, and provide prognostic insights to inform clinical practice. In this paper, we evaluate behavioral features within three gene groups associated with ID and ASD - ADNP, CHD8, and DYRK1A - with two aims: (1) characterize phenotypes across behavioral domains of anxiety, depression, ADHD, and challenging behavior; and (2) understand whether age and early developmental milestones are associated with later mental health outcomes. METHODS: Phenotypic data were obtained for youth with disruptive variants in ADNP, CHD8, or DYRK1A (N = 65, mean age = 8.7 years, 40% female) within a long-running, genetics-first study. Standardized caregiver-report measures of mental health features (anxiety, depression, attention-deficit/hyperactivity, oppositional behavior) and developmental history were extracted and analyzed for effects of gene group, age, and early developmental milestones on mental health features. RESULTS: Patterns of mental health features varied by group, with anxiety most prominent for CHD8, oppositional features overrepresented among ADNP, and attentional and depressive features most prominent for DYRK1A. For the full sample, age was positively associated with anxiety features, such that elevations in anxiety relative to same-age and same-sex peers may worsen with increasing age. Predictive utility of early developmental milestones was limited, with evidence of early language delays predicting greater difficulties across behavioral domains only for the CHD8 group. CONCLUSIONS: Despite shared associations with autism and intellectual disability, disruptive variants in ADNP, CHD8, and DYRK1A may yield variable psychiatric phenotypes among children and adolescents. With replication in larger samples over time, efforts such as these may contribute to improved clinical care for affected children and adolescents, allow for earlier identification of emerging mental health difficulties, and promote early intervention to alleviate concerns and improve quality of life.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Adolescente , Criança , Feminino , Humanos , Masculino , Transtorno do Espectro Autista/complicações , Proteínas de Ligação a DNA/genética , Proteínas de Homeodomínio/genética , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Saúde Mental , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/complicações , Qualidade de Vida , Fatores de Transcrição/genética
15.
J Virol ; 98(5): e0034724, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38651897

RESUMO

Angiotensin converting enzyme 2 (ACE2), the host receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, is differentially expressed in a wide variety of tissues and cell types. The expression of ACE2 is under tight regulation, but the mechanisms regulating ACE2 expression have not yet been well defined. Through a genome-wide CRISPR knockout screen, we discovered that host factors TRAF3, DYRK1A, and RAD54L2 (TDR) form a complex to regulate the expression of ACE2. Knockout of TRAF3, DYRK1A, or RAD54L2 reduces the mRNA levels of ACE2 and inhibits the cellular entry of SARS-CoV-2. On the other hand, SARS-CoV-2 continuously evolves by genetic mutations for the adaption to the host. We have identified mutations in spike (S) (P1079T) and nucleocapsid (N) (S194L) that enhance the replication of SARS-CoV-2 in cells that express ACE2 at a low level. Our results have revealed the mechanisms for the transcriptional regulation of ACE2 and the adaption of SARS-CoV-2. IMPORTANCE: The expression of ACE2 is essential for the entry of SARS-CoV-2 into host cells. We identify a new complex-the TDR complex-that acts to maintain the abundance of ACE2 in host cells. The identification and characterization of the TDR complex provide new targets for the development of therapeutics against SARS-CoV-2 infection. By analysis of SARS-CoV-2 virus replicating in cells expressing low levels of ACE2, we identified mutations in spike (P1079T) and nucleocapsid (S194L) that overcome the restriction of limited ACE2. Functional analysis of these key amino acids in S and N extends our knowledge of the impact of SARS-CoV-2 variants on virus infection and transmission.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , COVID-19/virologia , COVID-19/metabolismo , COVID-19/genética , Mutação , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Internalização do Vírus , Células Vero , Chlorocebus aethiops , Animais , Linhagem Celular
16.
Biochem Pharmacol ; 224: 116233, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663682

RESUMO

Extracellular amyloid plaques made of Amyloid-ß (Aß) derived from amyloid precursor protein (APP) is one of the major neuropathological hallmarks of Alzheimer's disease (AD). There are three major isoforms of APP, APP770, APP751, and APP695 generated by alternative splicing of exons 7 and 8. Exon 7 encodes the Kunitz protease inhibitor (KPI) domain. Its inclusion generates APP isoforms containing KPI, APPKPI+, which is elevated in AD and Down syndrome (DS) brains and associated with increased Aß deposition. Dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A) phosphorylates many splicing factors and regulates the alternative splicing of pre-mRNA. It is upregulated in DS and AD brain. However, it is not yet clear whether Dyrk1A could regulate APP alternative splicing. In the present study, we overexpressed or knocked down Dyrk1A in cultured cells and observed that Dyrk1A promoted the inclusion of both APP exons 7 and 8. Moreover, a significant increase in APP exon7 inclusion was also detected in the forebrain and hippocampus of human Dyrk1A transgenic mice - Tg/Dyrk1A. Screening for splicing factors regulated by Dyrk1A revealed that serine/arginine-rich protein 9G8 inhibited APP exon7 inclusion and interacted with APP pre-mRNA. In vitro, expression of exon 7 facilitated APP cleavage. In human Dyrk1A transgenic mice, we also found an increase in Aß production. These findings suggest that Dyrk1A inhibits the splicing factor 9G8 and promotes APP exon 7 inclusion, leading to more APPKPI+ expression and APP cleavage and potentially contributing to Aß production in vivo.


Assuntos
Precursor de Proteína beta-Amiloide , Quinases Dyrk , Éxons , Camundongos Transgênicos , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Animais , Humanos , Camundongos , Processamento Alternativo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Células HEK293 , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/genética
17.
Dev Biol ; 511: 63-75, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38621649

RESUMO

Loss of function variations in the dual specificity tyrosine-phosphorylation-regulated kinase 1 A (DYRK1A) gene are associated with craniofacial malformations in humans. Here we characterized the effects of deficient DYRK1A in craniofacial development using a developmental model, Xenopus laevis. Dyrk1a mRNA and protein were expressed throughout the developing head and both were enriched in the branchial arches which contribute to the face and jaw. Consistently, reduced Dyrk1a function, using dyrk1a morpholinos and pharmacological inhibitors, resulted in orofacial malformations including hypotelorism, altered mouth shape, slanted eyes, and narrower face accompanied by smaller jaw cartilage and muscle. Inhibition of Dyrk1a function resulted in misexpression of key craniofacial regulators including transcription factors and members of the retinoic acid signaling pathway. Two such regulators, sox9 and pax3 are required for neural crest development and their decreased expression corresponds with smaller neural crest domains within the branchial arches. Finally, we determined that the smaller size of the faces, jaw elements and neural crest domains in embryos deficient in Dyrk1a could be explained by increased cell death and decreased proliferation. This study is the first to provide insight into why craniofacial birth defects might arise in humans with variants of DYRK1A.


Assuntos
Quinases Dyrk , Proteínas de Xenopus , Xenopus laevis , Animais , Região Branquial/embriologia , Região Branquial/metabolismo , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/embriologia , Anormalidades Craniofaciais/metabolismo , Embrião não Mamífero/metabolismo , Embrião não Mamífero/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Crista Neural/embriologia , Crista Neural/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Transdução de Sinais , Xenopus laevis/embriologia , Xenopus laevis/metabolismo , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/genética
18.
Cureus ; 16(4): e57460, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38566780

RESUMO

Autosomal Dominant Mental Retardation Type 7 is a disorder caused by pathogenic variants in the DYRK1A gene. Clinical features associated with this gene mutation include focal dysmorphism, developmental delay, and epilepsy. In this report, we present a case of an 8-year-old boy with a DYRK1A gene mutation, whose clinical manifestations underscore the rarity and clinical challenges of this genetic condition. The patient is a known case of global developmental delay with intractable epilepsy on multiple anti-epileptic medications. Upon examination, the patient showed delayed developmental milestones, hypotonia with brisk deep tendon reflexes, as well as dysmorphic features in the form of microcephaly, deep-set eyes, prominent ears, and a short nose. MRI was done, and findings were suggestive of a DYRK1A gene mutation. The diagnosis was later confirmed by Whole Exome Sequencing (WES). Our report aims to contribute to the growing knowledge about DYRK1A mutations, facilitating a better understanding of the associated clinical features and implications for patient care.

19.
Eur J Med Chem ; 269: 116292, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38479168

RESUMO

Selective inhibitors of DYRK1A are of interest for the treatment of cancer, Type 2 diabetes and neurological disorders. Optimization of imidazo [1,2-b]pyridazine fragment 1 through structure-activity relationship exploration and in silico drug design efforts led to the discovery of compound 17 as a potent cellular inhibitor of DYRK1A with selectivity over much of the kinome. The binding mode of compound 17 was elucidated with X-ray crystallography, facilitating the rational design of compound 29, an imidazo [1,2-b]pyridazine with improved kinase selectivity with respect to closely related CLK kinases.


Assuntos
Diabetes Mellitus Tipo 2 , Iohexol/análogos & derivados , Piridazinas , Humanos , Quinases Dyrk , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Piridazinas/química
20.
Front Pediatr ; 12: 1372269, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38434732

RESUMO

[This corrects the article DOI: 10.3389/fped.2022.936732.].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA