Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 138: 106615, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37244229

RESUMO

A series of nine novel ether phospholipid-dinitroaniline hybrids were synthesized in an effort to deliver more potent antiparasitic agents with improved safety profile compared to miltefosine. The compounds were evaluated for their in vitro antiparasitic activity against L. infantum, L.donovani, L. amazonensis, L. major and L. tropica promastigotes, L. infantum and L. donovani intracellular amastigotes, Trypanosoma brucei brucei and against different developmental stages of Trypanosoma cruzi. The nature of the oligomethylene spacer between the dinitroaniline moiety and the phosphate group, the length of the side chain substituent on the dinitroaniline and the choline or homocholine head group were found to affect both the activity and toxicity of the hybrids. The early ADMET profile of the derivatives did not reveal major liabilities. Hybrid 3, bearing an 11-carbon oligomethylene spacer, a butyl side chain and a choline head group, was the most potent analogue of the series. It exhibited a broad spectrum antiparasitic profile against the promastigotes of New and Old World Leishmania spp., against intracellular amastigotes of two L. infantum strains and L. donovani, against T. brucei and against T. cruzi Y strain epimastigotes, intracellular amastigotes and trypomastigotes. The early toxicity studies revealed that hybrid 3 showed a safe toxicological profile while its cytotoxicity concentration (CC50) against THP-1 macrophages being >100 µM. Computational analysis of binding sites and docking indicated that the interaction of hybrid 3 with trypanosomatid α-tubulin may contribute to its mechanism of action. Furthermore, compound 3 was found to interfere with the cell cycle in T. cruzi epimastigotes, while ultrastructural studies using SEM and TEM in T. cruzi showed that compound 3 affects cellular processes that result in changes in the Golgi complex, the mitochondria and the parasite's plasma membrane. The snapshot pharmacokinetic studies showed low levels of 3 after 24 h following oral administration of 100 mg/Kg, while, its homocholine congener compound 9 presented a better pharmacokinetic profile.


Assuntos
Antiprotozoários , Doença de Chagas , Trypanosoma cruzi , Humanos , Antiparasitários/farmacologia , Antiprotozoários/farmacologia , Éteres Fosfolipídicos/uso terapêutico , Doença de Chagas/tratamento farmacológico , Colina/uso terapêutico
2.
New Phytol ; 229(6): 3253-3268, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33253456

RESUMO

Increased metabolism is one of the main causes for evolution of herbicide resistance in weeds, a major challenge for sustainable food production. The molecular drivers of this evolution are poorly understood. We tested here the hypothesis that a suitable context for the emergence of herbicide resistance could be provided by plant enzymes with high innate promiscuity with regard to their natural substrates. A selection of yeast-expressed plant cytochrome P450 enzymes with well documented narrow to broad promiscuity when metabolizing natural substrates was tested for herbicide metabolism competence. The positive candidate was assayed for capacity to confer herbicide tolerance in Arabidopsis thaliana. Our data demonstrate that Arabidopsis thaliana CYP706A3, with the most promiscuous activity on monoterpenes and sesquiterpenes for flower defence, can also oxidize plant microtubule assembly inhibitors, dinitroanilines. Ectopic overexpression of CYP706A3 confers dinitroaniline resistance. We show, in addition, that the capacity to metabolize dinitroanilines is shared by other members of the CYP706 family from plants as diverse as eucalyptus and cedar. Supported by three-dimensional (3D) modelling of CYP706A3, the properties of enzyme active site and substrate access channel are discussed together with the shared physicochemical properties of the natural and exogenous substrates to explain herbicide metabolism.


Assuntos
Arabidopsis , Herbicidas , Arabidopsis/genética , Sistema Enzimático do Citocromo P-450/genética , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Plantas Daninhas/genética
3.
Int J Mol Sci ; 19(10)2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30304836

RESUMO

Dinitroanilines are chemical compounds with high selectivity for plant cell α-tubulin in which they promote microtubule depolymerization. They target α-tubulin regions that have diverged over evolution and show no effect on non-photosynthetic eukaryotes. Hence, they have been used as herbicides over decades. Interestingly, dinitroanilines proved active on microtubules of eukaryotes deriving from photosynthetic ancestors such as Toxoplasma gondii and Plasmodium falciparum, which are responsible for toxoplasmosis and malaria, respectively. By combining differential in silico screening of virtual chemical libraries on Arabidopsis thaliana and mammal tubulin structural models together with cell-based screening of chemical libraries, we have identified dinitroaniline related and non-related compounds. They inhibit plant, but not mammalian tubulin assembly in vitro, and accordingly arrest A. thaliana development. In addition, these compounds exhibit a moderate cytotoxic activity towards T. gondii and P. falciparum. These results highlight the potential of novel herbicidal scaffolds in the design of urgently needed anti-parasitic drugs.


Assuntos
Apicomplexa/fisiologia , Plantas/metabolismo , Plantas/parasitologia , Tubulina (Proteína)/metabolismo , Animais , Células HeLa , Humanos , Microtúbulos/metabolismo , Modelos Moleculares , Fotossíntese , Células Vegetais/metabolismo , Plasmodium falciparum , Conformação Proteica , Tubulina (Proteína)/química , Tubulina (Proteína)/genética
4.
Front Plant Sci ; 9: 97, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29472938

RESUMO

The dinitroaniline herbicides (particularly trifluralin) have been globally used in many crops for selective grass weed control. Consequently, trifluralin resistance has been documented in several important crop weed species and has recently reached a level of concern in Australian Lolium rigidum populations. Here, we report novel mutations in the L. rigidum α-tubulin gene which confer resistance to trifluralin and other dinitroaniline herbicides. Nucleotide mutations at the highly conserved codon Arg-243 resulted in amino acid substitutions of Met or Lys. Rice calli transformed with the mutant 243-Met or 243-Lys α-tubulin genes were 4- to 8-fold more resistant to trifluralin and other dinitroaniline herbicides (e.g., ethalfluralin and pendimethalin) compared to calli transformed with the wild type α-tubulin gene from L. rigidum. Comprehensive modeling of molecular docking predicts that Arg-243 is close to the trifluralin binding site on the α-tubulin surface and that replacement of Arg-243 by Met/Lys-243 results in a spatial shift of the trifluralin binding domain, reduction of trifluralin-tubulin contacts, and unfavorable interactions. The major effect of these substitutions is a significant rise of free interaction energy between α-tubulin and trifluralin, as well as between trifluralin and its whole molecular environment. These results demonstrate that the Arg-243 residue in α-tubulin is a determinant for trifluralin sensitivity, and the novel Arg-243-Met/Lys mutations may confer trifluralin resistance in L. rigidum.

5.
J Environ Sci Health B ; 52(10): 719-728, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28937929

RESUMO

In the present study, a soil monitoring program was undertaken in Greek cotton cultivated areas in 2012. Twenty-seven soil samples were collected from the entire Thessaly plain in early summer of 2012, corresponding to approximately three months (current use of pendimethalin), up to one year (for the banned ethalfluralin), and three years (for the also banned trifluralin), after the last dinitroaniline application. Low but not negligible levels of dinitroanilines were detected, ranging from 0.01 to 0.21 µg g-1 d.w. for trifluralin and 0.01-0.048 µg g-1 d.w. for pendimethalin, respectively. Trifluralin was the herbicide most frequently detected (44.4%). The high historic application of trifluralin and its high persistence and accumulation potential is in line with the abundance of the detected residues. The present data indicate that soil samples contain extractable residues of banned trifluralin, but based on the comparison of the theoretical PECplateau for trifluralin (0.277 µg g-1) and the maximum Measured Environmental Concentration, it was concluded that the detected residues should be attributed to previous years' application. The latter suggested the need for continual monitoring of the dinitroaniline family of pesticides, including the banned substances, aiming thus to an improved environmental profile for agricultural areas.


Assuntos
Compostos de Anilina/análise , Poluentes do Solo/análise , Trifluralina/análogos & derivados , Trifluralina/análise , Agricultura , Monitoramento Ambiental , Gossypium , Grécia , Herbicidas/análise , Praguicidas/análise
6.
Nanomedicine (Lond) ; 11(2): 153-70, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26651236

RESUMO

AIM: To improve the potential of trifluralin (TFL) in the management of Leishmania infantum infections through the synthesis of analogs (TFLA) and incorporation in nanoparticulate drug delivery systems (NanoDDS), liposomes and solid lipid nanoparticles, for selective targeting to leishmania infection sites. MATERIAL & METHODS: In vitro screening of 18 TFLA was performed by flow cytometry. NanoDDS were loaded with active TFLA and evaluated for antileishmanial efficacy in mice through determination of parasite burden in liver and spleen. RESULTS: The in vitro testing revealed the most active and nontoxic TFLAs, which were selected for the in vivo studies based on high incorporation in liposomes and lipid nanoparticles (>90%). Selected TFLA nanoformulations showed superior antileishmanial activity in mice (parasite burden >80%), over free TFLA and Glucantime. CONCLUSION: The modification of TFL structure to obtain active TFLA, together with their incorporation in NanoDDS, improved their in vivo performance against L. infantum infection.


Assuntos
Leishmaniose Visceral/tratamento farmacológico , Lipossomos/química , Nanocápsulas/química , Nanocápsulas/ultraestrutura , Trifluralina/análogos & derivados , Trifluralina/administração & dosagem , Animais , Antiprotozoários/administração & dosagem , Antiprotozoários/química , Difusão , Composição de Medicamentos/métodos , Leishmania infantum/efeitos dos fármacos , Leishmaniose Visceral/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Resultado do Tratamento
7.
Exp Parasitol ; 135(1): 153-65, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23845259

RESUMO

Parasitic protozoa of the Leishmania genus cause leishmaniasis, an important complex of tropical diseases that affect about 12 million people around the world. The drugs used to treat leishmaniasis are pentavalent antimonials, miltefosine, amphotericin B and pentamidine. In the present study, we evaluated the effect of a novel alkyl phosphocholine-dinitroaniline hybrid molecule, TC95, against Leishmania amazonensis promastigotes and intracellular amastigotes. Antiproliferative assays indicated that TC95 is a potent inhibitor of promastigotes and intracellular amastigotes with IC50 values of 2.6 and 1.2 µM, respectively. Fluorescence microscopy with anti-α-tubulin antibody revealed changes in the cytoskeleton, whilst scanning electron microscopy showed alterations in the shape, plasma membrane, length of the flagellum, and cell cycle. Flow cytometry confirmed the cell cycle arrest mainly in G1 phase, however a significant population appeared in sub G0/G1 and super-G2. The alterations in the plasma membrane integrity were confirmed by fluorometric analysis using Sytox Blue. Transmission electron microscopy also revealed an accumulation of lipid bodies, confirmed by fluorescence microscopy and fluorometric analysis using Nile Red. Important lesions were also observed in organelles such as mitochondrion, endoplasmic reticulum and Golgi complex. In summary, our study suggests that TC95, an alkyl phosphocholine-trifluralin hybrid molecule, is a promising novel compound against L. amazonensis.


Assuntos
Compostos de Anilina/farmacologia , Antiprotozoários/farmacologia , Leishmania mexicana/efeitos dos fármacos , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Trifluralina/análogos & derivados , Trifluralina/farmacologia , Compostos de Anilina/química , Compostos de Anilina/toxicidade , Animais , Antiprotozoários/química , Antiprotozoários/toxicidade , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citometria de Fluxo , Histocitoquímica , Humanos , Corpos de Inclusão/efeitos dos fármacos , Concentração Inibidora 50 , Leishmania mexicana/citologia , Leishmania mexicana/ultraestrutura , Leishmaniose Tegumentar Difusa/parasitologia , Macrófagos Peritoneais/efeitos dos fármacos , Camundongos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Microscopia de Interferência , Fosforilcolina/química , Fosforilcolina/toxicidade , Trifluralina/química , Trifluralina/toxicidade
8.
Artigo em Inglês | MEDLINE | ID: mdl-24533294

RESUMO

Bovine babesiosis, caused by Babesia bovis, is a global tick borne hemoprotozoan parasite disease characterized by fever, anemia, weight losses and ultimately death. Several babesicidal drugs that have been in use in cattle for years have proven to be only partially effective and the development of alternative chemotherapeutics that are highly specific and have low toxicity against babesiosis is needed. Trifluralin derivatives specifically bind alpha-tubulin in plants and protozoa parasites causing growth inhibition. A set of 12 trifluralin analogues (TFLA) has previously been shown to be inhibitory for the growth of Leishmania species. The conservation of several key amino acids involved in the trifluralin binding site of alpha-tubulin among Leishmania sp. and B. bovis provides rationale for testing these compounds also as babesiacides. The previously tested Leishmania inhibitory, TFLA 1-12 minus TFLA 5, in addition to three novel TFLA (termed TFLA 13-15), were tested against in vitro cultured B. bovis parasites. While all of the TFLA tested in the study showed inhibition of B. bovis growth in vitro TFLA 7, TFLA 10 and TFLA 13, were the most effective inhibitors with estimated IC50 (µM) at 72 h of 8.5 ± 0.3; 9.2 ± 0.2; 8.9 ± 0.7, respectively for the biologically attenuated cloned B. bovis Mo7 strain, and 13.6 ± 1.5; 18.7 ± 1.6; 10.6 ± 1.9, respectively for the virulent B. bovis T3Bo strain. The differences found between the two strains were not statistically significant. Importantly, these drugs displayed low levels of toxicity for the host erythrocytes and bovine renal arterial endothelial cells at the doses tested. The demonstrated ability of trifluralin analogues to inhibit in vitro growth of B. bovis parasites combined with their low toxicity for host cells suggests that these compounds may be further developed as novel alternatives for the treatment of bovine babesiosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA