Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 395
Filtrar
1.
J Sep Sci ; 47(18): e202400500, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39319578

RESUMO

A commercially available dielectric barrier discharge ionization (DBDI) source was tested with supercritical fluid chromatography-mass spectrometry (SFC-MS). The compound mixture investigated comprised caffeine, theobromine, theophylline, uracil, testosterone, and pyrene, diluted in methanol. Dynamic response ranges were evaluated with multiple injections at different concentrations. Precision studies demonstrated the robustness and sensitivity of the ionization source across a concentration range of 10-1000 ng/mL. Results from this experiment showed linear regression of 0.99 or greater for all analytes tested over the range with a relative standard deviation (RSD) of less than 10% down to 10 ng/mL for all analytes except theobromine, which had an RSD of less than 10% down to 25 ng/mL. Notably, this study marks the first investigation of sensitivity for coupling a commercial DBDI source with SFC; a limit of detection less than 1 ng/mL was achieved for all compounds. This study demonstrates chromatographic separation by SFC and MS analysis for compounds that ionize poorly using traditional atmospheric pressure ionization, such as polycyclic aromatic hydrocarbons. Combining SFC with the DBDI source opens promising avenues for analyzing compounds that were previously challenging to characterize with standard atmospheric pressure ionization techniques.


Assuntos
Cafeína , Cromatografia com Fluido Supercrítico , Espectrometria de Massas em Tandem , Teofilina , Cromatografia com Fluido Supercrítico/métodos , Teofilina/análise , Teofilina/química , Cafeína/análise , Cafeína/química , Testosterona/análise , Uracila/análise , Uracila/química , Uracila/análogos & derivados , Teobromina/análise , Pirenos/química , Pirenos/análise , Íons/química , Íons/análise
2.
J Environ Manage ; 370: 122574, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39321675

RESUMO

Non-thermal plasma has been an emerging technology for water treatment for decades. In this study, we have designed and fabricated a bubbling plasma batch reactor using an atmospheric pressure dielectric barrier discharge with a hydrophobic porous membrane. The reactor performance is assessed for purifying synthetic contaminated water samples containing chemical contaminant sulfamethoxazole (SMX), a widely used antibiotic, and biological contaminant E. coli K12. The SMX decontamination tests indicate that the degradation process is not first-order and the reaction rate dwindle with increasing initial concentration. The yield at 50% removal achieves its highest value of 8.12 g/kWh for 50 mg/L SMX sample. For inactivation of E. coli K12 tests, the inactivation process is also not first-order, and the pathogen is completely inactivated for 102 CFU/mL and 104 CFU/mL cases after 10 min and 45 min of plasma treatment, respectively. For the 108 CFU/mL sample, a 5-log reduction is achieved after 60 min of treatment. The developed plasma reactor can achieve fast deployment in point of use, low cost for manufacturing, and simple for maintenance. Moreover, it can be used for in-situ water purification in future long duration crewed space missions as well as tackling with water pollution issues on our planet.

3.
J Environ Manage ; 370: 122589, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39305879

RESUMO

ZIF-67 was grown in situ on carbon cloth (CC) using a simple one-step method. The prepared ZIF-67/CC electrodes exhibited excellent CO2 reduction reaction (CO2RR) performance in a dielectric barrier discharge plasma reactor. The highest concentrations of produced formic acid and formaldehyde were 9.16 and 0.068 mmol L-1 at a reaction time of 1 h, respectively. The high performance is related to the unique high aspect ratio structure and pad-like cavity of ZIF-67, which results not only in an increase in the specific surface area for CO2 adsorption but also in the hydrophobicity of the electrode. Unexpectedly, the superoxide radical (·O2-) greatly affects the reduction performance of the electrode. In addition, the ZIF-67/CC electrode maintained good CO2RR performance in the presence of different pollutants, and the production of formic acid and formaldehyde increased to 10.81 and 0.11 mmol L-1 at 1 h with the addition of 10 mg L-1 phenol. This research provides new directions in the field of plasma catalysis.

4.
J Environ Manage ; 370: 122554, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39305886

RESUMO

Synthetic dyes produced by the textile dyeing industry and released into wastewater contribute significantly to water pollution. This study explores the efficacy and versatility of a novel multi-electrode dielectric barrier discharge (MEDBD) plasma system that mainly generates ozone (O3 generator) and nitric oxide (NO generator) selectively to degrade various synthetic textile dyes, namely Methylene Blue (MB), Congo Red (CR), Methyl Orange (MO), Crystal Violet (CV), and Evans Blue (EB). Plasma achieved selective enrichment of O3 and NO by utilizing optimized plasma generation duty cycles of 15% and 100%, respectively. The proposed O3 generator plasma involves plasma-generated aqua electron impact, excited species, and reactive oxygen species notably O3, which degrades synthetic textile dyes into simple forms such as CO2, H2O, and N2. This approach achieved over 95% degradation of the above synthetic textile dyes when employing the O3 enriched plasma with 2.44 ± 0.21 W of power. Ecotoxicological evaluation, including microbial, human cell, and phytotoxicity evaluations of the O3 generator plasma for MB and CR dye-contaminated water, underscored the potential of this plasma system for environmentally friendly dye degradation. Overall, this study promotes MEDBD plasma, particularly the O3 generator, as a sustainable and efficient solution for treating synthetic dye-contaminated water across industries.

5.
Molecules ; 29(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39275117

RESUMO

This study proposes an affordable plasma device that utilizes a parallel-plate dielectric barrier discharge geometry with a metallic mesh electrode, featuring a straightforward 3D-printed design. Powered by a high-voltage supply adapted from a cosmetic plasma device, it operates on atmospheric air, eliminating the need for gas flux. Surface modification of polyethylene treated with this device was characterized and showed that the elemental composition after 15 min of plasma treatment decreased the amount of C to ~80 at% due to the insertion of O (~15 at%). Tested against Candida albicans and Staphylococcus aureus, the device achieved a reduction of over 99% in microbial load with exposure times ranging from 1 to 10 min. Simultaneously, the Vero cell viability remained consistently high, namely between 91% and 96% across exposure times. These results highlight this device's potential for the surface modification of materials and various infection-related applications, boasting affordability and facilitating effective antimicrobial interventions.


Assuntos
Candida albicans , Gases em Plasma , Staphylococcus aureus , Propriedades de Superfície , Candida albicans/efeitos dos fármacos , Gases em Plasma/química , Gases em Plasma/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Células Vero , Chlorocebus aethiops , Viabilidade Microbiana/efeitos dos fármacos , Polímeros/química
6.
Plasma (Basel) ; 7(2): 386-426, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39246391

RESUMO

Cold atmospheric plasmas (CAPs) within recent years have shown great promise in the field of plasma medicine, encompassing a variety of treatments from wound healing to the treatment of cancerous tumors. For each subsequent treatment, a different application of CAPs has been postulated and attempted to best treat the target for the most effective results. These treatments have varied through the implementation of control parameters such as applied settings, electrode geometries, gas flow, and the duration of the treatment. However, with such an extensive number of variables to consider, scientists and engineers have sought a means to accurately control CAPs for the best-desired effects in medical applications. This paper seeks to investigate and characterize the historical precedent for the use of plasma control mechanisms within the field of plasma medicine. Current control strategies, plasma parameters, and control schemes will be extrapolated through recent developments and successes to gain better insight into the future of the field and the challenges that are still present in the overall implementation of such devices. Proposed approaches, such as data-driven machine learning, and the use of closed-loop feedback controls, will be showcased as the next steps toward application.

7.
Water Res ; 266: 122358, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39255565

RESUMO

This study investigated a sustainable approach through dielectric barrier discharge (DBD) enhanced Fenton technology coupling nanofiltration (NF) process for landfill leachate treatment. The DBD/Fe(II)/H2O2 system exhibited significant synergistic effects, removing 55.07 % of TOC and 53.79 % of UV254 within 60 min, respectively. Additionally, the DBD/Fe(II)/H2O2 system demonstrated exceptional performance in removing fluorescent substances and large molecular organic compounds, thereby reducing the formation of cake layer on the nanofiltration membrane. Moreover, membrane flux increased by 2.34 times, with reversible and irreversible resistances decreasing by 75.79 % and 81.55 %, respectively. Quenching experiments revealed ·OH as the primary active species for perfluorooctanoic acid (PFOA) degradation in the DBD/Fe(II)/H2O2 process. The degradation pathway of PFOA was also elucidated via capillary electrophoresis-quadrupole time-of-flight mass spectrometry analysis. Correlation analysis indicated that TOC and EEM were the primary fouling factors. Lastly, through an assessment of energy consumption, economic costs, and carbon dioxide emissions, the advantages and practical application potential of the DBD/Fe(II)/H2O2 system were demonstrated. In summary, the DBD/Fe(II)/H2O2 system emerges as a feasible strategy for NF pretreatment, holding immense potential for treating landfill leachate.

8.
Chemosphere ; 364: 143105, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39153531

RESUMO

Nitrogen fixation using low-temperature plasma, particularly in relation to plasma-treated water (PTW) and its chemical and physical properties, has received a renewed research focus. Dissolving highly concentrated nitrogen oxides (NOx = 1-3) generated by air discharge into water results in the formation of two aqueous oxiacids (nitrous and nitric acids; HNOy = 2,3) and their conjugates (nitrate and nitrite ions; NOy-). Nonlinear formation of these species in PTW with respect to plasma conditions has been observed; however, the significance of the time-varying NOx on this nonlinearity has not yet been thoroughly investigated. Here, we demonstrate real-time observations of HNOy/NOy- as well as NOx production in a surface dielectric barrier discharge reactor containing distilled water. Synchronized two optical absorption spectroscopy systems were employed to simultaneously measure gas-phase NOx and liquid-phase HNOy/NOy- in the plasma reactor operated under different oxygen contents of 5, 20, and 50%. Our results showed that reducing the oxygen content in the reactor accelerated the chemical transition from O3 and NO3 to NO1,2, leading to a predominance of nitrite in PTW. Specifically, the NO3-rich period was extended with increasing O2 content, resulting in the production of nitrate-dominant PTW at low pH levels. Our findings highlight the potential for the selective generation of HNOy/NOy- in PTW through the active and passive control of NOx in a plasma reactor. The direct, real-time observation of NOx-HNOy/NOy- conversion presented here has potential for improving the control and optimization of PTW, thereby enhancing its applicability.


Assuntos
Óxidos de Nitrogênio , Ácido Nitroso , Gases em Plasma , Água , Ácido Nitroso/química , Óxidos de Nitrogênio/química , Gases em Plasma/química , Água/química , Nitritos/química , Nitratos/química , Purificação da Água/métodos , Óxido Nítrico , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Oxigênio/química
9.
Polymers (Basel) ; 16(16)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39204601

RESUMO

Molecularly imprinted polymers (MIPs) are synthetic polymers that mimic the functions of antibodies. Though MIPs are promising tools in various areas, achieving high selectivity in MIPs can be difficult. To improve selectivity, various approaches have been implemented; however, the role of polymerization methods or synthetic techniques in enhancing the selectivity of MIPs has not been studied and remains a crucial area for further research. MIPs are typically prepared from free radical reactions. Recently, we found that Dielectric Barrier Discharge (DBD) plasma can be used to initiate the polymerization of vinyl monomers. The DBD plasma method allows the monomers to associate with the template molecules and initiate polymerization with minimal disruption to the positioning of the monomers. We hypothesize that this could be a preferred method to prepare MIPs over the traditional radical reaction that may cause a disturbance of the pre-associated monomers on the templates for the polymerization. Chicken egg white serum albumin (CESA) was used as the template protein for the MIPs. Our results show that in all test conditions, approximately twofold improvement in selectivity was achieved, which is the primary performance metric for MIPs. This enhancement was evident across all categories, including MIPs prepared from various monomer combinations.

10.
Sci Rep ; 14(1): 19749, 2024 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-39187510

RESUMO

Plastic pollution is a problem that threatens the future of humanity, and various methods are being researched to solve it. Plastic biodegradation using microorganisms is one of these methods, and a recent study reported that plastic-degrading microorganisms activated by plasma increase the plastic decomposition rate. In contrast to microbial sterilization using low-temperature plasma, microbial activation requires a stable plasma discharge with a low electrode temperature suitable for biological samples and precise control over a narrow operating range. In this study, various plasma characteristics were evaluated using SDBD (Surface Dielectric Barrier Discharge) to establish the optimal conditions of plasma that can activate plastic-degrading microorganisms. The SDBD electrode was manufactured using low-temperature co-fired ceramic (LTCC) technology to ensure chemical resistance, minimize impurities, improve heat conduction, and consider freedom in designing the electrode metal part. Plasma stability, which is important for microbial activation, was investigated by changing the frequency and pulse width of the voltage applied to the electrode, and the degree of activation of plastic-degrading microorganisms was evaluated under each condition. The results of this study are expected to be used as basic data for research on the activation of useful microorganisms using low-temperature plasma.


Assuntos
Biodegradação Ambiental , Gases em Plasma , Plásticos , Temperatura Baixa , Eletrodos , Bactérias/metabolismo , Temperatura
11.
Environ Pollut ; 361: 124806, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39182815

RESUMO

Elemental mercury (Hg0) removal is a crucial target for mercury pollution control in flue gas. This article focuses on Hg0 removal in flue gas using corona discharge (CD) and dielectric barrier discharge (DBD) technologies, and provides a mechanistic perspective on the development and influencing factors of non-thermal plasma (NTP) technology for Hg0 removal. The influence factors include reactor configurations, power supplies, energy density, residence time, oxidation methods, gas composition, and the synergy between NTP and catalysis/adsorption, etc. This study reveals that the use of a pulsating electrical power supply significantly increases electron densities in both CD and DBD systems, thereby ensuring high energy efficiency and economic viability. Cl2 proves to be more effective than HCl as a chlorine source for Hg0 removal. NO significantly reduces Hg0 oxidation efficiency, while the effects of SO2 and H2O remain unclear. Energy density distribution is closely related to plasma devices, power supplies, and overall reactor configurations. Direct oxidation proves to be more effective than indirect oxidation for Hg0 removal. The combination of NTP with adsorption/catalysis technologies shows significantly better Hg0 removal efficiency compared to using NTP alone. This study can provide theoretical support for enhancing Hg0 removal mechanisms and optimizing process control parameters in industrial applications of NTP technology.

12.
Theriogenology ; 226: 308-318, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38959841

RESUMO

Dielectric barrier discharge (DBD) plasma regulates the levels of reactive oxygen species (ROS), which are critical for sperm quality. MicroRNAs (miRNAs) are non-coding single-stranded RNA molecules encoded by endogenous genes, which regulate post-transcriptional gene expression in animals. At present, it is unknown whether DBD plasma can regulate sperm ROS levels through miRNAs. To further understand the regulatory mechanism of DBD plasma on sperm ROS levels, miRNAs in fresh boar spermatozoa were detected using Illumina deep sequencing technology. We found that 25 known miRNAs and 50 novel miRNAs were significantly upregulated, and 14 known miRNAs and 74 novel miRNAs were significantly downregulated in DBD plasma-treated spermatozoa. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that target genes of differentially expressed miRNAs were involved in many activities and pathways associated with antioxidants. We verified that DBD plasma significantly increased boar sperm quality and reduced ROS levels. These results suggest that DBD plasma can improve sperm quality by regulating ROS levels via miRNAs. Our findings provide a potential strategy to improve sperm quality through miRNA-targeted regulation of ROS, which helps to increase male reproduction and protect cryopreserved semen in clinical practice.


Assuntos
MicroRNAs , Espécies Reativas de Oxigênio , Espermatozoides , Animais , Masculino , MicroRNAs/metabolismo , MicroRNAs/genética , Espermatozoides/fisiologia , Espermatozoides/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Suínos/fisiologia , Análise do Sêmen/veterinária , Gases em Plasma/farmacologia , Regulação da Expressão Gênica/fisiologia , Preservação do Sêmen/veterinária
13.
Anal Chim Acta ; 1318: 342912, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39067911

RESUMO

BACKGROUND: The accurate determination of iodine in seawater is essential to understanding its impact on the environment and human health. Inductively coupled plasma mass spectrometry (ICP-MS) is a widely used technique for elemental analysis due to its high sensitivity, speed, and low limit of detection (LOD). However, its capability in the detection of iodine in complex matrix samples is still limited by the low sample introduction efficiency of pneumatic nebulization and the high ionization energy of iodine. Dielectric barrier discharge microplasma-induced vapor generation (DBD-µPIVG) is a sample introduction technique that has been widely coupled with atomic spectrometry due to its high vapor generation efficiency, rapid reaction speed, high anti-interference capability, and environmental friendliness. RESULTS: A new method was developed for the rapid and sensitive determination of iodine using DBD-µPIVG coupled with ICP-MS. The DBD-µPIVG sample introduction technique can convert both iodide and iodate to their volatiles with a vapor generation efficiency of 70 %. The experimental conditions were optimized in detail, and the LOD for iodine was 0.04 µg L-1, which was lower compared to pneumatic nebulization and comparable to that after the extraction treatment. The relative standard deviation (RSD) obtained after 11 replicate determinations was 2.4%. Furthermore, the potential mechanism and anti-interference performance of the proposed method were also carefully investigated. SIGNIFICANCE: Compared to other analytical methods for iodine analysis, this approach is environmentally friendly, exhibits high anti-interference capability and enables accurate determination of iodine in complex matrix samples. The high vapor generation efficiency of DBD-µPIVG improves the sensitivity for iodine detection and expands the applicable elemental range of DBD-µPIVG. Finally, the proposed method was successfully applied to analyze the iodine content in seawater samples obtained from the Chinese coastal waters and retains great potential for assessing the distribution of iodine in different sea areas.

14.
Food Chem ; 460(Pt 1): 140522, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39047492

RESUMO

This study evaluated the effect of dielectric barrier discharge (DBD) and glow discharge (glow) cold plasma treatments in color, sugars, organic acids, phenolics (concentration and bioaccessibility), antioxidant activity, volatiles, and microbiota of edible mini-roses. Plasma treatments did not affect the flowers' color, while they increased organic acids and phenolics. Flowers treated with DBD had a higher concentration of most phenolics, including hesperidin (84.04 µg/g) related to antioxidant activity, and a higher mass fraction of most volatiles, including octanal (16.46% after 5 days of storage). Flowers treated with glow had a higher concentration of pelargonidin 3,5-diglucoside (392.73 µg/g), greater bioaccessibility of some phenolics and higher antioxidant activity. Plasma treatments reduced the microbiota diversity in mini-roses. Regardless of the plasma treatment, phylum Proteobacteria, family Erwiniaceae, and genus Rosenbergiella were the dominant groups. Results indicate plasma treatments as promising technologies to improve the quality and increase phenolic and specific volatile compounds in mini-roses.


Assuntos
Bactérias , Microbiota , Fenóis , Gases em Plasma , Compostos Orgânicos Voláteis , Fenóis/metabolismo , Fenóis/química , Gases em Plasma/farmacologia , Gases em Plasma/química , Bactérias/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo , Antioxidantes/metabolismo , Antioxidantes/química , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Flores/química , Flores/metabolismo
15.
Water Res ; 261: 122048, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38981353

RESUMO

This study explored the potential application of plasma coupling ionic liquid on disintegration of waste activated sludge and enhanced production of short-chain fatty acids (SCFAs) in anaerobic fermentation. Under optimal conditions (dosage of ionic liquid [Emim]OTf = 0.1 g/g VSS (volatile suspended solids) and discharge power of dielectric barrier discharge plasma (DBD) = 75.2 W), the [Emim]OTf/DBD pretreatment increased SCFA production by 302 % and acetic acid ratio by 53 % compared to the control. Mechanistic investigations revealed that the [Emim]OTf/DBD combination motivated the generation of various reactive species (such as H2O2, O3, •OH, 1O2, ONOO-, and •O2-) and enhanced the utilization of physical energies (such as heat). The coupling effects of [Emim]OTf/DBD synergistically improved the disintegration of sludge and biodegradability of dissolved organic matter, promoting the sludge anaerobic fermentation process. Moreover, the [Emim]OTf/DBD pretreatment enriched hydrolysis and SCFAs-forming bacteria while inhibiting SCFAs-consuming bacteria. The net effect was pronounced expression of genes encoding key enzymes (such as alpha-glucosidase, endoglucanase, beta-glucosidase, l-lactate/D-lactate dehydrogenase, and butyrate kinase) involved in the SCFA-producing pathway, enhancing the production of SCFAs from sludge anaerobic fermentation. In addition, [Emim]OTf/DBD pretreatment facilitated sludge dewatering and heavy metal removal. Therefore, [Emim]OTf/DBD pretreatment is a promising approach to advancing sludge reduction, recyclability, and valuable resource recovery.


Assuntos
Ácido Acético , Fermentação , Líquidos Iônicos , Esgotos , Ácido Acético/metabolismo , Anaerobiose , Ácidos Graxos Voláteis/metabolismo , Eliminação de Resíduos Líquidos/métodos
16.
Environ Health Insights ; 18: 11786302241262879, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39055117

RESUMO

Lahore (Pakistan), being an industrial city, has high emission of aerosols that affects and contaminates the air quality. Therefore, the abatement/inactivation of aerosols is necessary to restrict their infectious activities. In this project, ionic wind isolated from dielectric barrier discharge plasma (DBD plasma) has been utilized to abate the aerosols trapped in the Surgical Mask and KN95 Respirator. To infer the chemical and elemental detection of ambient aerosols, FTIR and LIBS have been employed. "From the results, it is noteworthy that abatement/removal of aerosols has been successfully carried out by the ionic wind irradiation and highlights the potential of DBD plasma technology in removing the aerosols pollution."

17.
Molecules ; 29(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39064852

RESUMO

A new method of efficiently transforming water vapor into hydrogen was investigated by dielectric barrier discharge (DBD) loaded with bamboo carbon bed structured by fibrous material in an argon medium. Hydrogen productivity was measured in three different reactors: a non-loaded DBD (N-DBD), a bamboo carbon (BC) bed DBD (BC-DBD), and a quartz wool (QW)-loaded BC DBD (QC-DBD). The effects of the quality ratio of BC to QW and relative humidity on hydrogen productivity were also investigated in QC-DBD at various flow rates. The reaction process and mechanism were analyzed by scanning electron microscopy, X-ray photoelectron spectroscopy, N2 physisorption experiments, infrared spectroscopy, and optical emission spectroscopy. A new reaction pathway was developed by loading BC into the fibrous structured material to activate the reaction molecules and capture the O-containing groups in the DBD reactor. A hydrogen productivity of 17.3 g/kWh was achieved at an applied voltage of 5 kV, flow rate of 4 L/min, and 100% relative humidity (RH) in the QC-DBD with a quality ratio of BC to QW of 3.0.

18.
Poult Sci ; 103(10): 104085, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39067130

RESUMO

High CO2 in packages significantly extends microbiological shelf life of poultry meat. Cold plasma is an emerging antimicrobial treatment, which generates various reactive gas species and inactivates microbials effectively. The objective of this study was to explore the potential effects of combining high CO2 package and in-package cold plasma (IPCP) treatments on the quality and safety of raw chicken breast meat. Noninoculated samples and samples inoculated with Campylobacter jejuni and Salmonella Typhimurium were packaged in 0, 30, 70, or 100% CO2 (with make-up gas N2) and treated with IPCP at 70 kV for 3 min. Ozone formation, microbial counts, drip loss, pH, and color were measured. There was no interaction effect between high CO2 package and IPCP on microbial counts, drip loss, and color measurements. IPCP reduced spoilage microbial growth by 0.43 log (from 7.00 log to 6.57 log, P = 0.033) and C. jejuni populations by 0.67 log (from 4.82 log to 4.15 log, P < 0.001) on meat surface but did not affect S. Typhimurium (P = 0.206). Increased CO2 in packages had more effect on spoilage microbial growth (more than 1.5 log from 8.08 log to 6.35 log, P < 0.001) and S. Typhimurium populations (more than 0.5 log from 4.94 log to 4.39 log, P = 0.004) than IPCP but did not affect C. jejuni (P = 0.163). IPCP resulted in increases in changes in L* by 1.67 units (0.70 vs. 2.37, P = 0.016) and a* values by 0.56 units (0.73 vs. 1.29, P < 0.001) and decreases in b* values by 0.91 units (0.46 versus -0.45, P = 0.015). High CO2 levels caused increases in changes in L* values by 4.35 units (-0.82 versus 3.53, P < 0.001) with no effects on a* and b* values (P > 0.05). Data demonstrate that there are no combined effects by high CO2 package and IPCP on meat quality and safety of raw chicken breast meat under our experimental conditions. Either high CO2 package or IPCP can retain microbial quality and safety, even though they may cause changes in appearance of stored chicken breast meat.


Assuntos
Dióxido de Carbono , Galinhas , Microbiologia de Alimentos , Embalagem de Alimentos , Carne , Salmonella typhimurium , Animais , Dióxido de Carbono/análise , Carne/análise , Carne/microbiologia , Embalagem de Alimentos/métodos , Salmonella typhimurium/efeitos dos fármacos , Campylobacter jejuni/efeitos dos fármacos , Gases em Plasma/farmacologia , Conservação de Alimentos/métodos , Músculos Peitorais
19.
Molecules ; 29(12)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38930926

RESUMO

The effective treatment and recovery of fracturing wastewater has always been one of the difficult problems to be solved in oilfield wastewater treatment. Accordingly, in this paper, photocatalytic-coupled low-temperature plasma technology was used to degrade the simulated wastewater containing hydroxypropyl guar, the main component of fracturing fluid. Results indicated that hydroxypropyl-guar wastewater could be degraded to a certain extent by either photocatalytic technology or plasma technology; the chemical oxygen demand and viscosity of the treated wastewater under two single-technique optimal conditions were 781 mg·L-1, 0.79 mPa·s-1 and 1296 mg·L-1, 1.01 mPa·s-1, respectively. Furthermore, the effective coupling of AgIn5S8/gC3N4 photocatalysis and dielectric-barrier discharge-low-temperature plasma not only enhanced the degradation degree of hydroxypropyl guar but also improved its degradation efficiency. Under the optimal conditions of coupling treatment, the hydroxypropyl-guar wastewater achieved the effect of a single treatment within 6 min, and the chemical oxygen demand and viscosity of the treated wastewater reduced to below 490 mg·L-1 and 0.65 mPa·s-1, respectively. In the process of coupled treatment, the AgIn5S8/gC3N4 could directly absorb the light and strong electric field generated by the system discharge and play an important role in the photocatalytic degradation, thus effectively improving the energy utilization rate of the discharge system and enhancing the degradation efficiency of hydroxypropyl guar.

20.
Chemosphere ; 362: 142586, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876328

RESUMO

The remediation of diesel-contaminated soil is a critical environmental concern, driving the need for effective solutions. Recently, the methodology of Non-thermal Atmospheric Plasma (NTAP) technology, which is equipped with a Dielectric Barrier Discharge (DBD) electrode and has become a feasible approach, was proven to be viable. The reactive species from the plasma were exposed to the contaminated soil in this investigation using the NTAP technique. The reacted soil was then extracted using dichloromethane, and the amount of Total Petroleum Hydrocarbon (TPH) removed was assessed. Investigation into varying power levels, treatment durations, and hydrogen peroxide integration revealed significant findings. With an initial concentration of 3086 mg of diesel/kg of soil and a pH of 5.0, 83% of the diesel was removed from the soil at 150 W in under 20 min. Extended exposure to NTAP further improved removal rates, highlighting the importance of treatment duration optimization. Additionally, combining hydrogen peroxide (H2O2) with NTAP enhanced removal efficiency by facilitating diesel breakdown. This synergy offers a promising avenue for comprehensive soil decontamination. Further analysis considered the impact of soil characteristics on removal efficacy. Mechanistically, NTAP generates reactive species that degrade diesel into less harmful compounds, aiding subsequent removal. Overall, NTAP advances environmental restoration efforts by offering a quick, economical, and environmentally benign method of remediating diesel-contaminated soil especially when used in tandem with hydrogen peroxide.


Assuntos
Recuperação e Remediação Ambiental , Gasolina , Peróxido de Hidrogênio , Gases em Plasma , Poluentes do Solo , Solo , Recuperação e Remediação Ambiental/métodos , Poluentes do Solo/análise , Gases em Plasma/química , Solo/química , Peróxido de Hidrogênio/química , Gasolina/análise , Petróleo/análise , Hidrocarbonetos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA