Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Acta Pharm Sin B ; 5(2): 129-34, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26579438

RESUMO

The classical functions of bile acids include acting as detergents to facilitate the digestion and absorption of nutrients in the gut. In addition, bile acids also act as signaling molecules to regulate glucose homeostasis, lipid metabolism and energy expenditure. The signaling potential of bile acids in compartments such as the systemic circulation is regulated in part by an efficient enterohepatic circulation that functions to conserve and channel the pool of bile acids within the intestinal and hepatobiliary compartments. Changes in hepatobiliary and intestinal bile acid transport can alter the composition, size, and distribution of the bile acid pool. These alterations in turn can have significant effects on bile acid signaling and their downstream metabolic targets. This review discusses recent advances in our understanding of the inter-relationship between the enterohepatic cycling of bile acids and the metabolic consequences of signaling via bile acid-activated receptors, such as farnesoid X nuclear receptor (FXR) and the G-protein-coupled bile acid receptor (TGR5).

2.
RNA Biol ; 11(11): 1402-13, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25692238

RESUMO

Selenium, a micronutrient, is primarily incorporated into human physiology as selenocysteine (Sec). The 25 Sec-containing proteins in humans are known as selenoproteins. Their synthesis depends on the translational recoding of the UGA stop codon to allow Sec insertion. This requires a stem-loop structure in the 3' untranslated region of eukaryotic mRNAs known as the Selenocysteine Insertion Sequence (SECIS). The SECIS is recognized by SECIS-binding protein 2 (SBP2) and this RNA:protein interaction is essential for UGA recoding to occur. Genetic mutations cause SBP2 deficiency in humans, resulting in a broad set of symptoms due to differential effects on individual selenoproteins. Progress on understanding the different phenotypes requires developing robust tools to investigate SBP2 structure and function. In this study we demonstrate that SBP2 protein produced by in vitro translation discriminates among SECIS elements in a competitive UGA recoding assay and has a much higher specific activity than bacterially expressed protein. We also show that a purified recombinant protein encompassing amino acids 517-777 of SBP2 binds to SECIS elements with high affinity and selectivity. The affinity of the SBP2:SECIS interaction correlated with the ability of a SECIS to compete for UGA recoding activity in vitro. The identification of a 250 amino acid sequence that mediates specific, selective SECIS-binding will facilitate future structural studies of the SBP2:SECIS complex. Finally, we identify an evolutionarily conserved core cysteine signature in SBP2 sequences from the vertebrate lineage. Mutation of multiple, but not single, cysteines impaired SECIS-binding but did not affect protein localization in cells.


Assuntos
Regiões 3' não Traduzidas/genética , Códon de Terminação/genética , Proteínas de Ligação a RNA/genética , Selenocisteína/genética , Selenoproteínas/genética , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Cisteína/genética , Cisteína/metabolismo , Eletroforese em Gel de Poliacrilamida , Regulação da Expressão Gênica , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Ligação Proteica , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ratos , Proteínas Recombinantes/metabolismo , Selenocisteína/metabolismo , Selenoproteínas/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA