Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Biomed Pharmacother ; 171: 116206, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38278022

RESUMO

Diabetic complications, especially diabetic retinopathy, diabetic nephropathy and painful diabetic neuropathy, account for a large portion of patients with diabetes and display rising global prevalence. They are the leading causes of blindness, kidney failure and hypersensitivity to pain caused by diabetes. Current approved therapeutics against the diabetic complications are few and exhibit limited efficacy. The enhanced cell-specificity, stability, biocompatibility, and loading capacity of drugs are essential for the mitigation of diabetic complications. In the article, we have critically discussed the recent studies over the past two years in material sciences and biochemistry. The insightful concepts in these studies drive the development of novel nanoparticles and mesenchymal stem cells-derived extracellular vesicles to meet the need for treatment of diabetic complications. Their underlying biochemical principles, advantages and limitations have been in-depth analyzed. The nanoparticles discussed in the article include double-headed nanodelivery system, nanozyme, ESC-HCM-B system, soft polymer nanostars, tetrahedral DNA nanostructures and hydrogels. They ameliorate the diabetic complication through attenuation of inflammation, apoptosis and restoration of metabolic homeostasis. Moreover, mesenchymal stem cell-derived extracellular vesicles efficiently deliver therapeutic proteins to the retinal cells to suppress the angiogenesis, inflammation, apoptosis and oxidative stress to reverse diabetic retinopathy. Collectively, we provide a critical discussion on the concept, mechanism and therapeutic applicability of new delivery tools to treat these three devastating diabetic complications.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Neuropatias Diabéticas , Retinopatia Diabética , Humanos , Nefropatias Diabéticas/metabolismo , Neuropatias Diabéticas/complicações , Retinopatia Diabética/metabolismo , Prevalência , Inflamação/complicações
2.
Nanomaterials (Basel) ; 12(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36296833

RESUMO

Gold nanoparticles have gained popularity as an effective drug delivery vehicle due to their unique features. In fact, antibiotics transported via gold nanoparticles have significantly enhanced their potency in the recent past. The present study used an approach to synthesize gold nanoparticles in one step with the help of cefoxitin antibiotic as a reducing and stabilizing agent. Cefoxitin is a second-generation cephalosporin that loses its potential due to modification in the porins (ompK35 and ompK36) of Gram-negative pathogens. Thus, the present study has developed an idea to revive the potential of cefoxitin against clinical Gram-negative pathogens, i.e., Escherichia coli and Klebsiella pneumoniae, via applying gold nanoparticles as a delivery tool. Prior to antibacterial activity, characterization of cefoxitin-gold nanoparticles was performed via UV-visible spectrophotometry, dynamic light scattering, and electron microscopy. A characteristic UV-visible scan peak for gold nanoparticles was observed at 518 nm, ζ potential was estimated as -23.6 ± 1.6, and TEM estimated the size in the range of 2-12 nm. Moreover, cefoxitin loading efficiency on gold nanoparticles was calculated to be 71.92%. The antibacterial assay revealed that cefoxitin, after loading onto the gold nanoparticles, become potent against cefoxitin-resistant E. coli and K. pneumoniae, and their MIC50 values were estimated as 1.5 µg/mL and 2.5 µg/mL, respectively. Here, gold nanoparticles effectively deliver cefoxitin to the resistant pathogens, and convert it from unresponsive to a potent antibiotic. However, to obtain some convincing conclusions on the human relevance, their fate and toxicity need to be evaluated.

3.
Nanomedicine (Lond) ; 15(20): 1965-1980, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32794431

RESUMO

Aim: To investigate exosomes as a noninvasive delivery tool for mammalian sperm. Materials & Methods: Exosomes were isolated from HEK293T cells and co-incubated with boar sperm in vitro. Results: Internalized exosomes were detected within 10 min of co-incubation. Computer-assisted sperm analysis and flow cytometry demonstrated that even after 5-h of exposure to exosomes, there were no significant deleterious effects with regard to sperm motility, viability, membrane integrity and mitochondrial membrane potential (p > 0.05), thus indicating that exosomes did not interfere with basic sperm function. Conclusion: HEK293T-derived exosomes interacted with boar sperm without affecting sperm function. Exosomes represent a versatile and promising research tool for studying sperm biology and provide new options for the diagnosis and treatment of male infertility.


Assuntos
Exossomos , Motilidade dos Espermatozoides , Animais , Células HEK293 , Humanos , Masculino , Sêmen , Espermatozoides , Suínos
4.
Int J Pharm ; 525(1): 149-159, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28432019

RESUMO

Mini-tablets have potential applications as a flexible drug delivery tool in addition to their generally perceived use as multi-particulates. That is, mini-tablets could provide flexibility in dose finding studies and/or allow for combination therapies in the clinic. Moreover, mini-tablets with well controlled quality attributes could be a prudent choice for administering solid dosage forms as a single unit or composite of multiple mini-tablets in patient populations with swallowing difficulties (e.g., pediatric and geriatric populations). This work demonstrated drug substance particle size and concentration ranges that achieve acceptable mini-tablet quality attributes for use as a single or composite dosage unit. Immediate release and orally disintegrating mini-tablet formulations with 30µm to 350µm (particle size d90) acetaminophen and Compap™ L (90% acetaminophen) at concentrations equivalent to 6.7% and 26.7% acetaminophen were evaluated. Mini-tablets achieved acceptable weight variability, tensile strength, friability, and disintegration time at a reasonable solid fraction for each formulation. The content uniformity was acceptable for mini-tablets of 6.7% formulations with ≤170µm drug substance, mini-tablets of all 26.7% formulations, and composite dosage units containing five or more mini-tablets of any formulation. Results supported the manufacturing feasibility of quality mini-tablets, and their applicability as a flexible drug delivery tool.


Assuntos
Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Comprimidos , Química Farmacêutica , Humanos , Solubilidade , Resistência à Tração
5.
Pathog Dis ; 73(8): ftv075, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26391732

RESUMO

The adenylate cyclase toxin-hemolysin (CyaA, ACT or AC-Hly) is a key virulence factor of the whooping cough agent Bordetella pertussis. CyaA targets myeloid phagocytes expressing the complement receptor 3 (CR3, known as αMß2 integrin CD11b/CD18 or Mac-1) and translocates by a poorly understood mechanism directly across the cytoplasmic membrane into cell cytosol of phagocytes an adenylyl cyclase(AC) enzyme. This binds intracellular calmodulin and catalyzes unregulated conversion of cytosolic ATP into cAMP. Among other effects, this yields activation of the tyrosine phosphatase SHP-1, BimEL accumulation and phagocyte apoptosis induction. In parallel, CyaA acts as a cytolysin that forms cation-selective pores in target membranes. Direct penetration of CyaA into the cytosol of professional antigen-presenting cells allows the use of an enzymatically inactive CyaA toxoid as a tool for delivery of passenger antigens into the cytosolic pathway of processing and MHC class I-restricted presentation, which can be exploited for induction of antigen-specific CD8(+) cytotoxic T-lymphocyte immune responses.


Assuntos
Toxina Adenilato Ciclase/metabolismo , Toxina Adenilato Ciclase/toxicidade , Apoptose , Bordetella pertussis/metabolismo , Fagócitos/efeitos dos fármacos , Fagócitos/fisiologia , Linfócitos T CD8-Positivos/imunologia , Proteínas de Transporte/metabolismo , Sobrevivência Celular , Portadores de Fármacos/metabolismo , Linfócitos T Citotóxicos/imunologia , Células Th1/imunologia , Vacinas/imunologia , Vacinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA