Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.958
Filtrar
1.
Psychiatry Investig ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39086161

RESUMO

OBJECTIVE: This study aimed to use deep learning (DL) to develop a cost-effective and accessible screening tool to improve the detection of cognitive decline, a precursor of Alzheimer's disease (AD). This study integrating a comprehensive battery of neuropsychological tests adjusted for individual demographic variables such as age, sex, and education level. METHODS: A total of 2,863 subjects with subjective cognitive complaints who underwent a comprehensive neuropsychological assessment were included. A random forest classifier was used to discern the most predictive test combinations to distinguish between dementia and nondementia cases. The model was trained and validated on this dataset, focusing on feature importance to determine the cognitive tests that were most indicative of decline. RESULTS: Subjects had a mean age of 72.68 years and an average education level of 7.62 years. The DL model achieved an accuracy of 82.42% and an area under the curve of 0.816, effectively classifying dementia. Feature importance analysis identified significant tests across cognitive domains: attention was gauged by the Trail Making Test Part B, language by the Boston Naming Test, memory by the Rey Complex Figure Test delayed recall, visuospatial skills by the Rey Complex Figure Test copy score, and frontal function by the Stroop Test Word reading time. CONCLUSION: This study showed the potential of DL to improve AD diagnostics, suggesting that a wide range of cognitive assessments could yield a more accurate diagnosis than traditional methods. This research establishes a foundation for future broader studies, which could substantiate the approach and further refine the screening tool.

2.
Magn Reson Med ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39086185

RESUMO

PURPOSE: To evaluate the influence of the confounding factors, direct water saturation (DWS), and magnetization transfer contrast (MTC) effects on measured Z-spectra and amide proton transfer (APT) contrast in brain tumors. METHODS: High-grade glioma patients were scanned using an RF saturation-encoded 3D MR fingerprinting (MRF) sequence at 3 T. For MRF reconstruction, a recurrent neural network was designed to learn free water and semisolid macromolecule parameter mappings of the underlying multiple tissue properties from saturation-transfer MRF signals. The DWS spectra and MTC spectra were synthesized by solving Bloch-McConnell equations and evaluated in brain tumors. RESULTS: The dominant contribution to the saturation effect at 3.5 ppm was from DWS and MTC effects, but 25%-33% of the saturated signal in the gadolinium-enhancing tumor (13%-20% for normal tissue) was due to the APT effect. The APT# signal of the gadolinium-enhancing tumor was significantly higher than that of the normal-appearing white matter (10.1% vs. 8.3% at 1 µT and 11.2% vs. 7.8% at 1.5 µT). CONCLUSION: The RF saturation-encoded MRF allowed us to separate contributions to the saturation signal at 3.5 ppm in the Z-spectrum. Although free water and semisolid MTC are the main contributors, significant APT contrast between tumor and normal tissues was observed.

3.
Arch Med Sci Atheroscler Dis ; 9: e122-e128, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086621

RESUMO

Artificial intelligence is growing quickly, and its application in the global diabetes pandemic has the potential to completely change the way this chronic illness is identified and treated. Machine learning methods have been used to construct algorithms supporting predictive models for the risk of getting diabetes or its complications. Social media and Internet forums also increase patient participation in diabetes care. Diabetes resource usage optimisation has benefited from technological improvements. As a lifestyle therapy intervention, digital therapies have made a name for themselves in the treatment of diabetes. Artificial intelligence will cause a paradigm shift in diabetes care, moving away from current methods and toward the creation of focused, data-driven precision treatment.

4.
Front Vet Sci ; 11: 1436795, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086767

RESUMO

Facial expressions are essential for communication and emotional expression across species. Despite the improvements brought by tools like the Horse Grimace Scale (HGS) in pain recognition in horses, their reliance on human identification of characteristic traits presents drawbacks such as subjectivity, training requirements, costs, and potential bias. Despite these challenges, the development of facial expression pain scales for animals has been making strides. To address these limitations, Automated Pain Recognition (APR) powered by Artificial Intelligence (AI) offers a promising advancement. Notably, computer vision and machine learning have revolutionized our approach to identifying and addressing pain in non-verbal patients, including animals, with profound implications for both veterinary medicine and animal welfare. By leveraging the capabilities of AI algorithms, we can construct sophisticated models capable of analyzing diverse data inputs, encompassing not only facial expressions but also body language, vocalizations, and physiological signals, to provide precise and objective evaluations of an animal's pain levels. While the advancement of APR holds great promise for improving animal welfare by enabling better pain management, it also brings forth the need to overcome data limitations, ensure ethical practices, and develop robust ground truth measures. This narrative review aimed to provide a comprehensive overview, tracing the journey from the initial application of facial expression recognition for the development of pain scales in animals to the recent application, evolution, and limitations of APR, thereby contributing to understanding this rapidly evolving field.

5.
R Soc Open Sci ; 11(7): 240228, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39086835

RESUMO

Finding the optimal treatment strategy to accelerate wound healing is of utmost importance, but it presents a formidable challenge owing to the intrinsic nonlinear nature of the process. We propose an adaptive closed-loop control framework that incorporates deep learning, optimal control and reinforcement learning to accelerate wound healing. By adaptively learning a linear representation of nonlinear wound healing dynamics using deep learning and interactively training a deep reinforcement learning agent for tracking the optimal signal derived from this representation without the need for intricate mathematical modelling, our approach has not only successfully reduced the wound healing time by 45.56% compared to the one without any treatment, but also demonstrates the advantages of offering a safer and more economical treatment strategy. The proposed methodology showcases a significant potential for expediting wound healing by effectively integrating perception, predictive modelling and optimal adaptive control, eliminating the need for intricate mathematical models.

6.
J Med Imaging (Bellingham) ; 11(4): 047501, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39087085

RESUMO

Purpose: Endometrial cancer (EC) is one of the most common types of cancer affecting women. While the hematoxylin-and-eosin (H&E) staining remains the standard for histological analysis, the immunohistochemistry (IHC) method provides molecular-level visualizations. Our study proposes a digital staining method to generate the hematoxylin-3,3'-diaminobenzidine (H-DAB) IHC stain of Ki-67 for the whole slide image of the EC tumor from its H&E stain counterpart. Approach: We employed a color unmixing technique to yield stain density maps from the optical density (OD) of the stains and utilized the U-Net for end-to-end inference. The effectiveness of the proposed method was evaluated using the Pearson correlation between the digital and physical stain's labeling index (LI), a key metric indicating tumor proliferation. Two different cross-validation schemes were designed in our study: intraslide validation and cross-case validation (CCV). In the widely used intraslide scheme, the training and validation sets might include different regions from the same slide. The rigorous CCV validation scheme strictly prohibited any validation slide from contributing to training. Results: The proposed method yielded a high-resolution digital stain with preserved histological features, indicating a reliable correlation with the physical stain in terms of the Ki-67 LI. In the intraslide scheme, using intraslide patches resulted in a biased accuracy (e.g., R = 0.98 ) significantly higher than that of CCV. The CCV scheme retained a fair correlation (e.g., R = 0.66 ) between the LIs calculated from the digital stain and its physical IHC counterpart. Inferring the OD of the IHC stain from that of the H&E stain enhanced the correlation metric, outperforming that of the baseline model using the RGB space. Conclusions: Our study revealed that molecule-level insights could be obtained from H&E images using deep learning. Furthermore, the improvement brought via OD inference indicated a possible method for creating more generalizable models for digital staining via per-stain analysis.

7.
J Clin Pediatr Dent ; 48(4): 191-199, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39087230

RESUMO

Bone age determination in individuals is important for the diagnosis and treatment of growing children. This study aimed to develop a deep-learning model for bone age estimation using lateral cephalometric radiographs (LCRs) and regions of interest (ROIs) in growing children and evaluate its performance. This retrospective study included 1050 patients aged 4-18 years who underwent LCR and hand-wrist radiography on the same day at Pusan National University Dental Hospital and Ulsan University Hospital between January 2014 and June 2023. Two pretrained convolutional neural networks, InceptionResNet-v2 and NasNet-Large, were employed to develop a deep-learning model for bone age estimation. The LCRs and ROIs, which were designated as the cervical vertebrae areas, were labeled according to the patient's bone age. Bone age was collected from the same patient's hand-wrist radiograph. Deep-learning models trained with five-fold cross-validation were tested using internal and external validations. The LCR-trained model outperformed the ROI-trained models. In addition, visualization of each deep learning model using the gradient-weighted regression activation mapping technique revealed a difference in focus in bone age estimation. The findings of this comparative study are significant because they demonstrate the feasibility of bone age estimation via deep learning with craniofacial bones and dentition, in addition to the cervical vertebrae on the LCR of growing children.


Assuntos
Determinação da Idade pelo Esqueleto , Cefalometria , Vértebras Cervicais , Aprendizado Profundo , Humanos , Criança , Determinação da Idade pelo Esqueleto/métodos , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/anatomia & histologia , Vértebras Cervicais/crescimento & desenvolvimento , Cefalometria/métodos , Adolescente , Pré-Escolar , Estudos Retrospectivos , Masculino , Feminino
8.
Med Mol Morphol ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088070

RESUMO

The aim of this study is to establish a deep learning (DL) model to predict the pathological type of gastric adenocarcinoma cancer based on whole-slide images(WSIs). We downloaded 356 histopathological images of gastric adenocarcinoma (STAD) patients from The Cancer Genome Atlas database and randomly divided them into the training set, validation set and test set (8:1:1). Additionally, 80 H&E-stained WSIs of STAD were collected for external validation. The CLAM tool was used to cut the WSIs and further construct the model by DL algorithm, achieving an accuracy of over 90% in identifying and predicting histopathological subtypes. External validation results demonstrated the model had a certain generalization ability. Moreover, DL features were extracted from the model to further investigate the differences in immune infiltration and patient prognosis between the two subtypes. The DL model can accurately predict the pathological classification of STAD patients, and provide certain reference value for clinical diagnosis. The nomogram combining DL-signature, gene-signature and clinical features can be used as a prognostic classifier for clinical decision-making and treatment.

9.
Rev Cardiovasc Med ; 25(5): 184, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-39076491

RESUMO

Cardiovascular disease (CVD) diagnosis and treatment are challenging since symptoms appear late in the disease's progression. Despite clinical risk scores, cardiac event prediction is inadequate, and many at-risk patients are not adequately categorised by conventional risk factors alone. Integrating genomic-based biomarkers (GBBM), specifically those found in plasma and/or serum samples, along with novel non-invasive radiomic-based biomarkers (RBBM) such as plaque area and plaque burden can improve the overall specificity of CVD risk. This review proposes two hypotheses: (i) RBBM and GBBM biomarkers have a strong correlation and can be used to detect the severity of CVD and stroke precisely, and (ii) introduces a proposed artificial intelligence (AI)-based preventive, precision, and personalized ( aiP 3 ) CVD/Stroke risk model. The PRISMA search selected 246 studies for the CVD/Stroke risk. It showed that using the RBBM and GBBM biomarkers, deep learning (DL) modelscould be used for CVD/Stroke risk stratification in the aiP 3 framework. Furthermore, we present a concise overview of platelet function, complete blood count (CBC), and diagnostic methods. As part of the AI paradigm, we discuss explainability, pruning, bias, and benchmarking against previous studies and their potential impacts. The review proposes the integration of RBBM and GBBM, an innovative solution streamlined in the DL paradigm for predicting CVD/Stroke risk in the aiP 3 framework. The combination of RBBM and GBBM introduces a powerful CVD/Stroke risk assessment paradigm. aiP 3 model signifies a promising advancement in CVD/Stroke risk assessment.

10.
Res Diagn Interv Imaging ; 9: 100038, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39076579

RESUMO

Objective: The objective of this study was to evaluate the clinical feasibility of deep learning reconstruction-accelerated thin-slice single-breath-hold half-Fourier single-shot turbo spin echo imaging (HASTEDL) for detecting pancreatic lesions, in comparison with two conventional T2-weighted imaging sequences: compressed-sensing HASTE (HASTECS) and BLADE. Methods: From March 2022 to January 2023, a total of 63 patients with suspected pancreatic-related disease underwent the HASTEDL, HASTECS, and BLADE sequences were enrolled in this retrospectively study. The acquisition time, the pancreatic lesion conspicuity (LCP), respiratory motion artifact (RMA), main pancreatic duct conspicuity (MPDC), overall image quality (OIQ), signal-to-noise ratio (SNR), and contrast-noise-ratio (CNR) of the pancreatic lesions were compared among the three sequences by two readers. Results: The acquisition time of both HASTEDL and HASTECS was 16 s, which was significantly shorter than that of 102 s for BLADE. In terms of qualitative parameters, Reader 1 and Reader 2 assigned significantly higher scores to the LCP, RMA, MPDC, and OIQ for HASTEDL compared to HASTECS and BLADE sequences; As for the quantitative parameters, the SNR values of the pancreatic head, body, tail, and lesions, the CNR of the pancreatic lesion measured by the two readers were also significantly higher for HASTEDL than for HASTECS and BLADE sequences. Conclusions: Compared to conventional T2WI sequences (HASTECS and BLADE), deep-learning reconstructed HASTE enables thin slice and single-breath-hold acquisition with clinical acceptable image quality for detection of pancreatic lesions.

11.
Res Diagn Interv Imaging ; 9: 100044, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39076582

RESUMO

Background: Dual-energy CT (DECT) is a non-invasive way to determine the presence of monosodium urate (MSU) crystals in the workup of gout. Color-coding distinguishes MSU from calcium following material decomposition and post-processing. Most software labels MSU as green and calcium as blue. There are limitations in the current image processing methods of segmenting green-encoded pixels. Additionally, identifying green foci is tedious, and automated detection would improve workflow. This study aimed to determine the optimal deep learning (DL) algorithm for segmenting green-encoded pixels of MSU crystals on DECTs. Methods: DECT images of positive and negative gout cases were retrospectively collected. The dataset was split into train (N = 28) and held-out test (N = 30) sets. To perform cross-validation, the train set was split into seven folds. The images were presented to two musculoskeletal radiologists, who independently identified green-encoded voxels. Two 3D Unet-based DL models, Segresnet and SwinUNETR, were trained, and the Dice similarity coefficient (DSC), sensitivity, and specificity were reported as the segmentation metrics. Results: Segresnet showed superior performance, achieving a DSC of 0.9999 for the background pixels, 0.7868 for the green pixels, and an average DSC of 0.8934 for both types of pixels, respectively. According to the post-processed results, the Segresnet reached voxel-level sensitivity and specificity of 98.72 % and 99.98 %, respectively. Conclusion: In this study, we compared two DL-based segmentation approaches for detecting MSU deposits in a DECT dataset. The Segresnet resulted in superior performance metrics. The developed algorithm provides a potential fast, consistent, highly sensitive and specific computer-aided diagnosis tool. Ultimately, such an algorithm could be used by radiologists to streamline DECT workflow and improve accuracy in the detection of gout.

12.
R Soc Open Sci ; 11(5): 231464, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-39076810

RESUMO

The perovskite crystal structure represents a semiconductor material poised for widespread application, underpinned by attributes encompassing heightened efficiency, cost-effectiveness and remarkable flexibility. Notably, strontium titanate (SrTiO3)-type perovskite, a prototypical ferroelectric dielectric material, has emerged as a pre-eminent matrix material for enhancing the energy storage capacity of perovskite. Typically, the strategy involves augmenting its dielectric constant through doping to enhance energy storage density. However, SrTiO3 doping data are plagued by significant dispersion, and the small sample size poses a formidable research hurdle, hindering the investigation of dielectric property and energy storage density enhancements. This study endeavours to address this challenge, our foundation lies in the compilation of 200 experimental records related to SrTiO3-type perovskite doping, constituting a small dataset. Subsequently, an interactive framework harnesses deep neural network models and a one-dimensional convolutional neural network model to predict and scrutinize the dataset. Distinctively, the mole percentage of doping elements exclusively serves as input features, yielding significantly enhanced accuracy in dielectric performance prediction. Lastly, rigorous comparisons with traditional machine learning models, specifically gradient boosting regression, validate the superiority and reliability of deep learning models. This research advances a novel, effective methodology and offers a valuable reference for designing and optimizing perovskite energy storage materials.

13.
Data Brief ; 55: 110706, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39076831

RESUMO

Forest ecosystems face increasing wildfire threats, demanding prompt and precise detection methods to ensure efficient fire control. However, real-time forest fire data accessibility and timeliness require improvement. Our study addresses the challenge through the introduction of the Unmanned Aerial Vehicles (UAVs) based forest fire database (UAVs-FFDB), characterized by a dual composition. Firstly, it encompasses a collection of 1653 high-resolution RGB raw images meticulously captured utilizing a standard S500 quadcopter frame in conjunction with a RaspiCamV2 camera. Secondly, the database incorporates augmented data, culminating in a total of 15560 images, thereby enhancing the diversity and comprehensiveness of the dataset. These images were captured within a forested area adjacent to Adana Alparslan Türkes Science and Technology University in Adana, Turkey. Each raw image in the dataset spans dimensions from 353 × 314 to 640 × 480, while augmented data ranges from 398 × 358 to 640 × 480, resulting in a total dataset size of 692 MB for the raw data subset. In contrast, the augmented data subset accounts for a considerably larger size, totaling 6.76 GB. The raw images are obtained during a UAV surveillance mission, with the camera precisely angled a -180-degree to be horizontal to the ground. The images are taken from altitudes alternating between 5 - 15 meters to diversify the field of vision and to build a more inclusive database. During the surveillance operation, the UAV speed is 2 m/s on average. Following this, the dataset underwent meticulous annotation using the advanced annotation platform, Makesense.ai, enabling accurate demarcation of fire boundaries. This resource equips researchers with the necessary data infrastructure to develop innovative methodologies for early fire detection and continuous monitoring, enhancing efforts to protect ecosystems and human lives while promoting sustainable forest management practices. Additionally, the UAVs-FFDB dataset serves as a foundational cornerstone for the advancement and refinement of state-of-the-art AI-based methodologies, aiming to automate fire classification, recognition, detection, and segmentation tasks with unparalleled precision and efficacy.

14.
Endosc Ultrasound ; 13(2): 65-75, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947752

RESUMO

Artificial intelligence (AI) is an epoch-making technology, among which the 2 most advanced parts are machine learning and deep learning algorithms that have been further developed by machine learning, and it has been partially applied to assist EUS diagnosis. AI-assisted EUS diagnosis has been reported to have great value in the diagnosis of pancreatic tumors and chronic pancreatitis, gastrointestinal stromal tumors, esophageal early cancer, biliary tract, and liver lesions. The application of AI in EUS diagnosis still has some urgent problems to be solved. First, the development of sensitive AI diagnostic tools requires a large amount of high-quality training data. Second, there is overfitting and bias in the current AI algorithms, leading to poor diagnostic reliability. Third, the value of AI still needs to be determined in prospective studies. Fourth, the ethical risks of AI need to be considered and avoided.

15.
Cancer Innov ; 3(3): e119, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38947759

RESUMO

Background: The role of surgery in metastatic breast cancer (MBC) is currently controversial. Several novel statistical and deep learning (DL) methods promise to infer the suitability of surgery at the individual level. Objective: The objective of this study was to identify the most applicable DL model for determining patients with MBC who could benefit from surgery and the type of surgery required. Methods: We introduced the deep survival regression with mixture effects (DSME), a semi-parametric DL model integrating three causal inference methods. Six models were trained to make individualized treatment recommendations. Patients who received treatments in line with the DL models' recommendations were compared with those who underwent treatments divergent from the recommendations. Inverse probability weighting (IPW) was used to minimize bias. The effects of various features on surgery selection were visualized and quantified using multivariate linear regression and causal inference. Results: In total, 5269 female patients with MBC were included. DSME was an independent protective factor, outperforming other models in recommending surgery (IPW-adjusted hazard ratio [HR] = 0.39, 95% confidence interval [CI]: 0.19-0.78) and type of surgery (IPW-adjusted HR = 0.66, 95% CI: 0.48-0.93). DSME was superior to other models and traditional guidelines, suggesting a higher proportion of patients benefiting from surgery, especially breast-conserving surgery. The debiased effect of patient characteristics, including age, tumor size, metastatic sites, lymph node status, and breast cancer subtypes, on surgery decision was also quantified. Conclusions: Our findings suggested that DSME could effectively identify patients with MBC likely to benefit from surgery and the specific type of surgery needed. This method can facilitate the development of efficient, reliable treatment recommendation systems and provide quantifiable evidence for decision-making.

16.
Front Oncol ; 14: 1377366, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947898

RESUMO

Background: Accurate tumor target contouring and T staging are vital for precision radiation therapy in nasopharyngeal carcinoma (NPC). Identifying T-stage and contouring the Gross tumor volume (GTV) manually is a laborious and highly time-consuming process. Previous deep learning-based studies have mainly been focused on tumor segmentation, and few studies have specifically addressed the tumor staging of NPC. Objectives: To bridge this gap, we aim to devise a model that can simultaneously identify T-stage and perform accurate segmentation of GTV in NPC. Materials and methods: We have developed a transformer-based multi-task deep learning model that can perform two tasks simultaneously: delineating the tumor contour and identifying T-stage. Our retrospective study involved contrast-enhanced T1-weighted images (CE-T1WI) of 320 NPC patients (T-stage: T1-T4) collected between 2017 and 2020 at our institution, which were randomly allocated into three cohorts for three-fold cross-validations, and conducted the external validation using an independent test set. We evaluated the predictive performance using the area under the receiver operating characteristic curve (ROC-AUC) and accuracy (ACC), with a 95% confidence interval (CI), and the contouring performance using the Dice similarity coefficient (DSC) and average surface distance (ASD). Results: Our multi-task model exhibited sound performance in GTV contouring (median DSC: 0.74; ASD: 0.97 mm) and T staging (AUC: 0.85, 95% CI: 0.82-0.87) across 320 patients. In early T category tumors, the model achieved a median DSC of 0.74 and ASD of 0.98 mm, while in advanced T category tumors, it reached a median DSC of 0.74 and ASD of 0.96 mm. The accuracy of automated T staging was 76% (126 of 166) for early stages (T1-T2) and 64% (99 of 154) for advanced stages (T3-T4). Moreover, experimental results show that our multi-task model outperformed the other single-task models. Conclusions: This study emphasized the potential of multi-task model for simultaneously delineating the tumor contour and identifying T-stage. The multi-task model harnesses the synergy between these interrelated learning tasks, leading to improvements in the performance of both tasks. The performance demonstrates the potential of our work for delineating the tumor contour and identifying T-stage and suggests that it can be a practical tool for supporting clinical precision radiation therapy.

17.
Cancer Innov ; 3(4): e110, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38948246

RESUMO

Background: The rate at which the anticancer drug paclitaxel is cleared from the body markedly impacts its dosage and chemotherapy effectiveness. Importantly, paclitaxel clearance varies among individuals, primarily because of genetic polymorphisms. This metabolic variability arises from a nonlinear process that is influenced by multiple single nucleotide polymorphisms (SNPs). Conventional bioinformatics methods struggle to accurately analyze this complex process and, currently, there is no established efficient algorithm for investigating SNP interactions. Methods: We developed a novel machine-learning approach called GEP-CSIs data mining algorithm. This algorithm, an advanced version of GEP, uses linear algebra computations to handle discrete variables. The GEP-CSI algorithm calculates a fitness function score based on paclitaxel clearance data and genetic polymorphisms in patients with nonsmall cell lung cancer. The data were divided into a primary set and a validation set for the analysis. Results: We identified and validated 1184 three-SNP combinations that had the highest fitness function values. Notably, SERPINA1, ATF3 and EGF were found to indirectly influence paclitaxel clearance by coordinating the activity of genes previously reported to be significant in paclitaxel clearance. Particularly intriguing was the discovery of a combination of three SNPs in genes FLT1, EGF and MUC16. These SNPs-related proteins were confirmed to interact with each other in the protein-protein interaction network, which formed the basis for further exploration of their functional roles and mechanisms. Conclusion: We successfully developed an effective deep-learning algorithm tailored for the nuanced mining of SNP interactions, leveraging data on paclitaxel clearance and individual genetic polymorphisms.

18.
Reprod Med Biol ; 23(1): e12590, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948339

RESUMO

Background: The third AI boom, which began in 2010, has been characterized by the rapid evolution and diversification of AI and marked by the development of key technologies such as machine learning and deep learning. AI is revolutionizing the medical field, enhancing diagnostic accuracy, surgical outcomes, and drug production. Methods: This review includes explanations of digital transformation (DX), the history of AI, the difference between machine learning and deep learning, recent AI topics, medical AI, and AI research in male infertility. Main Findings Results: In research on male infertility, I established an AI-based prediction model for Johnsen scores and an AI predictive model for sperm retrieval in non-obstructive azoospermia, both by no-code AI. Conclusions: AI is making constant progress. It would be ideal for physicians to acquire a knowledge of AI and even create AI models. No-code AI tools have revolutionized model creation, allowing individuals to independently handle data preparation and model development. Previously a team effort, this shift empowers users to craft customized AI models solo, offering greater flexibility and control in the model creation process.

19.
Front Genet ; 15: 1401544, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948360

RESUMO

Introduction: Synergistic medication, a crucial therapeutic strategy in cancer treatment, involves combining multiple drugs to enhance therapeutic effectiveness and mitigate side effects. Current research predominantly employs deep learning models for extracting features from cell line and cancer drug structure data. However, these methods often overlook the intricate nonlinear relationships within the data, neglecting the distribution characteristics and weighted probability densities of gene expression data in multi-dimensional space. It also fails to fully exploit the structural information of cancer drugs and the potential interactions between drug molecules. Methods: To overcome these challenges, we introduce an innovative end-to-end learning model specifically tailored for cancer drugs, named Dual Kernel Density and Positional Encoding (DKPE) for Graph Synergy Representation Network (DKPEGraphSYN). This model is engineered to refine the prediction of drug combination synergy effects in cancer. DKPE-GraphSYN utilizes Dual Kernel Density Estimation and Positional Encoding techniques to effectively capture the weighted probability density and spatial distribution information of gene expression, while exploring the interactions and potential relationships between cancer drug molecules via a graph neural network. Results: Experimental results show that our prediction model achieves significant performance enhancements in forecasting drug synergy effects on a comprehensive cancer drug and cell line synergy dataset, achieving an AUPR of 0.969 and an AUC of 0.976. Discussion: These results confirm our model's superior accuracy in predicting cancer drug combinations, providing a supportive method for clinical medication strategy in cancer.

20.
BJR Open ; 6(1): tzae014, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38948455

RESUMO

Objectives: Toxicity-driven adaptive radiotherapy (RT) is enhanced by the superior soft tissue contrast of magnetic resonance (MR) imaging compared with conventional computed tomography (CT). However, in an MR-only RT pathway synthetic CTs (sCT) are required for dose calculation. This study evaluates 3 sCT approaches for accurate rectal toxicity prediction in prostate RT. Methods: Thirty-six patients had MR (T2-weighted acquisition optimized for anatomical delineation, and T1-Dixon) with same day standard-of-care planning CT for prostate RT. Multiple sCT were created per patient using bulk density (BD), tissue stratification (TS, from T1-Dixon) and deep-learning (DL) artificial intelligence (AI) (from T2-weighted) approaches for dose distribution calculation and creation of rectal dose volume histograms (DVH) and dose surface maps (DSM) to assess grade-2 (G2) rectal bleeding risk. Results: Maximum absolute errors using sCT for DVH-based G2 rectal bleeding risk (risk range 1.6% to 6.1%) were 0.6% (BD), 0.3% (TS) and 0.1% (DL). DSM-derived risk prediction errors followed a similar pattern. DL sCT has voxel-wise density generated from T2-weighted MR and improved accuracy for both risk-prediction methods. Conclusions: DL improves dosimetric and predicted risk calculation accuracy. Both TS and DL methods are clinically suitable for sCT generation in toxicity-guided RT, however, DL offers increased accuracy and offers efficiencies by removing the need for T1-Dixon MR. Advances in knowledge: This study demonstrates novel insights regarding the effect of sCT on predictive toxicity metrics, demonstrating clear accuracy improvement with increased sCT resolution. Accuracy of toxicity calculation in MR-only RT should be assessed for all treatment sites where dose to critical structures will guide adaptive-RT strategies. Clinical trial registration number: Patient data were taken from an ethically approved (UK Health Research Authority) clinical trial run at Guy's and St Thomas' NHS Foundation Trust. Study Name: MR-simulation in Radiotherapy for Prostate Cancer. ClinicalTrials.gov Identifier: NCT03238170.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA