Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Sci Rep ; 14(1): 15891, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987570

RESUMO

Rapid and uncontrolled urban growth and land use changes in watersheds worldwide have led to increased surface runoff within metropolitan areas, coupled with climate change, creating a risk for residents during the rainy season. The city of San Luis Potosí is no exception to this phenomenon. One affected watercourse is the Garita Stream, which flows inside the city near urbanization. It is essential to analyze the effects of urban sprawl on this stream based on historical precipitation data for the town. Hydrological and topographical information were required to conduct this research. The hydrological study of the basin involved analyzing the region's geomorphology and historical climatological data. For the stream's topography, aerial photogrammetry using an unmanned aerial Vehicle (UAV) and Global Navigation Satellite System (GNSS) equipment was employed to conduct topographic surveys in the area. To find out when the Garita stream would overflow and which areas are most likely to flood, numerical modeling was done using 1D, 2D, and 3D programs like SWMM5 (Storm Water Management Model), HEC-RAS (Hydrologic Engineering Center's River Analysis System), and EDFC Explorer (Environmental Fluid Dynamics Code). These models simulated different return periods and their correlation with current flooding events recorded in the area, thereby further proposing solutions to mitigate overflow issues. By conducting these simulations and analyzing the results, solutions can be suggested to address the overflow problems in the area based on historical flood events at various return periods caused by the Garita Stream.

2.
Sci Total Environ ; 948: 174834, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39025155

RESUMO

Given the devastating effects and potential rising trends of compound drought and heatwave (CDH) events under the specter of global warming, this study embarks on a comprehensive examination of their spatial and temporal evolution, as well as the intrinsic drivers. This study identified CDH events based on the non-stationary standardized precipitation evapotranspiration index (NSPEI) and the relative threshold method. The study also quantified the spatial and temporal patterns of frequency, intensity, and duration of CDH events across different climatic sub-regions, quantifying the contribution of drought-heatwave interdependence to these events and assessing the impact of single extreme climate events on their proliferation. The study yielded several key findings: 1) The frequency, intensity, and duration of CDH events exhibited high spatial heterogeneity and a significant increasing trend over the study period. 2) A notable positive interdependence was observed between the occurrences of droughts and heatwaves, significantly contributing to the rise in CDH events. 3) Droughts exacerbated the intensity and duration of CDH events compared to heatwaves under non-drought conditions (NDCH). 4) The spatial distribution characteristics and the change indices of heatwaves and CDH events were strikingly similar, indicating a consistent evolution. Notably, the increase in heatwaves had a more pronounced influence on the escalation of CDH events compared to droughts. 5) The West Pacific Subtropical High (WPSH) and the South Asian High (SAH) have had significant impacts on CDH events in mainland China. This research provides vital insights into the dynamics of CDH events, emphasizing their growing frequency and severity in the context of climate change. It offers a crucial perspective for policymakers and disaster management authorities in developing targeted strategies for climate adaptation and mitigation.

3.
Environ Monit Assess ; 196(7): 636, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902424

RESUMO

In the Southern Central Highlands of Vietnam, droughts occur more frequently, causing significant damage and impacting the region's socio-economic development. During the dry season, rivers, streams, and reservoirs often face limited water availability, exacerbated in recent years by increasing drought severity. Recognizing the escalating severity of droughts, the study offers a novel contribution by conducting a comprehensive analysis of surface water resource distribution in Lam Dong province, focusing on assessing water demand for agricultural production, a crucial factor in ensuring sustainable crop growth. Two scenarios, Current-2020 (SC1) and Climate Change-2025 (SC2), are simulated, with SC2 based on climate change and sea level rise scenarios provided by the Ministry of Natural Resources and Environment (MONRE). These scenarios are integrated into the MIKE-NAM and MIKE-HYDRO basin models, allowing for a thorough assessment of the water balance of Lam Dong province. Furthermore, the study utilizes the Keetch-Byram Drought Index (KBDI) to measure drought severity, revealing prevalent dry and moderately droughty conditions in highland districts with rainfall frequency ranging from 50 to 85%. Severe drought conditions occur with a rainfall frequency of 95%, indicating an increased frequency and geographic scope of severe droughts. Additionally, the study highlights that under abnormally dry conditions, water demand for the winter-spring crop is consistently met at 100%, decreasing to 85%, 80%, and less than 75% for moderate, severe, and extreme droughts, respectively. These findings offer insights into future drought conditions in the Lam Dong province and their potential impact on irrigation capacity, crucial for adaptation strategies.


Assuntos
Mudança Climática , Secas , Vietnã , Monitoramento Ambiental , Estações do Ano , Abastecimento de Água/estatística & dados numéricos , Agricultura
4.
Sci Total Environ ; 945: 174044, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38889820

RESUMO

The two contrasting extremes of the hydrological spectrum have substantial and far-reaching impacts on a wide range of sectors including water resources, agriculture and food security, energy, infrastructure, and ecosystem. The compounding factors of climate change, burgeoning population, and rapid economic development create unprecedented challenges in devising effective and sustainable strategies to cope with these natural disasters and minimize their devastating impacts. This study identifies the geographical areas that are prone to meteorological wet-dry extreme events, as drivers of hydrologic floods and droughts, and their temporal compounding in the transboundary Upper Jhelum Basin-South Asia. Additionally, the study provides a comprehensive overview of the existing and proposed water development projects, their coping capacities, and potential impacts that may be positive or negative in hydrologic, social, economic and environment terms. Extensive review and data analysis revealed that the both Pakistan and India, along with state governments, have implemented a significant number of water-related projects across the basin, however significant progress towards achieving their stated goals remains elusive. Currently, Pakistan operates 15 runoff river type hydropower plants, and an additional 11 similar projects are under construction. In contrast, Indian administrative Kashmir has 10 such plants in operation and 4 under construction. The primary factors that impede the realization of expected benefits from these projects are geography, high flow variability across seasons, climate change, insufficient planning, geopolitical disputes, lack of transboundary cooperation, financial limitations, and reservoir operation. Based on these factors, the present study suggests some alternative water management measures that offer flexibility, cost-effectiveness, accessibility, and a low environmental impact. These solutions include implementation of sub-surface floodwater harvesting system in the southwest of the basin, where extreme wet and dry events occur in close succession, augmentation of existing hydropower reservoirs with floating photovoltaic technology, and non-structural measures, including early warning systems, ecosystems-based adaptation, and green infrastructure interventions such as restoring headwater forests, reclaiming floodplains, and wetlands. This will result in reduced flood and drought impacts at local and downstream areas and reduce the reliance of local communities on forest wood.

5.
Sci Total Environ ; 938: 173521, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38802012

RESUMO

Forests are experiencing increasingly severe drought stress worldwide. Although most studies have quantified how tree growth was affected by extreme droughts, how trees recover from different drought intensities are still poorly understood for different species. We used a network of tree-ring data comprising 731 Quercus mongolica trees across 29 sites, 312 Larix olgensis Henry trees from 13 sites, and 818 Larix principis-rupprechtii trees from 34 sites, covering most of their distribution range in northern China, to compare the influences of drought intensity on post-drought recovery. The results showed that summer droughts had strong negative influences on tree growth. Post-drought growth varied with drought intensity for the three species. Larix species exhibited strong legacy effects after severe droughts, which is related to the lack of compensatory growth. In contrast, the compensatory growth of Q. mongolica reduced drought legacy effect. However, the compensatory growth of Q. mongolica gradually weaken with increasing drought intensity and disappeared during severe drought. Our findings indicated that influence of drought on Q. mongolica growth mainly shown in drought years, but Larix species suffered from long-term drought legacy effects, implying Q. mongolica rapidly recovered from droughts but Larix species need several years to recover from droughts, thus the two genera have different recovery strategy.


Assuntos
Secas , Florestas , Larix , Quercus , Larix/fisiologia , Quercus/fisiologia , Quercus/crescimento & desenvolvimento , China , Árvores/fisiologia , Resistência à Seca
6.
Sci Total Environ ; 934: 173339, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763192

RESUMO

Ecosystem water use efficiency (WUE) is a crucial indicator of the impact of climate change on terrestrial ecosystems, reflecting the balance between biological processes (photosynthesis and transpiration) and physical processes (evapotranspiration). However, the response mechanisms and driving processes of WUE to drought remain to be further understood. In this study, we analyzed the spatial and temporal dynamics and response mechanisms of WUE in the Yellow River Basin (YRB) using data on Gross Primary Productivity (GPP), Evapotranspiration (ET) and Standardized Precipitation Evapotranspiration Index (SPEI), which revealed the cumulative effect of drought on WUE and assessed the ecosystem's resilience. The study results showed that (1) GPP, ET and WUE in the YRB exhibited a significant increasing trend, with 63.04 % of the area showing a marked increase in WUE. (2) GPP was the dominant factor influencing WUE in 65.36 % of the area, particularly in cropland and grassland, while ET was more influential in forested areas. Vapor pressure deficit (VPD) was identified as the principal driver affecting vegetation GPP in semi-arid and semi-humid regions of the YRB. In contrast, soil moisture (SM) was the limiting factor in arid areas. (3) 71.00 % of the WUE in the basin was affected by drought cumulative effects, with an average cumulative duration of 4.5 months. Arid regions experienced the most extended duration of 7.29 months, compared to 3.05 months in semi-humid regions. (4) 74.85 % of the regional ecosystems exhibited ecological resilience to drought, particularly in the source areas of the western basin of the YRB. Shrublands have the highest drought resilience among vegetation types, while grasslands have the lowest. The resilience of each climatic zone was in the order of semi-humid, semi-arid, and arid order. This study comprehensively analyzed of the spatial and temporal dynamics and response mechanisms of WUE in the YRB, offering a new perspective and scientific basis for understanding and predicting the ecosystem response to climate change.

7.
Conserv Biol ; 38(4): e14251, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38462849

RESUMO

Central America and the Caribbean are regularly battered by megadroughts, heavy rainfall, heat waves, and tropical cyclones. Although 21st-century climate change is expected to increase the frequency, intensity, and duration of these extreme weather events (EWEs), their incidence in regional protected areas (PAs) remains poorly explored. We examined historical and projected EWEs across the region based on 32 metrics that describe distinct dimensions (i.e., intensity, duration, and frequency) of heat waves, cyclones, droughts, and rainfall and compared trends in PAs with trends in unprotected lands. From the early 21st century onward, exposure to EWEs increased across the region, and PAs were predicted to be more exposed to climate extremes than unprotected areas (as shown by autoregressive model coefficients at p < 0.05 significance level). This was particularly true for heat waves, which were projected to have a significantly higher average (tested by Wilcoxon tests at p < 0.01) intensity and duration, and tropical cyclones, which affected PAs more severely in carbon-intensive scenarios. PAs were also predicted to be significantly less exposed to droughts and heavy rainfall than unprotected areas (tested by Wilcoxon tests at p < 0.01). However, droughts that could threaten connectivity between PAs are increasingly common in this region. We estimated that approximately 65% of the study area will experience at least one drought episode that is more intense and longer lasting than previous droughts. Collectively, our results highlight that new conservation strategies adapted to threats associated with EWEs need to be tailored and implemented promptly. Unless urgent action is taken, significant damage may be inflicted on the unique biodiversity of the region.


Ciclones, olas de calor, sequías y lluvias intensas son eventos comunes en Centroamérica y el Caribe, cuya frecuencia, intensidad y duración se espera aumente durante el siglo XXI a causa del cambio climático. Sin embargo, en la actualidad, se desconoce cuál será la incidencia de estos eventos meteorológicos extremos (EME) dentro de las áreas protegidas. En este estudio examinamos la exposición histórica y futura a los extremos climáticos y comparamos el grado de exposición dentro y fuera de las áreas protegidas de toda la región por medio de 32 métricas que describen distintas dimensiones (intensidad, duración y frecuencia) de las olas de calor, los ciclones, las sequías y las precipitaciones. Los resultados indican que a medida que aumente el número de EME, las áreas protegidas estarán más expuestas a los extremos climáticos que las áreas no protegidas. Esto es especialmente cierto en el caso de las olas de calor, que, según las proyecciones, tendrán una intensidad y una duración medias significativamente mayores, y de los ciclones tropicales, que afectarán más gravemente a las zonas protegidas en los escenarios intensivos en carbono. Nuestros resultados también indican que las zonas protegidas estarán significativamente menos expuestas a sequías o lluvias torrenciales que las zonas no protegidas. Sin embargo, las sequías que podrían amenazar la conectividad entre áreas protegidas son cada vez más frecuentes en esta región. Se estima que aproximadamente el 65% del área de estudio experimentará al menos un episodio de sequía más intenso y duradero que las sequías anteriores. En conjunto, nuestros resultados ponen de relieve la necesidad de diseñar y aplicar con prontitud nuevas estrategias de conservación adaptadas a las amenazas asociadas a los EWE. A menos que se tomen medidas urgentes, la biodiversidad única de la región podría sufrir daños considerables.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Clima Extremo , Animais , América Central , Ovinos/fisiologia , Tempestades Ciclônicas , Secas , Feminino
8.
Sci Total Environ ; 924: 171489, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38453074

RESUMO

In semi-arid sub-Saharan Africa, climate change and the intensification of human activities have altered the hydrological balance and modified the recurrence of extreme hydroclimatic events, such as droughts and floods. The geomorphological heterogeneity of river catchments across the region, the variable human pressure, and the lack of continuous hydroclimatic data preclude the definition of proper mitigation strategies, with a direct effect on the sustainability of rural communities. Here, for the first time in Africa, we characterize hydrological extreme events using a multidisciplinary approach that includes sedimentary data from dams. We focus on the Limpopo River basin to evaluate which factors control flood magnitude since the 1970. Extreme flood events were identified across the basin in 1988-89, 1995-96, 1999-2000, 2003-04, 2010-11, 2013-14 and 2016-17. The statistical analysis of sedimentary flood records revealed a dramatic increase in their magnitude over the studied period. A positive correlation between maximum river flow and antecedent prolonged drought conditions was found in South Africa and Mozambique. Most importantly, since 1980, we observed the likely decoupling of extreme floods from the magnitude of La Niña events, suggesting that the natural interannual variability driven by El Niño-Southern Oscillation (ENSO) has been disrupted by climate changes and human activities.

9.
Sci Total Environ ; 926: 172049, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38552974

RESUMO

Forests are undergoing increasing risks of drought-induced tree mortality. Species replacement patterns following mortality may have a significant impact on the global carbon cycle. Among major hardwoods, deciduous oaks (Quercus spp.) are increasingly reported as replacing dying conifers across the Northern Hemisphere. Yet, our knowledge on the growth responses of these oaks to drought is incomplete, especially regarding post-drought legacy effects. The objectives of this study were to determine the occurrence, duration, and magnitude of legacy effects of extreme droughts and how that vary across species, sites, and drought characteristics. The legacy effects were quantified by the deviation of observed from expected radial growth indices in the period 1940-2016. We used stand-level chronologies from 458 sites and 21 oak species primarily from Europe, north-eastern America, and eastern Asia. We found that legacy effects of droughts could last from 1 to 5 years after the drought and were more prolonged in dry sites. Negative legacy effects (i.e., lower growth than expected) were more prevalent after repetitive droughts in dry sites. The effect of repetitive drought was stronger in Mediterranean oaks especially in Quercus faginea. Species-specific analyses revealed that Q. petraea and Q. macrocarpa from dry sites were more negatively affected by the droughts while growth of several oak species from mesic sites increased during post-drought years. Sites showing positive correlations to winter temperature showed little to no growth depression after drought, whereas sites with a positive correlation to previous summer water balance showed decreased growth. This may indicate that although winter warming favors tree growth during droughts, previous-year summer precipitation may predispose oak trees to current-year extreme droughts. Our results revealed a massive role of repetitive droughts in determining legacy effects and highlighted how growth sensitivity to climate, drought seasonality and species-specific traits drive the legacy effects in deciduous oak species.


Assuntos
Quercus , Árvores , Quercus/fisiologia , Secas , Clima , Estações do Ano , Florestas , Mudança Climática
10.
Int J Biometeorol ; 68(6): 1035-1042, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38503966

RESUMO

Mental and behavioral disorders are an important public health problem and constitute a priority for the WHO, whose recommendations include the surveillance of their risk factors. On the other hand, drought episodes have been increasing in frequency and severity in Europe since 1980. Therefore, to review the present knowledge about the impact of drought on mental and behavioral disorders, in the present climate change context, and to underline potential research gaps, could be of major interest. Thus, we performed a narrative review using online academic databases with the aim of identifying relevant literature about the impact of drought on mental and behavioral disorders. To the best of our knowledge, no study in Europe quantifies the potential association between drought and mental disorders. A limited number of studies have found significant associations between droughts (with different temporal ranges) and various measures of mental health. However, according to our review, only three of them quantified the association between drought and objective mental health outcomes, such as number of emergencies due to clinically diagnosed mental disorders or suicides. Additionally, few studies used specific indices as a measure of drought; and finally, as far as authors are aware, none of them has analyzed this relationship adjusting for various other potential environmental confounders. Moreover, the eventual association could vary between different geographical areas within the same country. Therefore, national and regional studies would be especially necessary. Thus, there is a need for specific national and regional studies, in Europe and globally, that assess the impact of specific indices of drought (with different temporal ranges) on objective mental health outcomes controlling for potential environmental confounders. Moreover, the quantification of its cost would be necessary for health prioritization, evidence-based policies and strategic health planning.


Assuntos
Mudança Climática , Secas , Transtornos Mentais , Humanos , Transtornos Mentais/epidemiologia , Europa (Continente)
11.
Sci Total Environ ; 922: 171186, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38408670

RESUMO

Hydrological droughts are expected to increase in frequency and severity in many regions due to climate change. Over the last two decades, several droughts occurred in Europe, including the 2018-drought, which showed major adverse impacts for nature and different sectoral uses (e.g. irrigation, drinking water). While drought impacts on water quantity are well studied, little understanding exists on the impacts on water quality, particularly regarding pharmaceutical concentrations in surface waters. This study investigates the impact of the 2018-drought on concentrations of four selected pharmaceuticals (carbamazepine, sulfamethoxazole, diclofenac and metoprolol) in surface waters in Europe, with a major focus on the Elbe and Rhine rivers. Monitoring data were analysed for the period of 2010-2020 to estimate the spatiotemporal patterns of pharmaceuticals and assess the concentration responses in rivers during the 2018-drought compared to reference years. Our results indicate an overall deterioration in water quality, which can be attributed to the extremely low flow and higher water temperatures (∼ + 1.5 °C and + 2.0 °C in Elbe and Rhine, respectively) during the 2018-drought. Our results show an increase in the concentrations of carbamazepine, sulfamethoxazole, and metoprolol, but reduced concentrations of diclofenac during the 2018-drought. Significant increases in carbamazepine concentrations (+45 %) were observed at 3/6 monitoring stations in the upstream part of the Elbe, which was mainly attributed to less dilution of chemical loads from wastewater treatment plants under drought conditions. However, reduced diclofenac concentrations could be attributed to increased degradation processes under higher water temperatures (R2 = 0.60). Moreover, the rainfed-dominated Elbe exhibited more severe water quality deterioration than the snowmelt-dominated Rhine river, as the Elbe's reduction in dilution capacity was larger. Our findings highlight the need to account for the impacts of climate change and associated increases in droughts in water quality management plans, to improve the provision of water of good quality for ecosystems and sectoral needs.


Assuntos
Secas , Ecossistema , Diclofenaco , Metoprolol , Rios , Europa (Continente) , Carbamazepina , Sulfametoxazol , Preparações Farmacêuticas
12.
Sci Total Environ ; 916: 170133, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38242467

RESUMO

Flash droughts have gained considerable public attention due to the imminent threats they pose to food security, ecological safety, and human health. Currently, there has been little research exploring the projected changes in flash droughts and their association with compound meteorological extremes (CMEs). In this study, we applied the pentad-mean water deficit index to investigate the characteristics of flash droughts and their association with CMEs based on observational data and downscaled model simulations. Our analysis reveals an increasing trend in flash drought frequency in China based on historical observations and model simulations. Specifically, the proportion of flash drought frequency with a one-pentad onset time showed a consistent upward trend, with the southern parts of China experiencing a high average proportion during the historical period. Furthermore, the onset dates of the first (last) flash droughts during year are projected to shift earlier (later) in a warmer world. Flash droughts become significantly more frequent in the future, with a growth rate approximately 1.3 times higher in the high emission scenario than in the medium emission scenario. The frequency of flash droughts with a one-pentad onset time also exhibits a significant upward trend, indicating that flash droughts will occur more rapidly in the future. CMEs in southern regions of China were found to be more likely to trigger flash droughts in the historical period. The probability of CMEs triggering flash droughts is expected to increase with the magnitude of warming, particularly in the far-future under the high emissions scenario.

13.
Oecologia ; 204(1): 133-146, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38147134

RESUMO

Plant nutrient uptake and productivity are driven by a multitude of factors that have been modified by human activities, like climate change and the activity of decomposers. However, interactive effects of climate change and key decomposer groups like earthworms have rarely been studied. In a field microcosm experiment, we investigated the effects of a mean future climate scenario with warming (+ 0.50 °C to + 0.62 °C) and altered precipitation (+ 10% in spring and autumn, - 20% in summer) and earthworms (anecic-two Lumbricus terrestris, endogeic-four Allolobophora chlorotica and both together within 10 cm diameter tubes) on plant biomass and stoichiometry in two land-use types (intensively used meadow and conventional farming). We found little evidence for earthworm effects on aboveground biomass. However, future climate increased above- (+40.9%) and belowground biomass (+44.7%) of grass communities, which was mainly driven by production of the dominant Festulolium species during non-summer drought periods, but decreased the aboveground biomass (- 36.9%) of winter wheat. Projected climate change and earthworms interactively affected the N content and C:N ratio of grasses. Earthworms enhanced the N content (+1.2%) thereby decreasing the C:N ratio (- 4.1%) in grasses, but only under ambient climate conditions. The future climate treatment generally decreased the N content of grasses (aboveground: - 1.1%, belowground: - 0.15%) and winter wheat (- 0.14%), resulting in an increase in C:N ratio of grasses (aboveground: + 4.2%, belowground: +6.3%) and wheat (+5.9%). Our results suggest that climate change diminishes the positive effects of earthworms on plant nutrient uptakes due to soil water deficit, especially during summer drought.


Assuntos
Ecossistema , Oligoquetos , Humanos , Animais , Oligoquetos/fisiologia , Biomassa , Plantas , Poaceae , Solo
14.
Sci Total Environ ; 912: 169476, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38145671

RESUMO

Realistic representation of hydrological drought events is increasingly important in world facing decreased freshwater availability. Index-based drought monitoring systems are often adopted to represent the evolution and distribution of hydrological droughts, which mainly rely on hydrological model simulations to compute these indices. Recent studies, however, indicate that model derived water storage estimates might have difficulties in adequately representing reality. Here, a novel Markov Chain Monte Carlo - Data Assimilation (MCMC-DA) approach is implemented to merge global Terrestrial Water Storage (TWS) changes from the Gravity Recovery And Climate Experiment (GRACE) and its Follow On mission (GRACE-FO) with the water storage estimations derived from the W3RA water balance model. The modified MCMC-DA derived summation of deep-rooted soil and groundwater storage estimates is then used to compute 0.5∘ standardized groundwater drought indices globally to show the impact of GRACE/GRACE-FO DA on a global index-based hydrological drought monitoring system. Our numerical assessment covers the period of 2003-2021, and shows that integrating GRACE/GRACE-FO data modifies the seasonality and inter-annual trends of water storage estimations. Considerable increases in the length and severity of extreme droughts are found in basins that exhibited multi-year water storage fluctuations and those affected by climate teleconnections.

15.
J Health Monit ; 8(Suppl 4): 33-56, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37799532

RESUMO

Background: Extreme weather events represent one of the most tangible impacts of anthropogenic climate change. They have increased in number and severity and a further increase is expected. This is accompanied by direct and indirect negative consequences for human health. Methods: Flooding events, storms and droughts are analysed here for Germany from a systemic perspective on the basis of a comprehensive literature review. Cascading risks beyond the initial event are also taken into account in order to depict downstream consequences. Results: In addition to the immediate health burdens caused by extreme weather events such as injuries, long-term consequences such as stress-related mental disorders occur. These stresses particularly affect certain vulnerable groups, e.g. older persons, children, pregnant women or first responders. Conclusions: A look at the cascading risks described in the international literature allows us to develop precautionary measures for adaptation to the consequences of climate change. Many adaptation measures protect against different risks at the same time. In addition to planning measures, these include, above all, increasing the population's ability to protect itself through knowledge and strengthening of social networks.

16.
Environ Sci Pollut Res Int ; 30(52): 112548-112563, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37833593

RESUMO

Groundwater stored in the aquifers provides water security during natural hazards, e.g. clean water access during floods and droughts. Groundwater drought, a phenomenon closely linked with rainfall (climate) variability, is less researched, especially in India. This study aims to detect precipitation and groundwater droughts and comprehend the groundwater response to long-term precipitation trends (25 years). As a case study, the drought-affected and groundwater-depleted Purulia district in West Bengal, India, which is a part of the Chotanagpur plateau, was selected. Precipitation and groundwater droughts (in aquifer types of shallow, moderate and deep) are detected using the Standard Precipitation Index (SPI) and Groundwater Resilience Index (GRI). During the 25 year study period (1996-2020), Purulia had 13 (52%) rainfall deficiency years, with an annual average rainfall of 1382 mm. SPI detected four severe droughts and the most severe occurring in 2010-2011 (1.50). GRI found that aquifermedium had a 71% [Formula: see text] conditions and are the most resilient and aquiferdeep experienced maximum extreme drought events and is the most stressed. The cross-correlation coefficients (CCCs) between rainfall and groundwater is moderate in deep, shallow, and medium aquifers, with CCCs - 0.43, - 0.59, and - 0.49, respectively. Positive CCCs are found for seasonal lags of - 3, - 4, and - 7. The study found that during the monsoon, average depth to groundwater level is 1 - 4 m and it drops to 8 - 10 m during the lean period, more than 85% of wells are vulnerable to extreme droughts (SPI > 1.5), aquifer's response to rainfall is aquifershallow > aquifermoderate > aquiferdeep, and aquifer's may be arranged as aquifermoderate > aquifershallow > aquiferdeep depending on their drought resistance. This study, with the use of statistical tools and long term data, will aid in the management of groundwater at varying depths by creating basis for understanding the groundwater response to rainfall events.


Assuntos
Água Subterrânea , Poços de Água , Clima , Índia , Secas
17.
Sci Total Environ ; 904: 166571, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37647947

RESUMO

Global warming is emerging as an important predictor of water availability and future water supplies across the world through inducing the frequency and severity in hydrological extremes. These extremes (e.g., drought) have potential impacts on groundwater, environmental flows, as well as increase social inequalities (limited access to water by the poor), among a range of other issues. Understanding the influence of global climate on groundwater systems is thus critical to help reshape global water markets through policies underpinned by the knowledge of climatic processes driving the water cycle and freshwater supply. The main aim of this study is to improve understanding of the influence of climate variability on global groundwater using statistical methods (e.g., multi-linear regression and wavelet analyses). The response of groundwater to climate variability are assessed and the feasibility of identifying climatic hotspots of groundwater-climate interactions are explored (2003-2017). Generally, climate variability plays a major role in the distribution of groundwater recharge, evidenced in the groundwater-rainfall relationship (r ranging from 0.6 to 0.8 with lags of 1-5 months) in several regions (Amazon and Congo basins, West Africa, and south Asia). Some of the areas where no relationship exists coincide with major regional aquifer systems (e.g., Nubian sand stone in north Africa) in arid domains with fossil groundwater. Our results also show that groundwater fluxes across the world are driven by global climate teleconnections. Notable among these climate teleconnections are PDO, ENSO, CAR, and Nino 4 with PDO showing the strongest relationship (r= 0.80) with groundwater in some hotspots (e.g. in South America). The explicit role of the Pacific ocean in regulating groundwater fluxes provides an opportunity to improve the prediction of climate change impact on global freshwater systems. As opposed to remarkably large productive hydrological systems (Amazon and Congo basins), in typically arid domains, groundwater could be restricted during prolonged drought, constraining the persistence of surface water in the maintenance of a healthy surface-groundwater interactions.

18.
FEMS Microbiol Ecol ; 99(9)2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37586889

RESUMO

Seasonal environmental variation is a leading driver of microbial planktonic community assembly and interactions. However, departures from usual seasonal trends are often reported. To understand the role of local stressors in modifying seasonal succession, we sampled fortnightly, throughout three seasons, five nearby shallow soda lakes exposed to identical seasonal and meteorological changes. We characterised their microeukaryotic and bacterial communities by amplicon sequencing of the 16S and 18S rRNA gene, respectively. Biological interactions were inferred by analyses of synchronous and time-shifted interaction networks, and the keystone taxa of the communities were topologically identified. The lakes showed similar succession patterns during the study period with spring being characterised by the relevance of trophic interactions and a certain level of community stability followed by a more dynamic and variable summer-autumn period. Adaptation to general seasonal changes happened through shared core microbiome of the lakes. Stochastic events such as desiccation disrupted common network attributes and introduced shifts from the prevalent seasonal trajectory. Our results demonstrated that, despite being extreme and highly variable habitats, shallow soda lakes exhibit certain similarities in the seasonality of their planktonic communities, yet local stressors such as droughts instigate deviations from prevalent trends to a greater extent for microeukaryotic than for bacterial communities.


Assuntos
Aclimatação , Lagos , Estações do Ano , Clima , Secas , Plâncton/genética
19.
J Environ Manage ; 344: 118726, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37573693

RESUMO

Quantifying drought's economic impacts has been key for decision-making to build future strategies and improve the development and implementation of proactive plans. However, climate change is changing drought frequency, intensity, and durability. These changes imply modifications of their economic impact, as longer droughts result in greater cumulative economic losses for water users. Though the longer the drought lasts, other factors also play a crucial role in its economic outcomes, such as Infrastructure capacity (IC), the Amount of Water in Storage (AWS) in reservoirs and aquifers, and short- and long-term responses to it. This study proposes and applies an analytical framework for the economic assessment of long-run droughts, assessing and explaining central Chile megadrought economic effects through the factors that begin to influence the economic impact level in this setting. High levels of both IC and the AWS, as well as short- and long-term responses of water users, allow for high resilience to long-run droughts, tolerating extraordinary water disruption in its society with relatively low total economic impacts. Despite this adaptability, long-term droughts bring places to a water-critical threshold where long-term adaptation strategies may be less flexible than short-term strategies, escalating the adverse economic effects. This fact suggests that the economic evaluation of megadrought needs to focus on future tipping points (substantial water scarcity). The tipping point depends on the IC, how water users manage the AWS, and adaptation strategies. Establishing the tipping point should be a priority for future interdisciplinary research.


Assuntos
Secas , Abastecimento de Água , Água , Chile , Mudança Climática
20.
J Environ Manage ; 345: 118703, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37540983

RESUMO

Forestry has long been considered an effective means of restoring degraded drylands worldwide. Often, afforestation in such lands relies on the establishment of runoff harvesting systems that are formed as contour bench terraces on hillslopes, increasing water availability for the planted trees and shrubs. The construction of terraces requires intensive earthworks by heavy machinery. This study assessed the long-term (>10 yrs) effects of forestry-related land-use change on soil properties and herbaceous vegetation in 16-year-old and 12-year-old afforestation sites (established in 2005 and 2009), and in nearby control ("natural") areas in the semi-arid northern Negev, Israel. Mean herbaceous vegetation height in the 2005 afforestation sites (12.1 cm) was significantly (P = 0.0009) and 23% greater than in the control areas (9.8 cm), whereas in the 2009 afforestation sites (6.2 cm) it was 37% lesser than in the control areas. Mean herbaceous vegetation aboveground biomass was similar in the 2005 afforestation (0.39 Mg ha-1) and control areas (0.38 Mg ha-1), and almost significantly (P = 0.0510) and twofold greater than in the 2009 afforestation sites (0.19 Mg ha-1). The effect of hillslope aspect on these variables was substantial; their mean values were higher in the northern (mesic) hillslopes than in the southern (xeric) hillslopes. Soil samples were obtained from depths of 0-5 and 5-10 cm and physio-chemo-biological properties were assessed in the laboratory. The overall soil quality - as calculated by two soil quality indices (SQIs), including the generalized SQI (SQIgen) and the minimum dataset SQI (SQIMDS) - was significantly (P < 0.0001 for both indices) and 13-22% greater in the control areas (0.52 and 0.61, respectively) than that in the afforestation treatments (0.44-0.46 and 0.50-0.51, respectively). These results are generally attributed to the removal of soil's A-horizon during earthworks, and the exposure of the underlying B-horizon. The similar SQI values of both hillslope aspects, as well as of both soil depths, indicate the generally degraded state of the entire region. In conclusion, while contour bench terracing may facilitate the recovery of herbacaeous vegetation to some extent, the effectiveness of this practice for soil restoration is questionable. Overall, insights of this study demonstrate a caveat that converting natural drylands to forestry systems may not yield sufficient ecological benefits, and therefore should be implemented with caution.


Assuntos
Carbono , Solo , Carbono/análise , Árvores/metabolismo , Agricultura Florestal , Plantas/metabolismo , China , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA