RESUMO
Hepatitis E Virus (HEV) imposes a major health concern in areas with very poor sanitation in Africa and Asia. The pathogen is transmitted mainly through ingesting contaminated water or food, coming into contact with affected people, and blood transfusions. Very few reports including old reports are available on the prevalence of HEV in Saudi Arabia in humans and no reports exist on HEV prevalence in camels. Dromedary camel trade and farming are increasing in Saudi Arabia with importation occurring unidirectionally from Africa to Saudi Arabia. DcHEV transmission to humans has been reported in one case from the United Arab Emeritus (UAE). This instigated us to perform this investigation of the seroprevalence of HEV in imported and domestic camels in Saudi Arabia. Serum samples were collected from imported and domestic camels. DcHEV-Abs were detected in collected sera using ELISA. The prevalence of DcHEV in the collected samples was 23.1% with slightly lower prevalence in imported camels than domestic camels (22.4% vs. 25.4%, p value = 0.3). Gender was significantly associated with the prevalence of HEV in the collected camels (p value = 0.015) where males (31.6%) were more infected than females (13.4%). This study is the first study to investigate the prevalence of HEV in dromedary camels from Saudi Arabia. The high seroprevalence of DcHEV in dromedaries might indicate their role as a zoonotic reservoir for viral infection to humans. Future HEV seroprevalence studies in humans are needed to investigate the role of DcHEV in the Saudi human population.
Assuntos
Camelus/virologia , Vírus da Hepatite E/imunologia , Hepatite E/epidemiologia , Animais , Feminino , Anticorpos Anti-Hepatite/sangue , Hepatite E/sangue , Hepatite E/transmissão , Humanos , Masculino , Prevalência , Arábia Saudita/epidemiologia , Estudos Soroepidemiológicos , Zoonoses/epidemiologia , Zoonoses/virologiaRESUMO
The genome of dromedary camel hepatitis E virus (DcHEV) has been detected in stool and serum samples from dromedary camels, but the sero-epidemiological information of DcHEV infection remains unclear. A total of 246 serum samples collected from dromedary camels (Camelus dromedarius) in Ethiopia, and 40 serum samples from Bactrian camels (Camelus ferus) in Mongolia were examined for the detection of anti-DcHEV IgG antibody by a newly developed enzyme-linked immunosorbent assay (ELISA) by using DcHEV-like particles (DcHEV-LPs) as the antigen. The results revealed that 55 of the 246 (22.4%) dromedary camels were positive for anti-DcHEV IgG, whereas all 40 samples from the Bactrian camels were negative for DcHEV IgG antibody. A total of 98 serum samples from dromedary camels, including 25 anti-DcHEV-IgG positive samples, were used for the detection of DcHEV RNA by reverse transcription-polymerase chain reaction (RT-PCR), however, no positive samples were identified. These results suggested that the DcHEV infection occurred in the dromedary camels in Ethiopia. Further studies are required to determine whether Bactrian camels are susceptible to DcHEV infection. In addition, not only DcHEV-LPs, but also virus-like particles (VLPs) delivered from G1, G3 and G5 HEV are likely applicable for the detection of the anti-DcHEV IgG antibody.
Assuntos
Anticorpos Antivirais/sangue , Camelus/virologia , Ensaio de Imunoadsorção Enzimática/métodos , Vírus da Hepatite E/imunologia , Hepatite E/veterinária , Imunoglobulina G/sangue , Animais , Antígenos Virais/imunologia , Etiópia/epidemiologia , Hepatite E/epidemiologia , Hepatite E/imunologia , Hepatite E/virologia , Imunoglobulina G/imunologia , Estudos SoroepidemiológicosRESUMO
BACKGROUND & AIMS: The pathogenicity, epidemiology and replication mechanism of dromedary camel hepatitis E virus (DcHEV), a novel hepatitis E virus (HEV), has been unclear. Here we used a reverse genetic system to produce DcHEV and examined the possibility of zoonotic infection. METHODS: Capped genomic RNA derived from a synthetic DcHEV cDNA was transfected into human hepatocarcinoma cells PLC/PRF/5. The DcHEV capsid protein and RNA were detected by an enzyme-linked immunosorbent assay (ELISA) or RT-qPCR. A neutralization test for DcHEV was carried out by using antisera against HEV-like particles. DcHEV was used to inoculate two cynomolgus monkeys to examine the potential for cross-species infection. RESULTS: The transfection of PLC/PRF/5 cells with capped DcHEV RNA resulted in the production of infectious DcHEV. The genome sequence analysis demonstrated that both nucleotide and amino acid changes accumulated during the passages in PLC/PRF/5 cells. The cynomolgus monkeys showed serological signs of infection when DcHEV was intravenously inoculated. DcHEV was neutralized by not only anti-DcHEV-LPs antibody, but also anti-genotype 1 (G1), G3 and G4 HEV-LPs antibodies. Moreover, the monkeys immunized with DcHEV escaped the G3 HEV challenge, indicating that the serotype of DcHEV is similar to those of other human HEVs. CONCLUSIONS: Infectious DcHEV was produced using a reverse genetic system and propagated in PLC/PRF/5 cells. The antigenicity and immunogenicity of DcHEV are similar to those of G1, G3 and G4 HEV. DcHEV was experimentally transmitted to primates, demonstrating the possibility of a zoonotic infection by DcHEV. LAY SUMMARY: Dromedary camel hepatitis E virus (DcHEV) was produced by a reverse genetic system and grows well in PLC/PRF/5 cells. Cynomolgus monkeys experimentally infected with DcHEV indicated serological signs of infection, suggesting that DcHEV has the potential to cause zoonotic HEV infection.