Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Physiol ; 12: 626640, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815139

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disorder classically characterized by symptoms of motor impairment (e.g., tremor and rigidity), but also presenting with important non-motor impairments. There is evidence for the reduced activity of both the parasympathetic and sympathetic limbs of the autonomic nervous system at rest in PD. Moreover, inappropriate autonomic adjustments accompany exercise, which can lead to inadequate hemodynamic responses, the failure to match the metabolic demands of working skeletal muscle and exercise intolerance. The underlying mechanisms remain unclear, but relevant alterations in several discrete central regions (e.g., dorsal motor nucleus of the vagus nerve, intermediolateral cell column) have been identified. Herein, we critically evaluate the clinically significant and complex associations between the autonomic dysfunction, fatigue and exercise capacity in PD.

2.
JACC Basic Transl Sci ; 5(8): 799-810, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32875170

RESUMO

Large clinical trials designed to test the efficacy of vagus nerve stimulation (VNS) in patients with heart failure did not demonstrate benefits with respect to the primary endpoints. The nonselective nature of VNS may account for the failure to translate promising results of preclinical and earlier clinical studies. This study showed that optogenetic stimulation of vagal pre-ganglionic neurons transduced to express light-sensitive channels preserved left ventricular function and exercise capacity in a rat model of myocardial infarction-induced heart failure. These data suggested that stimulation of vagal efferent activity is critically important to deliver the therapeutic benefit of VNS in heart failure.

3.
Neurogastroenterol Motil ; 27(12): 1783-95, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26433214

RESUMO

BACKGROUND: Constipation is extremely common in patients with Parkinson's disease (PD) and has been described in PD animal models. In this study, we investigated whether a PD-like degeneration of dopaminergic neurons of the substantia nigra can influence peristalsis in colonic segments of rats by impacting on enteric dopaminergic transmission. METHODS: Male, Sprague-Dawley rats received a unilateral injection of neurotoxin 6-hydroxydopamine (6-OHDA), or saline, into the medial-forebrain-bundle. Peristaltic activity was recorded in isolated colonic segments, in baseline conditions and following exposure to combinations of D2 receptor (DRD2) agonist sumanirole and antagonist L-741626. Dopamine levels and DRD2 expression were assessed in the ileum and colon of animals. We also investigated the involvement of the dorsal motor nucleus of the vagus (DMV) - a potential relay station between central dopaminergic denervation and gastrointestinal (GI) dysfunction - by analyzing cytochrome c oxidase activity and FosB/DeltaFosB expression in DMV neurons. KEY RESULTS: We observed profound alterations in the response of colonic segments of 6-OHDA lesioned animals to DRD2 stimulation. In fact, the inhibition of colonic peristalsis elicited by sumanirole in control rats was absent in 6-OHDA-lesioned animals. These animals also showed reduced DRD2 expression in the colon, along with elevation of dopamine levels. No significant changes were detected within the DMV. CONCLUSIONS & INFERENCES: Our results demonstrate that selective lesion of the nigrostriatal dopaminergic pathway subverts the physiological response of the colon to dopaminergic stimulation, opening new perspectives in the comprehension and treatment of GI dysfunctions associated with PD.


Assuntos
Colo/metabolismo , Gastroenteropatias/fisiopatologia , Transtornos Parkinsonianos/fisiopatologia , Receptores de Dopamina D2/biossíntese , Substância Negra/lesões , Animais , Cromatografia Líquida de Alta Pressão , Constipação Intestinal/etiologia , Constipação Intestinal/fisiopatologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Regulação para Baixo , Imunofluorescência , Gastroenteropatias/etiologia , Motilidade Gastrointestinal/efeitos dos fármacos , Motilidade Gastrointestinal/fisiologia , Processamento de Imagem Assistida por Computador , Masculino , Oxidopamina/administração & dosagem , Oxidopamina/toxicidade , Transtornos Parkinsonianos/complicações , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Substância Negra/efeitos dos fármacos
4.
Regul Pept ; 187: 17-23, 2013 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-24120633

RESUMO

Brainstem structures such as the nucleus of the solitary tract (NTS) and the dorsal motor nucleus of the vagus nerve (DMNX) are essential for the digestive function of the stomach. A large number of neurotransmitters including glutamate and gamma-aminobutyric acid (GABA) are involved in the central control of gastric functions. However, the neuropeptidergic systems implicated in this process remain undetermined. Nesfatin-1 was recently identified as a neuropeptide cleaved from the N-terminal part of NEFA/nucleobindin 2 precursor (NUCB2). Central administration of this neuropeptide inhibits food consumption and gastroduodenal motility in rodents. Interestingly, the NTS and the DMNX contain a dense population of NUCB2/nesfatin-1 cell bodies. These observations led us to investigate the possible involvement of NUCB2/nesfatin-1 neurons in the brainstem neuronal pathways that modulate gastric functions. We observed an activation of NTS NUCB2/nesfatinergic neurons after gastric distention in rats. In addition, we found that several NTS NUCB2/nesfatinergic neurons were GABAergic. Finally, when fluorogold was injected at the stomach level, many retrogradely labeled neurons were observed in the DMNX which were also positive for NUCB2/nesfatin-1. Taken together, these observations suggest for the first time that NUCB2/nesfatin-1 neurons of the NTS are sensitive to gastric distension and then may contribute to the satiety signal.


Assuntos
Regulação do Apetite , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Núcleo Solitário/fisiologia , Estômago/fisiologia , Animais , Glutamato Descarboxilase/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Nucleobindinas , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Núcleo Solitário/citologia , Estômago/inervação , Nervo Vago/metabolismo
5.
Brain Res ; 1537: 132-42, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24028856

RESUMO

Melanocortin-4 receptor (MC4R)-expressing neurons are widely distributed in the central nervous system and play a crucial role in a variety of physiological functions including energy and glucose/insulin homeostasis. However, their neural pathways remain to be elucidated. In the present study, we examined a possible pathway from MC4R-expressing neurons in the dorsal motor nucleus of the vagus nerve (DMV) to the intrapancreatic ganglia using transgenic mice that express green fluorescent protein (GFP) under the control of the MC4R-promoter. Using immunofluorescence labeling, we demonstrated that GFP-immunoreactive (ir) nerve fibers were distributed in the intrapancreatic ganglia closely associated with the islets as well as among the acini. These GFP-ir fibers with bouton-like varicosities were frequently observed to surround ganglion cells immunoreactive for vasoactive intestinal polypeptide, a marker for postganglionic parasympathetic neurons. Using the pre-embedding immunoperoxidase method, we clearly showed that GFP-ir terminals formed synapses predominantly with dendrites and additionally with somata of the ganglion cells. Moreover, bilateral subdiaphragmatic vagotomy caused a marked loss of GFP immunoreactivity in the pancreas. Using a combination of retrograde tracing and immunohistochemistry, we finally demonstrated that nearly half of the pancreas-projecting DMV neurons were immunoreactive for GFP. These results suggest that MC4R-expressing DMV neurons may participate in the regulation of glucose/insulin homeostasis through their projections to the intrapancreatic ganglia.


Assuntos
Vias Neurais/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Nervo Vago/metabolismo , Animais , Feminino , Gânglios Parassimpáticos/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Fibras Nervosas/metabolismo , Gânglio Nodoso/metabolismo , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA