RESUMO
The NLRP3 inflammasome is an essential component of the innate immune system, but excessive activation can lead to inflammatory diseases. Ion fluxes across the plasma membrane or from intracellular stores are known to regulate NLRP3 inflammasome activation. Deep-sea water (DSW) contains high concentrations of many mineral ions, which could potentially influence NLRP3 inflammasome activation. However, the impact of DSW on NLRP3 inflammasome activation has not been investigated. Here, we demonstrated that DSW with water hardness levels up to 500 mg/L did not affect cell viability or the expression of NLRP3 inflammasome components in macrophages derived from THP-1 cells. However, the DSW significantly inhibited IL-1ß secretion and caspase-1 activation in response to NLRP3 activators such as nigericin, ATP, or monosodium urate (MSU) crystals. Mechanically, it was discovered that the presence of 5 mM magnesium ions (Mg2+), equivalent to the Mg2+ concentration found in the DSW with a water hardness of 500 mg/L, inhibits NLRP3 inflammasome activation. This indicates that Mg2+ contributes to the mechanism by which DSW mitigates NLRP3 inflammasome activation. Moreover, DSW administration effectively lessens MSU-triggered peritonitis in mice, a commonly used model for examining the impacts of NLRP3 inflammasome activation. These results show that DSW enriched with Mg2+ could potentially be beneficial in modulating NLRP3 inflammasome-associated diseases.
RESUMO
Due to the sporadic distribution and trace amount of environmental DNA (eDNA) in deep-sea water, in the context of biodiversity monitoring, large volumes of filtration and multiple filtration replicates are required for eDNA metabarcoding. To address issues tied to the use of multiple filtration devices and large filtration volumes (e.g., contamination, time consumption, etc.), we have developed two systems for simple, rapid, and contamination-less filtration simultaneously that allow for the processing of multiple sample replicates from large volumes of water. First, the water from a Niskin bottle was filtered directly using a solenoid pump. Second, the pumped deep-sea water, using the siphon effect, was directly filtered by a filtration device driven by water pressure. This system can process 24 replicates simultaneously without the need for expensive equipment and active driving force. Compared with conventional filtering methods, e.g., peristaltic pumps, the proposed systems reduce filtration time, minimizing contamination, and enabling the simultaneous acquisition of multiple replicates. Overall, the systems presented here provide an effective approach for eDNA metabarcoding analysis, particularly for the filtration of large volumes of water containing small amounts of eDNA, such as deep-sea water. â¢The present systems reduce filtration time and contamination without water having to be transferred.â¢Simultaneous multiple replicates improve the efficiency and reliability of biodiversity assessments.
RESUMO
This study aimed to determine the alleviating effect of broccoli grown with deep sea water mineral (DSWM) fertilizer extracted from deep sea water on the development of colorectal cancer in C57BL/6N mice treated with AOM/DSS. Naturaldream Fertilizer Broccoli (NFB) cultured with deep sea water minerals (DSWM) showed a higher antioxidant effect and mineral content. In addition, orally administered NFB, showed a level of recovery in the colon and spleen tissues of mice compared with those in normal mice through hematoxylin and eosin (H&E) staining. Orally administered NFB showed the inhibition of the expression of inflammatory cytokine factors IL-1ß, IL-6, TNF, IFN-γ, and IL-12 while increasing the expression of IL-10. Furthermore, the expression of inflammatory cytokines and NF-κB in the liver tissue was inhibited, and that of inflammatory enzymes, such as COX-2 and iNOS, was reduced. In the colon tissue, the expression of p53 and p21 associated with cell cycle arrest increased, and that of Bcl-2 associated with apoptosis decreased. Additionally, the expression of Bax, Bad, Bim, Bak, caspase 9, and caspase 3 increased, indicating enhanced activation of apoptosis-related factors. These results demonstrate that oral administration of broccoli cultivated using DSWM significantly restores spleen and colon tissues and simultaneously inhibits the NF-κB pathway while significantly decreasing cytokine expression. Moreover, by inducing cell cycle arrest and activating cell apoptosis, they also suggest alleviating AOM/DSS-induced colon cancer symptoms in C57BL/6N mice.
Assuntos
Brassica , Colite , Neoplasias do Colo , Camundongos , Animais , Colite/metabolismo , NF-kappa B/metabolismo , Fertilizantes/efeitos adversos , Brassica/metabolismo , Camundongos Endogâmicos C57BL , Neoplasias do Colo/metabolismo , Citocinas/metabolismo , Camundongos Endogâmicos , Minerais/metabolismo , Anti-Inflamatórios/efeitos adversos , Água do Mar , Sulfato de Dextrana/efeitos adversos , Colo/metabolismo , Modelos Animais de DoençasRESUMO
Gastric ulcers are often exacerbated by factors such as nonsteroidal anti-inflammatory drugs (NSAIDs) and inflammation, and they have a substantial impact on a significant portion of the population. Notably, indomethacin is recognized as a prominent contributor to ulcers. This study investigated this potential method, with normalization to the anti-inflammatory and antiulcer properties of deep-sea water (DSW)-derived mineral water, using an indomethacin-induced gastric ulcer model in rats. The study involved four groups (n = 6 rats/group): normal control group (CON), indomethacin-only group (IND), indomethacin with trace mineral water group (TM), and indomethacin with high magnesium low sodium water group (HMLS). For three weeks, the CON and IND groups consumed tap water, while the TM and HMLS groups had access to mineral water. Gastric ulcers were induced on the final day using indomethacin, for all groups except the CON group. The results demonstrated that HMLS intake significantly improved gastric mucosal damage, preserved mucin stability, and increased gastric thickness, indicating its potential to prevent and alleviate indomethacin-induced gastric ulcers. Furthermore, HMLS consumption led to the upregulation of key genes associated with inflammation and a reduction in inflammatory cytokines. These findings suggest that DSW-derived mineral water, and particularly its high Mg2+ content, may offer promising health benefits including anti-inflammatory and anti-ulcer properties.
Assuntos
Antiulcerosos , Águas Minerais , Úlcera Gástrica , Ratos , Animais , Indometacina/farmacologia , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/prevenção & controle , Ratos Wistar , Antiulcerosos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios/efeitos adversos , Mucosa Gástrica , Água do Mar , Inflamação/tratamento farmacológicoRESUMO
Fucoidan and deep-sea water (DSW) are attractive marine resources for treating type 2 diabetes (T2DM). In this study, the regulation and mechanism associated with the co-administration of the two were first studied using T2DM rats, induced by a high fat diet (HFD) and streptozocin (STZ) injection. Results demonstrate that, compared to those with DSW or FPS alone, the orally administered combination of DSW and FPS (CDF), especially the high dose (H-CDF), could preferably inhibit weight loss, decrease levels of fasting blood glucose (FBG) and lipids, and improve hepatopancreatic pathology and the abnormal Akt/GSK-3ß signaling pathway. The fecal metabolomics data show that H-CDF could regulate the abnormal levels of metabolites mainly through the regulation of linoleic acid (LA) metabolism, bile acid (BA) metabolism, and other related pathways. Moreover, H-CDF could adjust the diversity and richness of bacterial flora and enrich bacterial groups, such as Lactobacillaceae and Ruminococcaceae UCG-014. In addition, Spearman correlation analysis illustrated that the interaction between the gut microbiota and BAs plays an essential role in the action of H-CDF. In the ileum, H-CDF was verified to inhibit activation of the farnesoid X receptor (FXR)-fibroblast growth factor 15 (FGF15) pathway, which is regulated by the microbiota-BA-axis. In conclusion, H-CDF enriched Lactobacillaceae and Ruminococcaceae UCG-014, thereby changing BA metabolism, linoleic acid metabolism, and other related pathways, as well as enhancing insulin sensitivity and improving glucose and lipid metabolism.
RESUMO
Purpose: Deep sea water (DSW) is a natural resource rich in minerals, which participates in biological processes such as energy metabolism, regulates serum glucose and lipids levels, and has a certain protective effect on endocrine and metabolism-related diseases. Studies have shown that the improvement of glucose tolerance in diabetic mice by DSW may be associated with the protective effect on the structure and function of pancreatic islets, and the specific mechanism is still unclear. Other studies have shown that long-term exposure to high concentrations of fatty acids can lead to apoptosis and dysfunction of pancreatic ß-cell, increasing the risk of type 2 diabetes mellitus (T2DM). Down-regulation of plasma fatty acid levels may reduce pancreatic ß-cell dysfunction, thereby improving glucose homeostasis. Understanding the specific mechanism of DSW regulating blood glucose is of great significance for its clinical application. Methods: In the present study we used db/db mice as a T2DM model and treated mice with deep ocean mineral concentration (DOMC, a commercial product of DSW) for 4 and 12 weeks. Basic information, serum biochemical indicators, and pathological tissues were gathered for exploration. Results: The db/db mice treated with 4 weeks' DOMC (db/db+DOMC) showed decreased plasma cholesterol and triglyceride levels. Tests implied that in adipose tissues, the db/db+DOMC group's lipolysis process was inhibited, and the ß-fatty acid oxidation process was promoted. Besides, DOMC reduced lipogenesis and encouraged ß-oxidation in the liver, as a result, improved fatty liver in db/db mice. Further measurements showed DOMC improved glucose homeostasis slightly in db/db animals after a 12-week treatment by preventing pancreatic ß-cell apoptosis. Conclusion: DOMC inhibited pancreatic ß-cell apoptosis and regulated glucose homeostasis in db/db mice by lowering the lipid levels via regulation of fatty acid ß-oxidation, lipolysis, and lipogenesis processes.
RESUMO
This study integrates the array sensing module and the flow leakage algorithm. In this study, a real-time monitoring deep-sea pipeline damage sensing system is designed to provide decision-making parameters such as damage coordinates and damage area. The array sensor module is composed of multiple YF-S201 hall sensors and controllers. YF-S201 hall sensors are arranged inside the pipeline in an array. The flow signal in the deep-sea pipeline can be transmitted to the electronic control interface to analyze the leakage position and leakage flowrate of the pipeline. The theory of this system is based on the conservation of mass. Through the flow of each sensor, it is judged whether the pipeline is damaged. When the pipeline is not damaged, the flowrate of each sensor is almost the same. When the pipeline is damaged, the flowrate will drop significantly. When the actual size of leakage in the pipeline is 5.28 cm2, the size calculated by the flowrate of hall sensors is 2.58 cm2 in average, indicating the error between experimental data and theoretical data is 46%. When the actual size of leakage in the pipeline is 1.98 cm2, the size calculated by the flowrate of hall sensors is 1.31 cm2 in average, indicating the error between experimental data and theoretical data is 21%. This can accurately confirm the location of the broken pipeline, which is between sensor A and sensor B, so that the AUV/ROV can accurately locate and perform pipeline maintenance in real time. It is expected to be able to monitor the flowrate through the array magnetic sensing module designed in this study. It can grasp the status of deep-sea pipelines, improve the quality of deep-sea extraction and pipeline maintenance speed.
RESUMO
Deep-sea water (DSW) contains multiple minerals and is widely used as drinking water, for cosmetic purposes, and as seasoning. In this study, several types of extract-added water with different levels of hardness (200, 300, 500) were prepared from DSW collected off the coast of Muroto City, Kochi Prefecture. We administrated it to obese mice for two months and tested it for several effects. Although there was no anti-obesity effect for any hardness level in obese mice, the cognitive functions of each DSW-extract-added water-treated group were significantly improved compared to control obese mice in the water maze test. Time-to-fall by the rota-rod test was also dramatically improved in the DSW-extract-added water-treated groups. The levels of triglycerides and blood urea nitrogen were significantly decreased in DSW-extract-added water-treated obese mice. However, these results did not depend on the hardness. Hardness levels of 200 or 300 of DSW-extract-added water had greater effects on cognitive function and serum scores compared to a level of 500. We analyzed DSW using inductively coupled plasma atomic emission spectroscopy and inductively coupled plasma mass spectrometry. High concentrations of magnesium and potassium were detected, but sodium was not detected at very high concentrations. Although the detailed mechanisms of its effects are not yet understood, chronic intake of DSW-extract-added water may have a beneficial effect on health.
Assuntos
Cognição , Água do Mar , Animais , Dureza , Camundongos , Camundongos Obesos , Água do Mar/química , TriglicerídeosRESUMO
Global trends focus on a balanced intake of foods and beverages to maintain health. Drinking water (MIU; hardness = 88) produced from deep sea water (DSW) collected offshore of Muroto, Japan, is considered healthy. We previously reported that the DSW-based drinking water (RDSW; hardness = 1000) improved human gut health. The aim of this randomized double-blind controlled trial was to assess the effects of MIU on human health. Volunteers were assigned to MIU (n = 41) or mineral water (control) groups (n = 41). Participants consumed 1 L of either water type daily for 12 weeks. A self-administered questionnaire was administered, and stool and urine samples were collected throughout the intervention. We measured the fecal biomarkers of nine short-chain fatty acids (SCFAs) and secretory immunoglobulin A (sIgA), as well as urinary isoflavones. In the MIU group, concentrations of three major SCFAs and sIgA increased postintervention. MIU intake significantly affected one SCFA (butyric acid). The metabolic efficiency of daidzein-to-equol conversion was significantly higher in the MIU group than in the control group throughout the intervention. MIU intake reflected the intestinal environment through increased production of three major SCFAs and sIgA, and accelerated daidzein-to-equol metabolic conversion, suggesting the beneficial health effects of MIU.
Assuntos
Água Potável , Águas Minerais , Equol/metabolismo , Ácidos Graxos Voláteis/metabolismo , Humanos , Água do MarRESUMO
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease caused by oxidative stress, inflammation and lipid deposition within liver cells, and is subsequently contributing to cardiovascular diseases such as atherosclerosis. Deep sea water (DSW) is characterized by its clearance and abundant nutrients with antioxidant and anti-inflammatory activity to confer therapeutic potential. We aimed to explore the therapeutic capability of our prepared multi-filtration DSW-dissolved organic matter (DSW-DOM) on high-fat diet-induced hyperlipidemia and endothelial dysfunction in hamsters. A high-fat/high-cholesterol diet led to increased oxidative stress, including blood reactive oxygen species (ROS), plasma malondialdehyde (MDA) and hepatic CYP2E1 expression; an increased hyperlipidemic profile and SREBP 1-mediated fatty liver; promoted NFκB p65-mediated hepatic inflammation; triggered PARP-mediated hepatic apoptosis; and enhanced endothelial intercellular adhesion molecule-1 (ICAM-1) and von Willebrand factor (VWF)-mediated atherosclerosis associated with the depressed hepatic antioxidant Paraoxonase 1 (PON1) expression. The DSW-DOM-enriched 1295 fraction, with strong H2O2 scavenging activity, efficiently reduced several oxidative stress parameters, the lipid profile, inflammation, and apoptosis, possibly through the PON1-mediated antioxidant capability. Furthermore, DSW-DOM treatment significantly decreased the endothelial ICAM-1 and VWF expression, subsequently leading to the elongation of time to occlusion of FeCl3-induced arterial thrombosis and to the inhibition of FeCl3-induced fluorescent platelet adhesion to mesentery arterioles in the high-fat diet. Based on the above results, our data suggest that DSW-DOM intake via antioxidant defense mechanisms confers protective effects against high-fat diet-enhanced, oxidative stress-mediated hyperlipidemia, and endothelial dysfunction evoked atherosclerosis by downregulating oxidative injury, lipogenesis, inflammation and apoptosis.
RESUMO
Deep sea water (DSW), as a noticeable natural resource, has been demonstrated to contain high levels of beneficial minerals and exert marked anti-diabetes effects. Epidemiological studies show that type 2 diabetes mellitus (T2DM) is closely related to high danger of Alzheimer's disease (AD); moreover, Akt/GSK-3ß signaling is the main underlying pathway that connects these two diseases. Besides, it has been demonstrated that minerals in DSW, such as Mg, Se, and Zn, could effectively treat cognitive deficits associated with AD. Herein, we first observed the protection of DSW against cognitive dysfunction in T2DM rats, then furtherly explored the neuroprotective mechanism in SH-SY5Y cell model. In T2DM rats, DSW obviously elevated the concentrations of elements Mg, V, Cr, Zn, and Se in brain and improved learning and memory dysfunction in behavior assays, including Morris water maze (MWM) and new object recognition (NOR). Western blot (WB) results demonstrated that DSW could stimulate PI3K/Akt/GSK-3ß signaling, arrest Tau hyperphosphorylation at serine (Ser) 396 and threonine (Thr)231, which was confirmed by immunohistochemistry (IHC). In order to further confirm the mechanism, we employed wortmannin to inhibit PI3K in SH-SY5Y cells; results showed that pretreatment with wortmannin almost abolished DSW-induced decreases in phosphorylated Tau. Taken together, these data elucidated that DSW could improve Tau hyperphosphorylation and cognitive impairment, which were closely related with the stimulation of Akt/GSK-3ß signaling, and the neuroprotective effects of DSW should be contributed to the synergistic effects of major and trace elements in it, such as Mg, V, Cr, Zn, and Se. These experimental evidence indicated that DSW may be explored as natural neuroprotective food for the prevention and treatment of AD.
Assuntos
Disfunção Cognitiva , Glicogênio Sintase Quinase 3 beta , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Proteínas tau , Animais , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/prevenção & controle , Diabetes Mellitus Tipo 2/epidemiologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Água do Mar , Transdução de Sinais , Proteínas tau/metabolismoRESUMO
This study investigated the effect of mineral-balanced deep-sea water (DSW) on kidney health using an animal model of kidney injury due to a high-sodium diet. High magnesium/low sodium (HMLS) and high magnesium/high calcium (HMHC) DSW samples with different mineral contents were prepared. Sprague-Dawley rats were fed an 8% sodium chloride (NaCl) diet for four weeks to induce kidney injury, and each group was supplied with purified water or mineral water. Kidney injury was observed in the NaCl group according to increased kidney injury markers and malondialdehydes, providing evidence of oxidative stress. However, the kidney injury was repaired by the intake of mineral-balanced DSW. It was confirmed that the HMLS and HMHC groups showed improved Na+ excretion through the urine. Kidney injury markers in urine decreased and upregulation of low-density lipoprotein receptor-related protein2 mRNA expression was observed in the HMLS and HMHC groups. In addition, superoxide dismutase activity was increased in the HMHC groups. The gene expression patterns of the RNA sequencing were similar between the CON and HMLS groups. These results suggest that DSW has beneficial effects on kidney health due to the balanced magnesium and calcium levels in models of kidney injury caused by excessive sodium intake.
Assuntos
Minerais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Pressão Sanguínea/fisiologia , Cálcio da Dieta/metabolismo , Dieta Hipossódica/métodos , Rim/metabolismo , Magnésio/metabolismo , Masculino , Águas Minerais , Ratos , Ratos Sprague-Dawley , Receptores de LDL/metabolismo , Água do Mar , Cloreto de Sódio na Dieta/metabolismoRESUMO
Analyses of environmental DNA (eDNA) from macroorganisms in aquatic environments have greatly advanced in recent years. In particular, eDNA metabarcoding of fish using universal PCR primers has been reported in various waters. Although pumped deep-sea water was used for eDNA metabarcoding of deep-sea fish, conventional methods only resulted in small amounts of extracted eDNA and subsequent few or no PCR amplicons. To optimize eDNA metabarcoding of deep-sea fish from pumped deep-sea water, we modified conventional procedures of eDNA extraction and PCR amplification. Here, we propose a modified eDNA extraction method, in which a filter used for eDNA sampling was shredded and incubated in microtubes for efficient lysis of eDNA sources. Total eDNA yield extracted using the modified protocol was approximately six-fold higher than that extracted by the conventional protocol. The PCR enzyme Platinum SuperFi II DNA Polymerase successfully amplified a target region of fish universal primers (MiFish) from trace amounts of eDNA extracted from pumped deep-sea water and suppressed nonspecific amplifications more effectively than the enzyme used in conventional methods. Approximately 93% of the sequence reads acquired by next generation sequencing of these amplicons were derived from fish. The improved procedure presented here provided effective eDNA metabarcoding of deep-sea fish.â¢A modified eDNA extraction protocol, in which a filter was shredded and incubated in microtubes, increased eDNA yields extracted from pumped deep-sea water over the conventional method.â¢The PCR enzyme Platinum SuperFi II DNA polymerase improved the amplification efficiency of trace amounts of MiFish objectives in eDNA extracted from pumped deep-sea water with suppressing nonspecific amplifications.â¢The use of Platinum SuperFi II DNA polymerase for eDNA metabarcoding using MiFish primers resulted in the acquisition of abundant sequence reads of deep-sea fish through next generation sequencing.
RESUMO
World health trends are focusing on a balanced food and beverage intake for healthy life. Refined deep-sea water (RDSW), obtained from deep-sea water collected offshore in Muroto (Japan), is mineral-rich drinking water. We previously reported that drinking RDSW improves human gut health. Here, we analyzed the effect of drinking RDSW on the gut ecosystem to understand this effect. This was a randomized double-blind controlled trial. Ninety-eight healthy adults were divided into two groups: RDSW or mineral water (control). The participants consumed 1 L of either water type daily for 12 weeks. A self-administered questionnaire and stool and urine samples were collected through the intervention. The following were determined: fecal biomarkers of secretory immunoglobulin A (sIgA), five putrefactive products, and nine short-chain-fatty-acids (SCFAs) as the primary outcomes; and three urinary isoflavones and the questionnaire as secondary outcomes. In post-intervention in the RDSW group, we found increased concentrations of five SCFAs and decreased concentrations of phenol and sIgA (p < 0.05). The multiple logistic analysis demonstrated that RDSW significantly affected two biomarkers (acetic and 3-methylbutanoic acids) of the five SCFAs mentioned above (p < 0.05). Similarly, the concentrations of urinary isoflavones tended to increase in post-intervention in the RDSW group. Constipation was significantly alleviated in the RDSW group (94%) compared with the control group (60%). Drinking RDSW improves the intestinal environment, increasing fecal SCFAs and urinary isoflavones, which leads to broad beneficial effects in human.
Assuntos
Água Potável/administração & dosagem , Água Potável/análise , Trato Gastrointestinal/metabolismo , Água do Mar/química , Adulto , Idoso , Constipação Intestinal/terapia , Método Duplo-Cego , Ácidos Graxos Voláteis/análise , Fezes/química , Feminino , Humanos , Imunoglobulina A/análise , Isoflavonas/urina , Japão , Masculino , Pessoa de Meia-IdadeRESUMO
A Gram-stain-negative, stalked, oval-shaped and budding bacterial strain, designated E7T, was isolated from a deep-sea water sample collected from the Northwest Indian Ocean. The novel strain was strictly aerobic, and catalase- and oxidase-positive. It grew at 6-40 °C (optimum 30 °C) and pH 5.5-8.0 (optimum pH 7.0-7.5). The strain required 0.5-9.0â% (w/v) NaCl (optimum 3.0-5.0â%) for growth. Aesculin, starch, pectin and Tween 20 were hydrolysed. Based on 16S rRNA gene sequence analysis, strain E7T showed the highest similarity with Gimesia maris DSM 8797T (97.5â%). The average nucleotide identity and in silico DNA-DNA hybridization values between strain E7T and G. maris DSM 8797T were 78.0 and 19.3â%, respectively. The predominant cellular fatty acids of strain E7T were C16â:â0 and summed feature 3 (comprising C16â:â1ω7c and/or C16â:â1ω6c). The major respiratory quinone was menaquinone-6 (MK-6) and the major polar lipids were phosphatidylethanolamine (PE), phosphatidylmonomethylethanolamine (PMME), phosphatidyldimethylethanolamine (PDME), phosphatidylcholine (PC) and diphosphatidylglycerol (DPG). The genomic DNA G+C content of strain E7T was 52.8 mol%. On the basis of phylogenetic inference and phenotypic characteristics, it is proposed that strain E7T represents a novel species of the genus Gimesia, for which the name Gimesia benthica sp. nov. is proposed. The type strain is E7T (=CGMCC 1.16119T=KCTC 72737T).
Assuntos
Filogenia , Planctomycetales/classificação , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Oceano Índico , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Planctomycetales/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/químicaRESUMO
A novel Gram-stain-negative, aerobic, motile by peritrichous ï¬agella, oval to rod-shaped bacterium, designated strain 2CG4T, was isolated from a deep-sea water sample collected from the Northwest Indian Ocean. The results of phylogenetic analysis of both 16S rRNA gene and RpoC protein sequences indicated that this strain was affiliated with the genus Halovulum in the Amaricoccus clade of the family Rhodobacteraceae of the class Alphaproteobacteria, sharing 95.3â% similarity at the 16S rRNA gene sequence level with the type strain of Halovulum dunhuangense YYQ-30T, the only species in the genus Halovulum. The predominant fatty acids (>10â%) of 2CG4T were summed feature 8 (C18â:â1ω7c and/ or C18â:â1ω6c; 61.1â%) and cyclo-C19â:â0ω8c (15.6â%). The polar lipids of 2CG4T were phosphatidylethanolamine, phosphatidylmethylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine and sulfoquinovosyldiacylglycerol. The only isoprenoid quinone of 2CG4T was ubiquinone-10. The DNA G+C content of 2CG4T was determined to be 69.4â%. The central gene pufLM for the photosynthetic reaction was not detected. No growth occurred for 2CG4T in the absence of NaCl. On the basis of these data, it is concluded that the 2CG4T represents a novel species of the genus Halovulum, for which the name Halovulum marinum sp. nov. is proposed. The type strain is 2CG4T (=CGMCC 1.16468T=JCM 32611T).
Assuntos
Filogenia , Rhodobacteraceae/classificação , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Oceano Índico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Rhodobacteraceae/isolamento & purificação , Análise de Sequência de DNA , Ubiquinona/análogos & derivados , Ubiquinona/químicaRESUMO
Previous in vitro and in vivo studies have shown that the antidiabetic effect of balanced deep-sea water (BDSW) works through the suppression of hyperglycemia and improvement of glucose tolerance. Based on these promising results, we conducted an eight week randomized, double-blinded crossover trial of the effects of BDSW in prediabetic adults. The subjects consumed 440 mL of BDSW (hardness 4000) per day, and maintained an otherwise normal lifestyle and diet throughout. Efficacy assessments were made by measuring fasting glucose, postprandial glucose, fasting insulin, homeostasis model assessment for insulin resistance (HOMA-IR), C-peptide, glycosylated hemoglobin, lipid metabolism indicators, and physical metrics, along with safety assessments. Fasting insulin and HOMA-IR values of the BDSW group were significantly lower than those of the placebo group after eight weeks of BDSW ingestion. Total cholesterol and low-density lipoprotein-cholesterol were also significantly decreased in the BDSW group after eight weeks of BDSW ingestion compared with the placebo group. There were no statistically and clinically meaningful changes in adverse events, physical examination, laboratory medicine examination, or vital signs of the BDSW intake group. These results suggested that the intake of BDSW in prediabetic adults can improve glucose metabolism and lipid profiles and is safe for human consumption.
Assuntos
Glucose/metabolismo , Resistência à Insulina , Metabolismo dos Lipídeos , Magnésio/uso terapêutico , Estado Pré-Diabético/metabolismo , Estado Pré-Diabético/terapia , Água do Mar/química , Adulto , Idoso , Estudos Cross-Over , Método Duplo-Cego , Feminino , Humanos , Magnésio/isolamento & purificação , Magnésio/farmacologia , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Adulto JovemRESUMO
A taxonomic study was carried out of strain K7T, which was isolated from deep-sea water collected from the Indian Ocean. The bacterium was Gram-stain-negative, aerobic, oxidase-negative, catalase-positive, rod-shaped and non-motile. Growth was observed at salinities of 0.5-10â% (optimum, 3â%), at a pH range of pH 6.0-10.0 (optimum, pH 7.0) and at temperatures of 10-40 °C (optimum, 28 °C). Results of phylogenetic analysis based on 16S rRNA gene sequences indicated that strain K7T belonged to the family Flavobacteriaceae, with the high sequence similarities to the genera Mesonia (92.2â%-94.4â%), Salinimicrobium (91.9â%-93.2â%), Salegentibacter (92.1â%-92.6â%), Leeuwenhoekiella (92.1â%-92.3â%), Gramella (91.9â%-92.1â%) and Zunongwangia (91.8â%-92.1â%). The principal fatty acids were iso-C15â:â0 (28.4â%), iso-C15â:â1G (14.2â%), summed feature 9 (iso-C17â:â1 ω9c and/or C16â:â0 10-methyl; 11.6â%), iso-C17â:â0 3-OH (10.0â%) and summed feature 3 (C16â:â1 ω7c and/or C16â:â1 ω6c; 9.6â%). The G+C content of the chromosomal DNA was 35.8 mol%. The respiratory quinone was determined to be MK-6 (100â%). Phosphatidylethanolamine, two unidentified aminolipids, two unidentified phospholipid and four unidentified lipids were detected. The combined genotypic and phenotypic data show that strain K7T represents a novel species of a novel genus, for which the name Paramesonia marina gen. nov., sp. nov. is proposed, with the type strain K7T (=MCCC 1A01093T=KCTC 52325T).
Assuntos
Flavobacteriaceae/classificação , Filogenia , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacteriaceae/isolamento & purificação , Oceano Índico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/químicaRESUMO
Mineralbalanced deep sea water (MBDSW), an unlimited natural sea source, has been demonstrated to minimize the risk of developing cardiovascular diseases, such as obesity, hypertension, inflammation and hyperlipidemia. This study investigated the effects of MBDSW [magnesium (Mg):calcium (Ca) ratio, 3:1] on platelet activation. MBDSW significantly inhibited the collagen and thrombininduced platelet aggregation of human platelets. In collageninduced platelets, MBDSW inhibited intracellular calcium mobilization, granule secretion [serotonin, adenosine triphosphate (ATP) and Pselectin expression] and thromboxane A2 (TXA2) production. Moreover, MBDSW markedly inhibited Akt and extracellular signalregulated kinase (ERK) phosphorylation, but not that of cJun Nterminal kinase (JNK) and p38. Moreover, MBDSW phosphorylated inositol 1,4,5triphosphate receptor (IP3R) and vasodilatorstimulated phosphoprotein (VASP), and it increased the cyclic adenosine monophosphate (cAMP) level in collageninduced human platelets. Dipyridamole, a phosphodiesterase (PDE) inhibitor, significantly increased the cAMP level and regulated the Akt, ERK and VASP (Ser157) levels in a manner similar to that of MBDSW. In addition, LY294002, an Akt inhibitor, inhibited the phosphorylation of ERK, and U0126, an ERK inhibitor, inhibited the phosphorylation of Akt. Taken together, the results of the present investigation suggest that the inhibitory effects of MBDSW on platelet aggregation may be associated with the crossinhibition of Akt and ERK phosphorylation. These results strongly indicate that MBDSW may have preventive or therapeutic potential for platelet aggregationmediated diseases, such as thrombosis, atherosclerosis and myocardial infarction.
Assuntos
Águas Minerais , Inibidores da Agregação Plaquetária/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Água do Mar , Plaquetas/citologia , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Águas Minerais/análise , Inibidores da Agregação Plaquetária/análise , Proteínas Proto-Oncogênicas c-akt/metabolismo , Água do Mar/análise , Transdução de Sinais/efeitos dos fármacosRESUMO
Metabolic disorders such as diabetes and obesity are serious global health issues. These diseases are accelerated by mineral deficiencies, emphasizing the importance of addressing these deficiencies in disease management plans. Lactate metabolism is fundamentally linked to glucose metabolism, and several clinical studies have reported that blood lactate levels are higher in obese and diabetic patients than in healthy subjects. Balanced deep-sea water contains various minerals and exhibits antiobesity and antidiabetic activities in mice; however, the impact of balanced deep-sea water on lactate metabolism is unclear. Thus, we evaluated the effects of balanced deep-sea water on lactate metabolism in C2C12 myotubes, and found that balanced deep-sea water mediated lactate metabolism by regulating the gene expression levels of lactate dehydrogenases A and B, a monocarboxylate transporter, and a mitochondrial pyruvate carrier. The activities of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) and signaling molecules involved in PGC-1α activation were also upregulated by treatment with balanced deep-sea water. These results suggest that balanced deep-sea water, which can mediate lactate metabolism, may be used to prevent or treat obesity and diabetes mellitus.