Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Bull Math Biol ; 86(8): 87, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874691

RESUMO

In the context of protein-protein binding, the dissociation constant is used to describe the affinity between two proteins. For protein-protein interactions, most experimentally-measured dissociation constants are measured in solution and reported in units of volume concentration. However, many protein interactions take place on membranes. These interactions have dissociation constants with units of areal concentration, rather than volume concentration. Here, we present a novel, stochastic approach to understanding the dimensional dependence of binding kinetics. Using stochastic exit time calculations, in discrete and continuous space, we derive general reaction rates for protein-protein binding in one, two, and three dimensions and demonstrate that dimensionality greatly affects binding kinetics. Further, we present a formula to transform three-dimensional experimentally-measured dissociation constants to two-dimensional dissociation constants. This conversion can be used to mathematically model binding events that occur on membranes.


Assuntos
Conceitos Matemáticos , Modelos Biológicos , Ligação Proteica , Processos Estocásticos , Cinética , Membrana Celular/metabolismo , Simulação por Computador , Proteínas/metabolismo , Proteínas/química
2.
Anal Sci ; 40(8): 1429-1436, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38753116

RESUMO

Extraction ability of N,N-dioctylthiodiglycolamic acid (T-DODGAA), a soft-base sulfur donor ligand with an amide group and a carboxylic acid connected by a thioether chain, for 56 metal ions have been comprehensively investigated and compared with that of N,N-dioctyldiglycolamic acid (DODGAA) with an etheric oxygen atom, a hard-base donor. The acid dissociation constant (pKa) of the thiodiglycolamic acid framework was determined to be 3.71 ± 0.06 in water (0.1 M LiCl, 25 °C) by potentiometric titration, indicating that T-DODGAA is a slightly weaker acid than DODGAA (pKa = 3.54 ± 0.03). T-DODGAA can quantitatively extract various metal ions from the 56 metal ions into the organic phase (isooctane) through a proton-exchange reaction. T-DODGAA provided higher extraction performance than DODGAA for Hf(IV), Cr(III), Fe(III), Ni(II), Cu(II), Pd(II), Ag(I), Au(III), Hg(II), Al(III), and Ga(III), especially for soft metal ions. Furthermore, to demonstrate the practical feasibility of T-DODGAA for hydrometallurgy and metal recycling, we performed selective separation tests of rare metal ions such as Sc(III), Ni(II), Co(II), Pd(II), Au(III), In(III), and Ga(III) in metal-mixed extraction systems.

3.
Int J Biol Macromol ; 266(Pt 2): 131405, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582487

RESUMO

Drug binding and interactions with plasma proteins play a crucial role in determining the efficacy of drug delivery, thus significantly impacting the overall pharmacological effect. AGP, the second most abundant plasma protein in blood circulation, has the unique capability to bind drugs and transport various compounds. In our present study, for the first time, we investigated whether AGP, a major component of the acute phase lipocalin in human plasma, can bind with pentamidine derivatives known for their high activity against the fungal pathogen Pneumocystis carinii. This investigation was conducted using integrated spectroscopic techniques and computer-based approaches. According to the results, it was concluded that compounds having heteroatoms (-NCH3) in the aliphatic linker and the addition of a Br atom and a methoxy substituent at the C-2 and C-6 positions on the benzene ring, exhibit strong interactions with the AGP binding site. These compounds are identified as potential candidates for recognition by this protein. MD studies indicated that the tested analogues complexed with AGPs reach an equilibrium state after 60 ns, suggesting the stability of the complexes. This observation was further corroborated by experimental results. Therefore, exploring the interaction mechanism of pentamidine derivatives with plasma proteins holds promise for the development of bis-benzamidine-designed pharmaceutically important drugs.


Assuntos
Orosomucoide , Pentamidina , Ligação Proteica , Humanos , Pentamidina/química , Pentamidina/farmacologia , Pentamidina/metabolismo , Orosomucoide/metabolismo , Orosomucoide/química , Sítios de Ligação , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular
4.
Bioorg Med Chem ; 95: 117510, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37926047

RESUMO

Chronic Inflammation is associated with various types of diseases that involves pro-inflammatory cytokines like IL-6 and TNF-α. High costs and serious side effects of available anti-inflammatory/immunomodulatory drugs led us to design new compounds with promising anti-inflammatory activities. Many drugs and biologically important compounds involve naphthoquinone and thiazole moieties in their core structures. Thereby, here we report the synthesis, characterization and anti-inflammatory activities of new naphthoquinone thiazole hybrids by reaction of naphthoquinone acyl thioureas with various α-bromoketone derivatives. The position of NO2 group in one of the phenyl rings of naphthoquinone thiazole hybrids was changed while different substituents were introduced at the para position of the second phenyl ring. All compounds were tested for potential immunomodulatory effect. No inflammatory cytokines were observed in the absence of LPS stimulant. On the other hand, they had promising anti-inflammatory immunomodulatory activities by being able to decrease the production of the pro-inflammatory cytokines (TNF-α and IL-6) in the LPS-stimulated cells. In an effort to find the possible mechanism of action, several enzymes involved in signalling pathways that play critical roles in inflammatory responses were screened in silico. Subsequent to inverse molecular docking approach, PI3K was predicted be the potential target. The docked complexes of the most potent compounds 5g and 5i were subjected to molecular dynamics simulation to assess the binding stability of the igands with the putative target. Acid dissociation constants (pKa) of the products were also determined potentiometrically.


Assuntos
Naftoquinonas , Fator de Necrose Tumoral alfa , Simulação de Acoplamento Molecular , Fator de Necrose Tumoral alfa/metabolismo , Tiazóis , Interleucina-6 , Naftoquinonas/farmacologia , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/química , Citocinas/metabolismo
5.
Mar Environ Res ; 192: 106219, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37848362

RESUMO

Based on observations in China's east coastal oceans, we conducted a preliminary assessment of 16 sets of carbonic acid dissociation constants (K1* and K2*) by comparing spectrophotometrically measured pH values at 25 °C with those calculated from total alkalinity and dissolved inorganic carbon. We obtained that K1* and K2* often performed differently within different salinity ranges, and that the constants of Millero et al. (2002) (M02) demonstrated the best performance for the salinity range of 24-35. In contrast, the often recommended constants of Mehrbach et al. (1973) refit by Dickson and Millero (1987) (DM87-M) and Lucker et al. (2000) (L00) would underestimate pH at salinities of 24-30. This was mainly associated with the higher product of K1* and K2* by DM87-M and L00 than by M02 at this salinity range. Also, we found almost no differences between pH values calculated with DM87-M and L00.


Assuntos
Carbono , Ácido Carbônico , Oceanos e Mares , Carbono/análise , Salinidade , China
6.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37762406

RESUMO

The current study describes the encapsulation of hydroxychloroquine, widely used in traditional medicine due to its diverse pharmacological and medicinal uses, in chitosan nanoparticles (CNPs). This work aims to combine the HCQ drug with CS NPs to generate a novel nanocomposite with improved characteristics and bioavailability. HCQ@CS NPs are roughly shaped like roadways and have a smooth surface with an average size of 159.3 ± 7.1 nm, a PDI of 0.224 ± 0.101, and a zeta potential of +46.6 ± 0.8 mV. To aid in the development of pharmaceutical systems for use in cancer therapy, the binding mechanism and affinity of the interaction between HCQ and HCQ@CS NPs and BSA were examined using stopped-flow and other spectroscopic approaches, supplemented by molecular docking analysis. HCQ and HCQ@CS NPs binding with BSA is driven by a ground-state complex formation that may be accompanied by a non-radiative energy transfer process, and binding constants indicate that HCQ@CS NPs-BSA was more stable than HCQ-BSA. The stopped-flow analysis demonstrated that, in addition to increasing BSA affinity, the nanoformulation HCQ@CS NPS changes the binding process and may open new routes for interaction. Docking experiments verified the development of the HCQ-BSA complex, with HCQ binding to site I on the BSA structure, primarily with the amino acids, Thr 578, Gln 579, Gln 525, Tyr 400, and Asn 404. Furthermore, the nanoformulation HCQ@CS NPS not only increased cytotoxicity against the A549 lung cancer cell line (IC50 = 28.57 ± 1.72 µg/mL) compared to HCQ (102.21 ± 0.67 µg/mL), but also exhibited higher antibacterial activity against both Gram-positive and Gram-negative bacteria when compared to HCQ and chloramphenicol, which is in agreement with the binding constants. The nanoformulation developed in this study may offer a viable therapy option for A549 lung cancer.


Assuntos
Quitosana , Neoplasias Pulmonares , Nanopartículas , Humanos , Simulação de Acoplamento Molecular , Quitosana/química , Hidroxicloroquina/farmacologia , Liberação Controlada de Fármacos , Antibacterianos , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/metabolismo , Nanopartículas/química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo
7.
Pharmaceutics ; 14(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36559078

RESUMO

Designing new metallodrugs for anticancer therapy is a driving force in the scientific community. Aiming to contribute to this field, we hereby report the development of a Schiff base (H2L) derived from the condensation of 2-carbaldehyde-8-hydroxyquinoline with 2-hydrazinobenzothiazole and its complexation with transition metal ions. All compounds were characterised by analytical and spectroscopic techniques, which disclosed their structure: [Cu(HL)Cl], [Cu(HL)2], [Ni(HL)(acetate)], [Ni(HL)2], [Ru(HL)Cl(DMSO)], [VO(HL)2] and [Fe(HL)2Cl(H2O)]. Different binding modes were proposed, showing the ligand's coordination versatility. The ligand proton dissociation constants were determined, and the tested compounds showed high lipophilicity and light sensitivity. The stability of all complexes in aqueous media and their ability to bind to albumin were screened. Based on an antiproliferative in vitro screening, [Ni(HL)(acetate)] and [Ru(HL)Cl(DMSO)] were selected for further studies aiming to investigate their mechanisms of action and therapeutic potential towards colon cancer. The complexes displayed IC50 < 21 µM towards murine (CT-26) and human (HCT-116) colon cancer cell lines. Importantly, both complexes exhibited superior antiproliferative properties compared to the clinically approved 5-fluorouracil. [Ni(HL)(acetate)] induced cell cycle arrest in S phase in CT-26 cells. For [Ru(HL)Cl(DMSO)] this effect was observed in both colon cancer cell lines. Additionally, both compounds significantly inhibited cell migration particularly in the human colon cancer cell line, HCT-116. Overall, the therapeutic potential of both metal complexes was demonstrated.

8.
Chembiochem ; 23(20): e202200390, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-35950614

RESUMO

Accurate formation of antibody-antigen complexes has been relied on in both, multitudes of scientific projects and ample therapeutic and diagnostic applications. Mass spectrometrically determined dissociation behavior of immune complexes with the anti-HpTGEKP antibody revealed that the ten most frequently occurring phospho-hexapeptide linker sequences from C2H2 zinc finger proteins could be divided into two classes: orthodox binders, where strong noncovalent interactions developed as anticipated, and unorthodox binders with deviating structures and weaker binding. Phosphorylation of threonine was compulsory for antibody binding in an orthodox manner. Gas phase dissociation energy determinations of seven C2H2 zinc finger protein linker phospho-hexapeptides with orthodox binding properties revealed a bipolar binding motif of the antibody paratope. Epitope peptides, which in addition to the negatively charged phospho-threonine residue were C-terminally flanked by positively charged residues provided stronger binding, i. e. dissociation was endothermic, than peptides with acidic amino acid residues at these positions, for which dissociation was exothermic.


Assuntos
Anticorpos Monoclonais , Complexo Antígeno-Anticorpo , Dedos de Zinco , Espectrometria de Massas , Epitopos/química , Peptídeos/química , Treonina , Aminoácidos Acídicos
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 271: 120863, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35077982

RESUMO

The dissociation constant is an important physicochemical parameter of amolecule. The protonation state of a molecule reflects its reactivity, solubility or ability to chemically interact with other molecules. In the present study, dissociation constants (pKa) values of 2,5-dihydroxy-1,4-benzoquinone (DHBQ) were determined by UV-Vis, fluorescence and ATR-FTIR spectroscopy at 25 °C. The resulting pKa values for DHBQ were 2.95 and 5.25. We have also experimentally found out that the monoanionic form (HBQ-) provides weak fluorescence in the pH range of about 3-6. This allowed us to determine not only the pKa in the ground but also the excited state of the molecule (pKa1* = 4.38 andpKa2* = 5.27).


Assuntos
Prótons , Benzoquinonas , Concentração de Íons de Hidrogênio , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Int J Mol Sci ; 23(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35008982

RESUMO

Nucleic acid aptamers specific to S-protein and its receptor binding domain (RBD) of SARS-CoV-2 (severe acute respiratory syndrome-related coronavirus 2) virions are of high interest as potential inhibitors of viral infection and recognizing elements in biosensors. Development of specific therapy and biosensors is complicated by an emergence of new viral strains bearing amino acid substitutions and probable differences in glycosylation sites. Here, we studied affinity of a set of aptamers to two Wuhan-type RBD of S-protein expressed in Chinese hamster ovary cell line and Pichia pastoris that differ in glycosylation patterns. The expression system for the RBD protein has significant effects, both on values of dissociation constants and relative efficacy of the aptamer binding. We propose glycosylation of the RBD as the main force for observed differences. Moreover, affinity of a several aptamers was affected by a site of biotinylation. Thus, the robustness of modified aptamers toward new virus variants should be carefully tested.


Assuntos
Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Ácidos Nucleicos Imobilizados/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , Sítios de Ligação , Células CHO , Cricetulus , Glicosilação , Ligação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , SARS-CoV-2 , Saccharomycetales/genética
11.
Biochem Biophys Res Commun ; 590: 1-6, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-34959191

RESUMO

The thermal shift assay (TSA) is a powerful tool used to detect molecular interactions between proteins and ligands. Using temperature as a physical denaturant and an extrinsic fluorescent dye, the TSA tracks protein unfolding. This method precisely determines the midpoint of the unfolding transition (Tm), which can shift upon the addition of a ligand. Though experimental protocols have been well developed, the thermal shift assay data traditionally yielded qualitative results. Quantitative methods for Kd determination relied either on empirical and inaccurate usage of Tm or on isothermal approaches, which do not take full advantage of the melting point precision provided by the TSA. We present a new analysis method based on a model that relies on the equilibrium system between the native and molten globule state of the protein using the van't Hoff equation. We propose the Kd can be determined by plotting Tm values versus the logarithm of ligand concentrations and fitting the data to an equation we derived. After testing this procedure with the monomeric maltose-binding protein and an allosterically regulated homotetrameric enzyme (ADP-glucose pyrophosphorylase), we observed that binding results correlated very well with previously established parameters. We demonstrate how this method could potentially offer a broad applicability to a wide range of protein classes and the ability to detect both active and allosteric site binding compounds.


Assuntos
Proteínas/metabolismo , Temperatura , Adenosina Difosfato Glucose/metabolismo , Escherichia coli/enzimologia , Glucose-1-Fosfato Adenililtransferase/metabolismo , Humanos , Cinética , Ligantes , Maltose/metabolismo , Proteínas Ligantes de Maltose/metabolismo , Mutagênese/genética , Desdobramento de Proteína , Trissacarídeos/metabolismo
12.
J Comput Aided Mol Des ; 35(11): 1141-1155, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34714468

RESUMO

The goal of the Statistical Assessment of the Modeling of Proteins and Ligands (SAMPL) challenge is to improve the accuracy of current computational models to estimate free energy of binding, deprotonation, distribution and other associated physical properties that are useful for the design of new pharmaceutical products. New experimental datasets of physicochemical properties provide opportunities for prospective evaluation of computational prediction methods. Here, aqueous pKa and a range of bi-phasic logD values for a variety of pharmaceutical compounds were determined through a streamlined automated process to be utilized in the SAMPL8 physical property challenge. The goal of this paper is to provide an in-depth review of the experimental methods utilized to create a comprehensive data set for the blind prediction challenge. The significance of this work involves the use of high throughput experimentation equipment and instrumentation to produce acid dissociation constants for twenty-three drug molecules, as well as distribution coefficients for eleven of those molecules.


Assuntos
Modelos Químicos , Preparações Farmacêuticas/química , Proteínas/química , Automação , Descoberta de Drogas , Ligantes , Estrutura Molecular
13.
J Comput Aided Mol Des ; 35(9): 953-961, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34363562

RESUMO

Accurate predictions of acid dissociation constants are essential to rational molecular design in the pharmaceutical industry and elsewhere. There has been much interest in developing new machine learning methods that can produce fast and accurate pKa predictions for arbitrary species, as well as estimates of prediction uncertainty. Previously, as part of the SAMPL6 community-wide blind challenge, Bannan et al. approached the problem of predicting [Formula: see text]s by using a Gaussian process regression to predict microscopic [Formula: see text]s, from which macroscopic [Formula: see text] values can be analytically computed (Bannan et al. in J Comput-Aided Mol Des 32:1165-1177). While this method can make reasonably quick and accurate predictions using a small training set, accuracy was limited by the lack of a sufficiently broad range of chemical space in the training set (e.g., the inclusion of polyprotic acids). Here, to address this issue, we construct a deep Gaussian Process (GP) model that can include more features without invoking the curse of dimensionality. We trained both a standard GP and a deep GP model using a database of approximately 3500 small molecules curated from public sources, filtered by similarity to targets. We tested the model on both the SAMPL6 and more recent SAMPL7 challenge, which introduced a similar lack of ionizable sites and/or environments found between the test set and the previous training set. The results show that while the deep GP model made only minor improvements over the standard GP model for SAMPL6 predictions, it made significant improvements over the standard GP model in SAMPL7 macroscopic predictions, achieving a MAE of 1.5 [Formula: see text].


Assuntos
Solventes/química , Aprendizado de Máquina , Modelos Químicos , Distribuição Normal , Software , Termodinâmica
14.
J Pharm Sci ; 110(7): 2585-2589, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33831440

RESUMO

Because the authors continue to note instances in the scientific literature of failure to use the correct receptor binding site concentration for determining binding constants, herein we discuss the fundamental concepts that need to be considered to determine correct binding constants or conversely calculate accurate reactant concentrations with known equilibrium constants. We also show the derivation and analytical solutions of the cubic and quartic equations that give the exact free ligand concentration in bivalent and trivalent receptor systems at equilibrium as a function of the macroscopic equilibrium dissociation constants and the total concentrations of ligand and multivalent protein. These equations and solutions strongly reemphasize the critical dependency of deriving the correct concentrations of bound or free ligand and multivalent protein on the choice of the correct concentration basis for the multivalent protein, which is in turn dependent upon the type of equilibrium constant used. These results demonstrate the importance of choosing the proper multivalent protein concentration for the determination of either valid microscopic or valid macroscopic equilibrium dissociation constants from binding isotherms of ligand-multivalent protein complexes.


Assuntos
Cinética , Sítios de Ligação , Entropia , Ligantes , Ligação Proteica
15.
Eur J Pharm Sci ; 161: 105779, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33667666

RESUMO

Bis-benzamidines are a diverse group of compounds with high potential in pharmacotherapy, and among them, pentamidine is a drug of great therapeutic significance in Pneumocystis jiroveci pneumonia (PJP) prophylaxis and therapy. Pharmacokinetic properties of these cationic species such as transport, acid/base equilibria, and interactions with potential target molecules are still of interest, especially for recently designed compounds. To broaden our knowledge drug-likeness, human serum albumin binding, and acidity constants (Ka) were experimentally and theoretically examined for five pentamidine analogues 1 - 5 with -NH-CO-chain-CO-NH-bridges of increasing length and O, N, and S atoms in the chain. The studied analogues display very marked activity against Pneumocystis carinii without cytotoxicity that inspired us to perform an in silico analysis of their mode of action based on the hypothesis that the small DNA groove of rich in adenine-thymine pairs is their molecular target. These studies allowed us to classify them as very promising lead molecules.


Assuntos
Pentamidina , Pneumonia por Pneumocystis , Benzamidinas , DNA , Corpo Humano , Humanos
16.
Toxics ; 9(3)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652875

RESUMO

The biological impacts of per- and polyfluorinated alkyl substances (PFAS) are linked to their protein interactions. Existing research has largely focused on serum albumin and liver fatty acid binding protein, and binding affinities determined with a variety of methods show high variability. Moreover, few data exist for short-chain PFAS, though their prevalence in the environment is increasing. We used molecular dynamics (MD) to screen PFAS binding to liver and intestinal fatty acid binding proteins (L- and I-FABPs) and peroxisome proliferator activated nuclear receptors (PPAR-α, -δ and -γ) with six perfluoroalkyl carboxylates (PFCAs) and three perfluoroalkyl sulfonates (PFSAs). Equilibrium dissociation constants, KDs, were experimentally determined via equilibrium dialysis (EqD) with liquid chromatography tandem mass spectrometry for protein-PFAS pairs. A comparison was made between KDs derived from EqD, both here and in literature, and other in vitro approaches (e.g., fluorescence) from literature. EqD indicated strong binding between PPAR-δ and perfluorobutanoate (0.044 ± 0.013 µM) and perfluorohexane sulfonate (0.035 ± 0.0020 µM), and between PPAR-α and perfluorohexanoate (0.097 ± 0.070 µM). Unlike binding affinities for L-FABP, which increase with chain length, KDs for PPARs showed little chain length dependence by either MD simulation or EqD. Compared with other in vitro approaches, EqD-based KDs consistently indicated higher affinity across different proteins. This is the first study to report PPARs binding with short-chain PFAS with KDs in the sub-micromolar range.

17.
Transl Res ; 232: 75-87, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33453429

RESUMO

This study was aimed at generating and investigating the efficacy of a novel monoclonal bispecific antibody (BsAb) for the combined inhibition of tumor necrosis factor-α (TNF-α) and CXCL10 as a treatment option for rheumatoid arthritis (RA). A novel BsAb targeting TNF-α and CXCL10 was generated by conjugating a single-chain variable fragment (scFv) of the anti-CXCL10 monoclonal antibody to the Fc region of adalimumab (ADA). The effects of the BsAb on the inflammatory response in the in vitro and in vivo development of arthritis and joint destruction were evaluated in human TNF transgenic (hTNF-Tg) mice, and K/BxN serum transfer arthritis models. The BsAb inhibited CXCL10-mediated CD8+ T cell migration. The binding affinity of the BsAb to TNF-α was comparable to that of ADA and suppressed TNF-α induced cell death and inhibited TNF-α induced ICAM-1 and VCAM-1 in RA fibroblast-like synoviocytes (FLSs). The BsAb decreased the expression of TNFSF11 and the production of IL-6 in RA-FLS cells stimulated with TNF-α and CXCL10. Treatment with the BsAb attenuated the development of arthritis in hTNF-Tg mice and suppressed LPS-induced bone erosion. In the K/BxN serum transfer model, BsAb effectively attenuated ankle swelling, synovial inflammation, cartilage damage, and bone destruction, reducing the activation of osteoclasts. The additional neutralization of TNF-α and CXCL10 from treatment with the novel BsAb was more effective than TNF-α inhibition alone in the in vitro and in vivo models of RA. Thus, the BsAb, targeting both TNF-α and CXCL10, may provide a new therapeutic opportunity for RA patients who fail to respond to the blockade of a single cytokine.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Artrite Experimental/terapia , Artrite Reumatoide/terapia , Quimiocina CXCL10/imunologia , Fator de Necrose Tumoral alfa/imunologia , Adalimumab , Animais , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/genética , Quimiocina CXCL10/antagonistas & inibidores , Clonagem Molecular , Cruzamentos Genéticos , Humanos , Fragmentos Fc das Imunoglobulinas , Fatores Imunológicos , Imunoterapia/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Anticorpos de Cadeia Única , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/genética
18.
Bioorg Med Chem ; 32: 115995, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33477021

RESUMO

Small molecule target identification is a critical step in modern antibacterial drug discovery, particularly against multi-drug resistant pathogens. Albocycline (ALB) is a macrolactone natural product with potent activity against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) whose mechanism of action has been elusive to date. Herein, we report biochemical and genomic studies that reveal ALB does not target bacterial peptidoglycan biosynthesis or the ribosome; rather, it appears to modulate NADPH ratios and upregulate redox sensing in the cell consistent with previous studies at Upjohn. Owing to the complexity inherent in biological pathways, further genomic assays are needed to identify the true molecular target(s) of albocycline.


Assuntos
Antibacterianos/farmacologia , NADP/genética , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Relação Dose-Resposta a Droga , Lactonas/química , Lactonas/farmacologia , Resistência a Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , NADP/metabolismo , Relação Estrutura-Atividade , Resistência a Vancomicina/efeitos dos fármacos
19.
Bioorg Chem ; 105: 104441, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33181409

RESUMO

A series of novel 1,4-naphthoquinone-triazole hybrids, N-(3-amino-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-2-(4-R-1H-1,2,3-triazol-1-yl)acetamide, was synthesized by click chemistry in the presence of sodium ascorbate and copper(II) sulfate pentahydrate in 81-94% yield. Various biological properties of the synthesized compounds including DNA binding/cleavage, antioxidant, antibacterial and antifungal properties were evaluated. The DNA binding study was performed using dsDNA and G-quadruplex DNA. All of the compounds showed fluorescence increase in the presence of DNA, regardless of the structure. Up to 2.9 and 2.5 times fluorescence increase upon incubation with double stranded or G-quadruplex DNA was detected for 5f and 5g, respectively. The docking studies performed on dsDNA and G-quadruplex structures suggested compounds' mode of interactions were populated around the grooves. All of the compounds showed excellent DNA cleavage activity and 5e was almost degraded the plasmid DNA. The highest radical scavenging activity was obtained as 89.9% at 200 mg/L with 5d. However, the highest ferrous chelating activity was obtained as 68.1% at 200 mg/L with 5g. The compounds exhibited antimicrobial activity against Bacillus cereus, Legionella pneumophila subsp. pneumophila, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Enterococcus hirae as bacteria strains and Candida albicans and Candida tropicalis as microfungus strains. The compounds exhibited antibacterial and antifungal activity in the range of 4-128 µg/mL and 16-128 µg/mL, respectively. The best antimicrobial activity was obtained with 5d and 5e with a MIC value of 4 µg/mL against Enterococcus hirae. The acid dissociation constants (pKa) were determined potentiometrically in 20% (v/v) dimethyl sulfoxide-water hydro-organic solvent at an ionic background of 0.1 mol/L of NaCl, at 25 ± 0.1 °C. Five pKa values were obtained for each ligand.


Assuntos
Anti-Infecciosos/síntese química , Corantes Fluorescentes/química , Naftoquinonas/síntese química , Triazóis/química , Acetamidas/química , Anti-Infecciosos/farmacologia , Cátions/química , Quelantes/síntese química , Química Click , DNA/química , Clivagem do DNA/efeitos dos fármacos , Metais/química , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Naftoquinonas/farmacologia
20.
Comput Struct Biotechnol J ; 18: 3518-3527, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33200026

RESUMO

The outbreak of COVID-19 raises an urgent need for the therapeutics to contain the emerging pandemic. However, no effective treatment has been found for SARS-CoV-2 infection to date. Here, we identified puerarin (PubChem CID: 5281807), quercetin (PubChem CID: 5280343) and kaempferol (PubChem CID: 5280863) as potential compounds with binding activity to ACE2 by using Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Molecular docking analysis showed that puerarin and quercetin exhibit good binding affinity to ACE2, which was validated by surface plasmon resonance (SPR) assay. Furthermore, SPR-based competition assay revealed that puerarin and quercetin could significantly affect the binding of viral S-protein to ACE2 receptor. Notably, quercetin could also bind to the RBD domain of S-protein, suggesting not only a receptor blocking, but also a virus neutralizing effect of quercetin on SARS-CoV-2. The results from network pharmacology and bioinformatics analysis support a view that quercetin is involved in host immunomodulation, which further renders it a promising candidate against COVID-19. Moreover, given that puerarin is already an existing drug, results from this study not only provide insight into its action mechanism, but also propose a prompt application of it on COVID-19 patients for assessing its clinical feasibility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA