Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Int Orthod ; 22(3): 100897, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38991249

RESUMO

PURPOSE: The primary objective of this study was to determine which single-shade composite surface yielded clinically acceptable shear bond strength (SBS) to metal orthodontics brackets. The secondary objectives were to identify the best composite surface treatment to enhance SBS and determine which surface treatment produced the least surface damage at debond. METHODS: Forty dental composite samples were selected from four different manufacturers (n=160) and grouped by manufacturer, one standard multi-shade dental system (FilTek™ Supreme Ultra) and three single-shade dental composites systems (OmniChroma®, SimpliShade™ and Venus® Diamond One). Each group of forty samples was randomly divided into four sub-groups (n=10). Each sub-group was identified by the surface treatment used, hydrofluoric acid (HFA), micro-etching (MIC), or phosphoric acid (PA). Shear bond strength testing and adhesive remnant index (ARI) were performed. Statistical analyses included Kruskal-Wallis, Wilcoxon rank-sum, and two-factorial ANOVA. RESULTS: OmniChroma® had statistically significant lower shear bond strength than the other composite materials tested. The control groups had statistically significant lower shear bond strength than Group 1/HFA (P<0.001) and Group 2/MIC (P<0.001). Group 1/HFA had the lowest distribution ARI score overall, while MIC had the highest ARI score distributions. CONCLUSIONS: The results of this in-vitro study found that all tested composite materials achieved clinically acceptable shear bond strengths. The utilization of micro-etching produced higher SBS. Significant Adhesive Remnant Index scores (< 0.001) were only found for OmniChroma® without any surface preparation.


Assuntos
Resinas Compostas , Colagem Dentária , Teste de Materiais , Braquetes Ortodônticos , Resistência ao Cisalhamento , Propriedades de Superfície , Resinas Compostas/química , Colagem Dentária/métodos , Condicionamento Ácido do Dente , Ácidos Fosfóricos/química , Análise do Estresse Dentário , Humanos , Ácido Fluorídrico/química , Corrosão Dentária/métodos , Cimentos de Resina/química
2.
Dent Mater ; 40(8): e31-e39, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38926013

RESUMO

OBJECTIVE: The commonly used base monomer utilized in resinous commercial dental restorative products is bis-GMA which is derived from bisphenol-A (BPA) - a well-known compound which may disrupt endocrine functions. To address concerns about its leaching into the oral environment and to optimize the quality of dental composites, a BPA-free alternative base monomer, fluorinated urethane dimethacrylate (FUDMA), was designed by modifying a UDMA monomer system. METHODS: Nine groups of composites were prepared by mixing the base monomers and TEGDMA in a ratio of 70/30 wt% to which were added silanized glass particles (mean diameter: 0.7 µm) in 3 different volume fractions (40, 45, and 50 vol%). Bis-GMA and UDMA base monomers were used as control groups in the same ratios. Various properties including degree of conversion (DC), flexural strength (FS) and flexural modulus (FM), water sorption (WS), solubility (SL), surface hardness and roughness, and initial adhesion property against S.mutans were investigated. One-way analysis of variance followed by Bonferroni test at α = 0.05 was used to analyze the results. RESULTS: A significant difference in FS between FUDMA-based composite with 40 vol% filler (120.3 ± 10.4 MPa) and Bis-GMA-based composite with the same filler fraction (105.8 ± 10.0 MPa) was observed but there was no significant difference among other groups. The UDMA based group exhibited the highest WS (1.3 ± 0.3 %). Bis-GMA showed greater initial bacterial adhesion but was not statistically different from the other groups (p = 0.082). SIGNIFICANCE: FUDMA-based resin composites exhibit comparable mechanical and bacterial adhesion properties compared with Bis-GMA and UDMA-based composites. The FUDMA composites show positive outcomes indicating they could be used as substitute composites to Bis-GMA-based composites.


Assuntos
Antibacterianos , Compostos Benzidrílicos , Resinas Compostas , Resistência à Flexão , Teste de Materiais , Metacrilatos , Fenóis , Poliuretanos , Propriedades de Superfície , Resinas Compostas/química , Poliuretanos/química , Compostos Benzidrílicos/química , Antibacterianos/farmacologia , Antibacterianos/química , Metacrilatos/química , Fenóis/química , Fenóis/farmacologia , Dureza , Polietilenoglicóis/química , Ácidos Polimetacrílicos/química , Solubilidade , Streptococcus mutans/efeitos dos fármacos , Bis-Fenol A-Glicidil Metacrilato/química , Módulo de Elasticidade
3.
Dent Mater J ; 43(3): 446-452, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692905

RESUMO

This study evaluates the wear resistance of dental paste-like bulk-fill composites compared to conventional paste-like composite resins using an intraoral scanner and 3-D analyzing software. Six different dental composite materials, including five bulk-fill composites and one conventional composite, were tested alongside natural human enamel as a control group. A computer-controlled chewing simulator for wear testing. A one-way ANOVA test was used to identify any significant differences between the means of the tested dental composite materials α=0.05. The results showed variability among bulk-fill composites, with some demonstrating wear resistance similar to conventional composites (p<0.05). Human enamel displayed the lowest wear values, but some bulk-fill composites matched this resistance(p>0.05). Significant variability was observed among bulk-fill composites but the results were comparable to those of conventional composites. The enamel control group demonstrated the lowest wear values, with some bulk-fill composites showing similar wear resistance. This study provides valuable information about the wear resistance of contemporary bulk-fill composite materials, commonly used in current clinical practice, contributing to enhancing clinical procedures.


Assuntos
Resinas Compostas , Esmalte Dentário , Desgaste de Restauração Dentária , Teste de Materiais , Propriedades de Superfície , Resinas Compostas/química , Humanos , Técnicas In Vitro , Imageamento Tridimensional , Materiais Dentários/química
4.
ACS Biomater Sci Eng ; 10(6): 3718-3726, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38716490

RESUMO

The performance of dental resin composites is crucially influenced by the sizes and distributions of inorganic fillers. Despite the investigation of a variety of functional particles, glass fillers and nanoscale silica are still the predominant types in dental materials. However, achieving an overall improvement in the performance of resin composites through the optimization of their formulations remains a challenge. This work introduced a "dense" microhybrid filler system with 85 wt % filler loading, leading to the preparation of self-developed resin composites (SRCs). Comparative evaluations of these five SRCs against four commercial products were performed, including mechanical property, polymerization conversion, and shrinkage, along with water sorption and solubility and wear resistance. The results showed that among all SRC groups, SRC3 demonstrated superior mechanical performance, high polymerization conversion, reduced shrinkage, low water absorption and solubility, and acceptable wear resistance. In contrast to commercial products, this optimal SRC3 material was comparable to Z350 XT in flexural and diametral tensile strength and better in flexural modulus and surface hardness. The use of a "dense" microhybrid filler system in the development of resin composites provides a balance between physicochemical property and wear resistance, which may be a promising strategy for the development of composite products.


Assuntos
Resinas Compostas , Teste de Materiais , Resinas Compostas/química , Solubilidade , Resistência à Tração , Materiais Dentários/química , Polimerização , Poliuretanos/química , Propriedades de Superfície , Dureza , Resinas Acrílicas/química
5.
BMC Oral Health ; 24(1): 546, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730400

RESUMO

BACKGROUND: Recently, a new generation of high-strength flowable dental composites has been introduced by manufacturers. The manufacturers claim that these materials have enhanced mechanical and physical properties and are suitable for use in a wide range of direct anterior and posterior restorations, even in high-stress bearing areas. AIM: The objective of this study was to assess certain physical and mechanical properties of these recently introduced high-strength flowable composites in comparison to conventional multipurpose dental composites. METHODS: Four types of high-strength flowable composites (Genial Universal FLO, Gaenial Universal Injectable, Beautifil Injectable, and Beautifil Flow Plus) were tested in experimental groups, while a nanohybrid conventional composite (Filtek Z350 XT) was used as the control. For flexure properties, ten rectangular samples (2 × 2 × 25 mm) were prepared from each composite material and subjected to 5000 cycles of thermocycling. Samples were then subjected to flexural strength testing using the universal testing machine. Another twenty disc-shaped specimens of dimensions (5 mm diameter × 2 mm thickness) were fabricated from each composite material for surface roughness (Ra) (n = 10) and hardness (VHN) test (n = 10). All samples underwent 5000 cycles of thermocycling before testing. Additionally, microleakage testing was conducted on 60 standardized class V cavities prepared on molar teeth and divided randomly into five groups (n = 12). Cavities were then filled with composite according to the manufacturer's instructions and subjected to thermocycling for 1000 cycles before testing using methylene blue solution and a stereomicroscope. RESULTS: All tested materials were comparable to the control group in terms of flexural strength and surface roughness (p > 0.05), with Gaenial Universal FLO exhibiting significantly higher flexural strength compared to the other flowable composite materials tested. However, all tested materials demonstrated significantly lower elastic modulus and surface hardness than the control group (p < 0.05). The control group exhibited higher microleakage scores, while the lowest scores were observed in the Gaenial Universal FLO material (p < 0.05) CONCLUSION: The physical and mechanical behaviors of the different high-strength flowable composites investigated in this study varied. Some of these materials may serve as suitable alternatives to conventional composites in specific applications, emphasizing the importance of dentists being familiar with material properties before making material selections.


Assuntos
Resinas Compostas , Infiltração Dentária , Resistência à Flexão , Dureza , Teste de Materiais , Propriedades de Superfície , Técnicas In Vitro , Humanos , Análise do Estresse Dentário , Materiais Dentários/química , Estresse Mecânico , Polietilenoglicóis , Ácidos Polimetacrílicos/química , Bis-Fenol A-Glicidil Metacrilato
6.
Cureus ; 16(3): e55882, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38595900

RESUMO

Background/Objectives Pit and fissure caries constitute a predominant portion, approximately 90% in permanent posterior teeth and 44% in primary teeth among children and adolescents. Among various preventive modalities, pit and fissure sealants play a pivotal role in safeguarding these vulnerable areas. Categorized by materials such as glass ionomer, composites, and polyacid-modified glass ionomers, these sealants offer effective protection. This study aims to evaluate the efficacy of glass ionomer-based pit and fissure sealants in terms of retention rate at 12-month post-procedure period in permanent first molars. Methodology This study was conducted at the Department of Operative Dentistry, Nishtar Institute of Dentistry, Multan, Pakistan. Fifty-six children, aged 7 to 12 years, presenting with pit and fissure caries in permanent first molar teeth were enrolled. Glass ionomer sealant was meticulously applied to the affected pits and fissures. The efficacy was assessed after 12 months based on predefined criteria. Results The age of participants ranged from 7 to 12 years, with a mean age of 9.24 ± 1.38 years. Among the 56 patients, 23 (41.2%) were male and 33 (58.8%) were female. Sealant retention was noted in 31 (55.35%) patients, while 25 (44.65%) experienced sealant loss. In the 7 to 9-year age group, 19 demonstrated complete sealant retention, whereas in the 10 to 12-year age group, 12 exhibited complete retention. Concerning gender distribution, 17 males and 14 females exhibited complete sealant retention. Conclusion Glass ionomer-based sealants demonstrate excellent properties for pit and fissure sealing owing to their low technique sensitivity, cost-effectiveness, and favorable retention rates. Therefore, they represent an optimal choice for this preventive dental procedure.

7.
Heliyon ; 10(6): e27734, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38524556

RESUMO

The aim of this study was to improve the self-healing properties of dental nanocomposite using nanoparticles of TiO2 and chitosan. We evaluated flexural and compressive strength, crack-healing, and self-healing lifespan after 3 months of water aging. The effect of the developed composite on cell viability and toxicity was assessed by an MTT assay on human alveolar basal epithelial cells (A549 cell line). The nanocomposite included 7.5 wt% polyurea-formaldehyde (PUF) and 0, 0.5, and 1 wt% n-TiO2 and chitosan. After the fracture, the samples were put in a mold for 1-90 days to enable healing. Then, the fracture toughness of the healed nanocomposites and the healing yield were measured. The flexural strength of the nanocomposite improved by adding 0.5 wt% n-TiO2, while the compressive strength increased after adding 0.5 wt% chitosan (p > 0.1). When these two materials were used simultaneously, the flexural strength was improved by around 2%; however, the compressive strength was unaffected. Compared to the other sample, the nanocomposite with 0.5 wt% n-TiO2 and chitosan had higher KIC-healing and self-healing efficiency. Self-healing efficacy had no significant effect of water aging over 90 days compared to one day (p > 0.1), demonstrating that the PUF nanocapsules were not damaged.

8.
Polymers (Basel) ; 16(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38399836

RESUMO

Dental caries and dental restorations possess a long history and over the years, many materials and methods have been invented. In recent decades, modern techniques and materials have brought complexity to this issue, which has created the necessity to investigate more and more to achieve durability, consistency, proper mechanical properties, efficiency, beauty, good colour, and reduced costs and time. Combined with the recent advances in the medical field, mechanical engineering plays a significant role in this topic. This work aims at studying the elasto-static response of a human molar tooth as a case study, respecting the integral property of the tooth and different composite materials of the dental restoration. The structural integrity of the case study will be assessed through advanced numerical modelling resorting to meshless methods within the stress analysis on the molar tooth under different loading conditions. In this regard, bruxism is considered as being one of the most important cases that cause damage and fracture in a human tooth. The obtained meshless methods results are compared to the finite element method (FEM) solution. The advantages and disadvantages of the analysed materials are identified, which could be used by the producers of the studied materials to improve their quality. On the other hand, a computational framework, as the one presented here, would assist the clinical practice and treatment decision (in accordance with each patient's characteristics).

9.
Polymers (Basel) ; 16(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38399844

RESUMO

(1) Background: A widespread problem in oral health is cavities produced by cariogenic bacteria that consume fermentable carbohydrates and lower pH to 5.5-6.5, thus extracting Ca2+ and phosphate ions (PO43-) from teeth. Dental restorative materials based on polymers are used to fill the gaps in damaged teeth, but their properties are different from those of dental enamel. Therefore, a question is raised about the similarity between dental composites and natural teeth in terms of density and hardness. (2) Methods: We have used Raman spectroscopy and density and microhardness measurements to compare physical characteristics of several restorative dental composites at different polymerization intervals. (3) Results: XRVHerculite®, Optishade®, and VertiseFlow® showed the very different characteristics of the physical properties following four polymerization intervals. Of the three composites, OptiShade showed the highest polymerization rate. (4) Conclusions: Only fully polymerized composites can be used in teeth restoring, because incomplete polymerization would result in cracks, pitting, and lead finally to failure.

10.
J Funct Biomater ; 15(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38391883

RESUMO

Silicon carbide fibers have superior flexural properties and chemical stability compared to glass fibers. We investigated the flexural strength and modulus of an experimental, short silicon carbide fiber-reinforced resin. Short silicon carbide fibers with lengths of ~0.5, 1, 2, and 3 mm were prepared and silanized. Urethane dimethacrylate and triethylene glycol dimethacrylate were mixed at a 70:30 wt% ratio and used as the matrix resins. Each length of short silicon carbide fibers and the matrix resin were combined using a mixing machine and then used for specimen preparation. The three-point bending test conditions were in accordance with ISO 4049:2009. The fracture surfaces of the specimens after the three-point bending test were observed using secondary electron images. The data were statistically analyzed with a one-way analysis of variance and Tukey's HSD test (α = 0.05). The flexural strength and modulus of the specimens containing 2 mm or 3 mm silicon carbide fibers were significantly higher than the other specimens. The river pattern was observed more clearly in specimens containing shorter silicon carbide fibers, although this pattern was observed in all specimens.

11.
Biomimetics (Basel) ; 8(7)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37999152

RESUMO

A new eugenyl dimethacrylated monomer (symbolled BisMEP) has recently been synthesized. It showed promising viscosity and polymerizability as resin for dental composite. As a new monomer, BisMEP must be assessed further; thus, various physical, chemical, and mechanical properties have to be investigated. In this work, the aim was to investigate the potential use of BisMEP in place of the BisGMA matrix of resin-based composites (RBCs), totally or partially. Therefore, a list of model composites (CEa0, CEa25, CEa50, and CEa100) were prepared, which made up of 66 wt% synthesized silica fillers and 34 wt% organic matrices (BisGMA and TEGDMA; 1:1 wt/wt), while the novel BisMEP monomer has replaced the BisGMA content as 0.0, 25, 50, and 100 wt%, respectively. The RBCs were analyzed for their degree of conversion (DC)-based depth of cure at 1 and 2 mm thickness (DC1 and DC2), Vickers hardness (HV), water uptake (WSP), and water solubility (WSL) properties. Data were statistically analyzed using IBM SPSS v21, and the significance level was taken as p < 0.05. The results revealed no significant differences (p > 0.05) in the DC at 1 and 2 mm depth for the same composite. No significant differences in the DC between CEa0, CEa25, and CEa50; however, the difference becomes substantial (p < 0.05) with CEa100, suggesting possible incorporation of BisMEP at low dosage. Furthermore, DC1 for CEa0-CEa50 and DC2 for CEa0-CEa25 were found to be above the proposed minimum limit DC of 55%. Statistical analysis of the HV data showed no significant difference between CEa0, CEa25, and CEa50, while the difference became statistically significant after totally replacing BisGMA with BisMEP (CEa100). Notably, no significant differences in the WSP of various composites were detected. Likewise, WSL tests revealed no significant differences between such composites. These results suggest the possible usage of BisMEP in a mixture with BisGMA with no significant adverse effect on the DC, HV, WSP, and degradation (WSL).

12.
Materials (Basel) ; 16(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37763546

RESUMO

The potential of glass ceramics as applicable materials in various fields including fillers for dental restorations is our guide to present a new procedure for improvements of the mechanical properties of dental composites. This work aims to use Zn2SiO4 and SiO2-ZnO nano-materials as fillers to improve the mechanical properties of Bis-GMA/TEGDMA mixed dental resins. Zn2SiO4 and SiO2-ZnO samples were prepared and characterized by using XRD, FE-SEM, EDX, and FT-IR techniques. The XRD pattern of the SiO2-ZnO sample shows that ZnO crystallized in a hexagonal phase, while the SiO2 phase was amorphous. Similarly, the Zn2SiO4 sample crystallized in a rhombohedral crystal system. The prepared samples were used as fillers for the improvement of the mechanical properties of Bis-GMA/TEGDMA mixed dental resins. Five samples of dental composites composed of Bis-GMA/TEGDMA mixed resins were filled with 2, 5, 8, 10, and 15 wt% of SiO2-ZnO, and similarly, five samples were filled with Zn2SiO4 samples (2, 5, 8, 10, and 15 wt%). All of the 10 samples (A1-A10) were characterized by using different techniques including FT-IR, FE-SEM, EDX, and TGA analyses. According to the TGA analysis, all samples were thermally stable up to 200 °C, and the thermal stability increased with the filler percent. Next, the mechanical properties of the samples including the flexural strength (FS), flexural modulus (FM), diameter tensile strength (DTS), and compressive strength (CS) were investigated. The obtained results revealed that the samples filled with 8 wt% of SiO2-ZnO and 10 wt% of Zn2SiO4 had higher FS values of 123.4 and 136.6 MPa, respectively. Moreover, 8 wt% of both fillers displayed higher values of the FM, DTS, and CS parameters. These values were 8.6 GPa, 34.2 MPa, and 183.8 MPa for SiO2-ZnO and 11.3 GPa, 41.2 MPa, and 190.5 MPa for the Zn2SiO4 filler. Inexpensive silica-based materials enhance polymeric mechanics. Silica-metal oxide nanocomposites improve dental composite properties effectively.

13.
Biomedicines ; 11(9)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37761013

RESUMO

Dental composites, through their structural diversity, represent the biomaterials frequently used in dental reconstructive therapy. The aim of our study was to observe the influence of different beverage environment conditions on seven types of obturation dental materials with different compositions. Our research focused on the surface modification analysis of the materials after the immersion in the different beverages; in this regard, we used the EDAX technique correlated with the energy-dispersive X-ray fluorescence (XRF). The pH of the drinks and that of the simulated saliva solution were determined by the titrimetric method, a sodium hydroxide solution 0.1 mol/dm3 was prepared and used for the titration. An amount of 5 mL of each analyzed solution was added to 15 mL of distilled water to obtain a dilution, to which 3 drops of phenolphthalein (as a color indicator-Phenolphthalein, 3,3-Bis(4-hydroxyphenyl)-1(3H)-isobenzofuranone, C20H14O4 Mw: 318.32, purchased from Merck) were added for each analysis. For each solution, the experiment was repeated three times in order to obtain accurate results. The results of our study materialized into a real plea for modifying the patients' behavior in terms of diet and preferences for acidic drinks, so that their quality-of-life valence can be improved by keeping the composite materials in a long-term unalterable state on the one hand; on the other hand, systemic damage can be prevented as well.

14.
J Mech Behav Biomed Mater ; 147: 106123, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37742596

RESUMO

Dental composites are commonly utilized in dental treatments because they have the ability to preserve the natural appearance of teeth, are minimally invasive and conservative, and enhance the overall physical and mechanical attributes. Dental composites can experience damage, like small cracks, due to factors like temperature changes and physical strain, which can reduce their effectiveness. Detecting these tiny cracks in dental composites can be quite challenging, and in certain situations, it may even be impossible. In addition, it is not possible to repair these damages in situ by using conventional materials and methods. Therefore, the self-healing ability in dental composites is necessary. In recent years, the spontaneous repair of damages such as micro-cracking in dental composite materials has been developed without any type of human intervention and the replacement of new components. The most widely used approach to create self-healing dental composites involves encapsulating a healing agent within polymer shells and dispersing these microcapsules within the acrylate matrix of the dental composite. To assess the self-healing abilities of these composites, researchers can examine changes in their fracture toughness before and after the healing process using a test called the Single Edge V-notch beam test. In the present article we reviewed the latest findings in the field of self-healing intelligent composites for application in dentistry, and also in the present study, the studies on self-healing smart dental composites will be reviewed.


Assuntos
Resinas Compostas , Polímeros , Humanos , Teste de Materiais , Cápsulas , Odontologia
15.
Materials (Basel) ; 16(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37444862

RESUMO

There is currently a lack of scientific reports on the use of composites based on UDMA resin containing HAp in conservative dentistry. The aim of this study was therefore to determine the effect of hydroxyapatite content on the properties of a hybrid composite used in conservative dentistry. This paper compares a commercial hybrid composite with experimental composites treated with 2% by weight (b/w), 5% b/w, and 8% b/w hydroxyapatite. The composites were subjected to bending strength, compression, and diametrical compression tests, as well as those for impact strength, hardness, and tribological wear. The obtained results were subjected to statistical analysis. Increased hydroxyapatite was found to weaken the mechanical properties; however, 2% b/w and 5% b/w hydroxyapatite powder was found to achieve acceptable results. The statistical analysis showed no significant differences. HAp is an effective treatment for composites when applied at a low concentration. Further research is needed to identify an appropriate size of HAp particles that can be introduced into a composite to adequately activate the surface and modification its composition.

16.
J Funct Biomater ; 14(6)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37367287

RESUMO

Resin composite mimics tooth tissues both in structure and properties, and thus, they can withstand high biting force and the harsh environmental conditions of the mouth. Various inorganic nano- and micro-fillers are commonly used to enhance these composites' properties. In this study, we adopted a novel approach by using pre-polymerized bisphenol A-glycidyl methacrylate (BisGMA) ground particles (XL-BisGMA) as fillers in a BisGMA/triethylene glycol dimethacrylate (TEGDMA) resin system in combination with SiO2 nanoparticles. The BisGMA/TEGDMA/SiO2 mixture was filled with various concentrations of XL-BisGMA (0, 2.5, 5, and 10 wt.%). The XL-BisGMA added composites were evaluated for viscosity, degree of conversion (DC), microhardness, and thermal properties. The results demonstrated that the addition of a lower concentration of XL-BisGMA particles (2.5 wt.%) significantly reduced (p ≤ 0.05) the complex viscosity from 374.6 (Pa·s) to 170.84. (Pa·s). Similarly, DC was also increased significantly (p ≤ 0.05) by the addition of 2.5 wt.% XL-BisGMA, with the pristine composite showing a DC of (62.19 ± 3.2%) increased to (69.10 ± 3.4%). Moreover, the decomposition temperature has been increased from 410 °C for the pristine composite (BT-SB0) to 450 °C for the composite with 10 wt.% of XL-BisGMA (BT-SB10). The microhardness has also been significantly reduced (p ≤ 0.05) from 47.44 HV for the pristine composite (BT-SB0) to 29.91 HV for the composite with 2.5 wt.% of XL-BisGMA (BT-SB2.5). These results suggest that a XL-BisGMA could be used to a certain percentage as a promising filler in combination with inorganic fillers to enhance the DC and flow properties of the corresponding resin-based dental composites.

17.
J Mech Behav Biomed Mater ; 143: 105919, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37279637

RESUMO

This study developed an experimental flowable composite incorporated with niobium pentoxide (Nb2O5) combined or not with titanium dioxide co-doped with fluorine and nitrogen (NF_TiO2) and evaluated the mechanical and antibacterial properties. The experimental flowable composite (TEGDMA + BisGMA 1:1 + 60%wt - inorganic filler - borosilicate 0.7 µm) was formulated according to the type and concentration of Nb2O5 and NF_TiO2 (0.5, 1, 1.5 and 2 wt%) or NF_TiO2 + Nb2O5 (0.25, 0.5, 0.75 and 1 wt% - 1:1). The control groups were formed by the experimental composite without the incorporation of Nb2O5 and/or NF_TiO2 (GC-E) and by a commercial flowable composite (GC). The characterization of the surface of the composite and its particles was carried out using scanning electron microscopy (SEM) and energy dispersive x-rays (EDX). Specimens were manufactured and subjected to mechanical tests of flexural strength (FS) (n = 12), flexural modulus (FM) (n = 12), roughness (Ra) (n = 10), microhardness (n = 10), and contact angle (n = 10); and, to evaluate the antibacterial activity, they were submitted to tests of biofilm formation against S. mutans (CFU/mL) (n = 5), biofilm biomass by dry weight (n = 5) and confocal laser microscopy (%LIVE/DEAD) (n = 5). Data were submitted to one-way ANOVA and Tukey's post-hoc and, those that were not homoscedastic, but with normality, were submitted to Welch's ANOVA and Games-Howell's post-hoc. Dunnet's test was used to compare the controls with the other experimental groups (α = 5). The Nb2O5 particles had an average size of 32.4 µm and the nanoparticles (NPs) of NF_TiO2, 10 nm. EDX analysis identified isolated peaks of N, F, Ti, and Nb confirming the presence of these particles in the resin matrix. The 1.5% NF_TiO2 group had a higher FS and FM than the controls (p < 0.05). GC showed higher microhardness between groups (p < 0.05). There was no difference between the experimental groups regarding contact angle and roughness (p > 0.05), except for GC, which had the highest Ra values and the lowest contact angle between groups (p < 0.05). Composites containing 0.5%, 1%, 1.5%, and 2% Nb2O5, 1%, 1.5%, and 2% NF_TiO2 and 2% Nb2O5 + NF_TiO2 showed lower biofilm formation (p < 0.05), lower total biofilm biomass (p < 0.05), and a higher percentage of dead cells (44%, 52%, 52%, 79%, 42% 43%, 62%, 65%, respectively) than GC and GC-E (5% and 1%, respectively). It is concluded that the incorporation of 1.5% NF_TiO2 promoted a greater FS and FM among the experimental composites and that the addition of Nb2O5 particles (0.5%, 1%, 1.5%, and 2%), NF_TiO2 (1%, 1.5% and 2%) and the combination Nb2O5 + NF_TiO2 (2%) showed significant antibacterial effects.


Assuntos
Nanopartículas , Nióbio , Teste de Materiais , Resinas Compostas , Antibacterianos/farmacologia , Propriedades de Superfície
18.
ACS Biomater Sci Eng ; 9(5): 2706-2715, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37074009

RESUMO

Biofilm formation on resin composite surfaces is associated with the occurrence of secondary caries around restorations. As a promising antibacterial nanomaterial, graphene oxide is effective to suppress the viability of the cariogenic bacteria Streptococcus mutans (S. mutans). However, GO naturally expresses brown, which limits its potential application in dentistry. In this work, ZnO nanorod-decorated graphene oxide (GOn@ZnO) particles were synthesized via a facile hydrothermal method, and their optical property was regulated by changing the amount of seeded GO (n value) in the microemulsion. Among all hybrid particles, GO3@ZnO exhibited a bright gray color and lowest UV absorbance and therefore was selected as an optimal functional filler to produce dental composites with different loadings (0.1, 0.5, 1, and 3 wt %). The effects of GO3@ZnO loading on light transmittance, polymerization conversion, mechanical property, in vitro cell viability, and antibacterial effect of dental composites were systematically explored. The results exhibited that the 0.5 wt % GO3@ZnO-filled composite demonstrated comparable degree of conversion (60 s), higher flexural strength and modulus, and similar cell viability to the control. This composite also effectively inhibited the growth of S. mutans, giving a significantly lower bacterial concentration (3.9 × 107 CFU/mL) than the unfilled resin (8.5 × 107 CFU/mL) and the 0.5 wt % GO-filled composite (6.6 × 107 CFU/mL), respectively. The introduction of GO3@ZnO in dental composites could be a promising strategy to prevent secondary caries and extend service life.


Assuntos
Óxido de Zinco , Óxido de Zinco/farmacologia , Teste de Materiais , Antibacterianos/farmacologia , Resinas Compostas/farmacologia , Bactérias
19.
J Funct Biomater ; 14(4)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37103274

RESUMO

The innovation of nanocellulose as reinforcement filler in composites has been a topic of interest in the development of new biomaterials. The objective of this study was to investigate the mechanical properties of a nanohybrid dental composite made of rice husk silica and loaded with different percentages of kenaf nanocellulose. Kenaf cellulose nanocrystals (CNC) were isolated and characterized using a transmission electron microscope (TEM) (Libra 120, Carl Zeiss, Germany). The experimental composite was fabricated with fiber loadings of 1 wt%, 2 wt%, 3 wt%, 4 wt%, and 6 wt% silane-treated kenaf CNC, and subjected to a flexural and compressive strength test (n = 7) using an Instron Universal Testing Machine (Shimadzu, Kyoto, Japan), followed by a scanning electron microscopic assessment of the flexural specimen's fracture surface using a scanning electron microscope (SEM) (FEI Quanta FEG 450, Hillsborough, OR, USA). Commercial composites Filtek Z350XT (3M ESPE, St. Paul, MN, USA), Neofil (Kerr Corporation, Orange, CA, USA) and Ever-X Posterior (GC Corporation, Tokyo, Japan) were used as a comparison. The average diameter of kenaf CNC under TEM was 6 nm. For flexural and compressive strength tests, one-way ANOVA showed a statistically significant difference (p < 0.05) between all groups. Compared to the control group (0 wt%), the incorporation of kenaf CNC (1 wt%) into rice husk silica nanohybrid dental composite showed a slight improvement in mechanical properties and modes of reinforcement, which was reflected in SEM images of the fracture surface. The optimum dental composite reinforcement made of rice husk was 1 wt% kenaf CNC. Excessive fiber loading results in a decline in mechanical properties. CNC derived from natural sources may be a viable alternative as a reinforcement co-filler at low concentrations.

20.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36901766

RESUMO

Due to the questionable durability of dental restorations, there is a need to increase the lifetime of composite restoration. The present study used diethylene glycol monomethacrylate/4,4'-methylenebis(cyclohexyl isocyanate) (DEGMMA/CHMDI), diethylene glycol monomethacrylate/isophorone diisocyanate (DEGMMA/IPDI) monomers, and bis(2,6-diisopropylphenyl)carbodiimide (CHINOX SA-1) as modifiers of a polymer matrix (40 wt% urethane dimethacrylate (UDMA), 40 wt% bisphenol A ethoxylateddimethacrylate (bis-EMA), and 20 wt% triethyleneglycol dimethacrylate (TEGDMA)). Flexural strength (FS), diametral tensile strength (DTS), hardness (HV), sorption, and solubility were determined. To assess hydrolytic stability, the materials were tested before and after two aging methods (I-7500 cycles, 5 °C and 55 °C, water and 7 days, 60 °C, 0.1 M NaOH; II-5 days, 55 °C, water and 7 days, 60 °C, 0.1 M NaOH). The aging protocol resulted in no noticeable change (median values were the same as or higher than the control value) or a decrease in the DTS value from 4 to 28%, and a decrease in the FS value by 2 to 14%. The hardness values after aging were more than 60% lower than those of the controls. The used additives did not improve the initial (control) properties of the composite material. The addition of CHINOX SA-1 improved the hydrolytic stability of composites based on UDMA/bis-EMA/TEGDMA monomers, which could potentially extend the service life of the modified material. Extended studies are needed to confirm the possible use of CHINOX SA-1 as an antihydrolysis agent in dental composites.


Assuntos
Metacrilatos , Ácidos Polimetacrílicos , Bis-Fenol A-Glicidil Metacrilato , Hidróxido de Sódio , Teste de Materiais , Resinas Compostas , Polietilenoglicóis , Poliuretanos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA